BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 2016;19:290-8. [PMID: 26691833 DOI: 10.1038/nn.4209] [Cited by in Crossref: 140] [Cited by in F6Publishing: 126] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Dimitriadis SI, Lyssoudis C, Tsolaki AC, Lazarou E, Kozori M, Tsolaki M. Greek High Phenolic Early Harvest Extra Virgin Olive Oil Reduces the Over-Excitation of Information-Flow Based on Dominant Coupling Mode (DoCM) Model in Patients with Mild Cognitive Impairment: An EEG Resting-State Validation Approach. J Alzheimers Dis 2021;83:191-207. [PMID: 34308906 DOI: 10.3233/JAD-210454] [Reference Citation Analysis]
2 Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Lazarus M, Qu WM, Huang ZL. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology 2020;168:107923. [PMID: 31874169 DOI: 10.1016/j.neuropharm.2019.107923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
3 Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro 2018;5:ENEURO. [PMID: 30225361 DOI: 10.1523/ENEURO.0228-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017;96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
5 Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017;44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
6 Sere P, Zsigri N, Raffai T, Furdan S, Győri F, Crunelli V, Lőrincz ML. Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures. Int J Mol Sci 2021;22:9466. [PMID: 34502374 DOI: 10.3390/ijms22179466] [Reference Citation Analysis]
7 Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 2020. [PMID: 32555422 DOI: 10.1038/s41380-020-0810-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shi Y, Xiao D, Dai L, Si Y, Fang Q, Wei X. The hypnotic effect of propofol involves inhibition of GABAergic neurons in the lateral hypothalamus. NeuroReport 2019;30:927-32. [DOI: 10.1097/wnr.0000000000001292] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Saravanapandian V, Nadkarni D, Hsu SH, Hussain SA, Maski K, Golshani P, Colwell CS, Balasubramanian S, Dixon A, Geschwind DH, Jeste SS. Abnormal sleep physiology in children with 15q11.2-13.1 duplication (Dup15q) syndrome. Mol Autism 2021;12:54. [PMID: 34344470 DOI: 10.1186/s13229-021-00460-8] [Reference Citation Analysis]
10 Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019;9:3607. [PMID: 30837664 DOI: 10.1038/s41598-019-40398-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
11 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
12 Halassa MM, Acsády L. Thalamic Inhibition: Diverse Sources, Diverse Scales. Trends Neurosci 2016;39:680-93. [PMID: 27589879 DOI: 10.1016/j.tins.2016.08.001] [Cited by in Crossref: 100] [Cited by in F6Publishing: 84] [Article Influence: 16.7] [Reference Citation Analysis]
13 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
14 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
15 Lüthi A. Sleep: The Very Long Posited (VLPO) Synaptic Pathways of Arousal. Curr Biol 2019;29:R1310-2. [PMID: 31846678 DOI: 10.1016/j.cub.2019.11.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Bell BJ, Wang AA, Kim DW, Xiong J, Blackshaw S, Wu MN. Characterization of mWake expression in the murine brain. J Comp Neurol 2021;529:1954-87. [PMID: 33140455 DOI: 10.1002/cne.25066] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, Xiong Q. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun 2021;12:4646. [PMID: 34330901 DOI: 10.1038/s41467-021-24915-x] [Reference Citation Analysis]
18 Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018;222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Reference Citation Analysis]
20 Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021;12:5115. [PMID: 34433830 DOI: 10.1038/s41467-021-25378-w] [Reference Citation Analysis]
21 Bender F, Korotkova T, Ponomarenko A. Optogenetic Entrainment of Hippocampal Theta Oscillations in Behaving Mice. J Vis Exp 2018. [PMID: 30010632 DOI: 10.3791/57349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
22 Zhang Y, Yang R, Cai X. Frequency-specific alternations in the moment-to-moment BOLD signals variability in schizophrenia. Brain Imaging Behav 2021;15:68-75. [PMID: 31900893 DOI: 10.1007/s11682-019-00233-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Uygun DS, Yang C, Tilli ER, Katsuki F, Hodges EL, McKenna JT, McNally JM, Brown RE, Basheer R. Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nat Commun 2022;13:2246. [PMID: 35473906 DOI: 10.1038/s41467-022-29852-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hayat H, Regev N, Matosevich N, Sales A, Paredes-Rodriguez E, Krom AJ, Bergman L, Li Y, Lavigne M, Kremer EJ, Yizhar O, Pickering AE, Nir Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci Adv 2020;6:eaaz4232. [PMID: 32285002 DOI: 10.1126/sciadv.aaz4232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
25 Mesbah-Oskui L, Horner RL. Enhanced Thalamic Spillover Inhibition during Non-rapid-eye-movement Sleep Triggers an Electrocortical Signature of Anesthetic Hypnosis. Anesthesiology 2016;125:964-78. [PMID: 27552653 DOI: 10.1097/ALN.0000000000001307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
26 Funato H, Miyoshi C, Fujiyama T, Kanda T, Sato M, Wang Z, Ma J, Nakane S, Tomita J, Ikkyu A, Kakizaki M, Hotta-Hirashima N, Kanno S, Komiya H, Asano F, Honda T, Kim SJ, Harano K, Muramoto H, Yonezawa T, Mizuno S, Miyazaki S, Connor L, Kumar V, Miura I, Suzuki T, Watanabe A, Abe M, Sugiyama F, Takahashi S, Sakimura K, Hayashi Y, Liu Q, Kume K, Wakana S, Takahashi JS, Yanagisawa M. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016;539:378-83. [PMID: 27806374 DOI: 10.1038/nature20142] [Cited by in Crossref: 132] [Cited by in F6Publishing: 109] [Article Influence: 22.0] [Reference Citation Analysis]
27 Bin G, Wang T, Zeng H, He X, Li F, Zhang J, Huang B. Patterns of Gray Matter Abnormalities in Idiopathic Generalized Epilepsy: A Meta-Analysis of Voxel-Based Morphology Studies. PLoS One 2017;12:e0169076. [PMID: 28060866 DOI: 10.1371/journal.pone.0169076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
28 de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Carroll B, Knott V. Resting-state functional EEG connectivity in salience and default mode networks and their relationship to dissociative symptoms during NMDA receptor antagonism. Pharmacol Biochem Behav 2021;201:173092. [PMID: 33385439 DOI: 10.1016/j.pbb.2020.173092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO2 nanowired drug delivery. Prog Brain Res 2021;266:211-67. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Reference Citation Analysis]
30 Hua R, Wang X, Chen X, Wang X, Huang P, Li P, Mei W, Li H. Calretinin Neurons in the Midline Thalamus Modulate Starvation-Induced Arousal. Current Biology 2018;28:3948-3959.e4. [DOI: 10.1016/j.cub.2018.11.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
31 Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021;15:634618. [PMID: 33664657 DOI: 10.3389/fnbeh.2021.634618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Steullet P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 2020;226:147-57. [PMID: 31147286 DOI: 10.1016/j.schres.2019.05.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
33 Wang H, Haas JS. GABABR Modulation of Electrical Synapses and Plasticity in the Thalamic Reticular Nucleus. Int J Mol Sci 2021;22:12138. [PMID: 34830020 DOI: 10.3390/ijms222212138] [Reference Citation Analysis]
34 Howells FM, Temmingh HS, Hsieh JH, van Dijen AV, Baldwin DS, Stein DJ. Electroencephalographic delta/alpha frequency activity differentiates psychotic disorders: a study of schizophrenia, bipolar disorder and methamphetamine-induced psychotic disorder. Transl Psychiatry 2018;8:75. [PMID: 29643331 DOI: 10.1038/s41398-018-0105-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
35 Wenzel M, Han S, Smith EH, Hoel E, Greger B, House PA, Yuste R. Reduced Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of Consciousness. Cell Syst 2019;8:467-474.e4. [PMID: 31054810 DOI: 10.1016/j.cels.2019.03.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
36 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
37 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Maywood ES, Chesham JE, Winsky-Sommerer R, Hastings MH. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. J Neurosci 2021;41:8562-76. [PMID: 34446572 DOI: 10.1523/JNEUROSCI.3141-20.2021] [Reference Citation Analysis]
39 Vantomme G, Osorio-Forero A, Lüthi A, Fernandez LMJ. Regulation of Local Sleep by the Thalamic Reticular Nucleus. Front Neurosci 2019;13:576. [PMID: 31231186 DOI: 10.3389/fnins.2019.00576] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
40 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
41 Wang C, Li S, Wu S. Analysis of the Neuron Dynamics in Thalamic Reticular Nucleus by a Reduced Model. Front Comput Neurosci 2021;15:764153. [PMID: 34867253 DOI: 10.3389/fncom.2021.764153] [Reference Citation Analysis]
42 Vantomme G, Rovó Z, Cardis R, Béard E, Katsioudi G, Guadagno A, Perrenoud V, Fernandez LMJ, Lüthi A. A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation. Cell Rep 2020;31:107747. [PMID: 32521272 DOI: 10.1016/j.celrep.2020.107747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
43 Lafferty CK, Britt JP. Off-Target Influences of Arch-Mediated Axon Terminal Inhibition on Network Activity and Behavior. Front Neural Circuits 2020;14:10. [PMID: 32269514 DOI: 10.3389/fncir.2020.00010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
45 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
46 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Butté R, Grandjean N. III-nitride photonic cavities. Nanophotonics 2020;9:569-98. [DOI: 10.1515/nanoph-2019-0442] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
48 Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021;73:202-77. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
49 Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2018;12:64. [PMID: 30670952 DOI: 10.3389/fnsys.2018.00064] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
50 Crunelli V, Lőrincz ML, Connelly WM, David F, Hughes SW, Lambert RC, Leresche N, Errington AC. Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nat Rev Neurosci 2018;19:107-18. [PMID: 29321683 DOI: 10.1038/nrn.2017.151] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 14.3] [Reference Citation Analysis]
51 Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018;28:392-400.e3. [PMID: 29358069 DOI: 10.1016/j.cub.2017.12.049] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
52 Kosse C, Schöne C, Bracey E, Burdakov D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 2017;114:4525-30. [PMID: 28396414 DOI: 10.1073/pnas.1619700114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
53 Maywood ES. Synchronization and maintenance of circadian timing in the mammalian clockwork. Eur J Neurosci 2020;51:229-40. [DOI: 10.1111/ejn.14279] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Gent T, Adamantidis A. Anaesthesia and sleep: Where are we now? Clinical and Translational Neuroscience 2017;1:2514183X1772628. [DOI: 10.1177/2514183x17726281] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
57 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
58 He JL, Oeltzschner G, Mikkelsen M, Deronda A, Harris AD, Crocetti D, Wodka EL, Mostofsky SH, Edden RAE, Puts NAJ. Region-specific elevations of glutamate + glutamine correlate with the sensory symptoms of autism spectrum disorders. Transl Psychiatry 2021;11:411. [PMID: 34326312 DOI: 10.1038/s41398-021-01525-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J, Schwarz MK, Burdakov D, Georges F, Mameli M. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. Elife 2017;6:e30697. [PMID: 28871962 DOI: 10.7554/eLife.30697] [Cited by in Crossref: 52] [Cited by in F6Publishing: 24] [Article Influence: 10.4] [Reference Citation Analysis]
60 Lee W. Symptomatologic pathomechanism of N-methyl D-aspartate receptor encephalitis. encephalitis 2021;1:36-44. [DOI: 10.47936/encephalitis.2021.00017] [Reference Citation Analysis]
61 Gazea M, Patchev AV, Anderzhanova E, Leidmaa E, Pissioti A, Flachskamm C, Almeida OFX, Kimura M. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. J Neurosci 2018;38:441-51. [PMID: 29196316 DOI: 10.1523/JNEUROSCI.1333-17.2017] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
62 Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020;11:5247. [PMID: 33067436 DOI: 10.1038/s41467-020-19076-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
63 Oh SG, Hwang YG, Lee HS. LIM homeobox 6 (Lhx6)+ neurons in the ventral zona incerta project to the core portion of the lateral supramammillary nucleus in the rat. Brain Res 2020;1748:147125. [PMID: 32931819 DOI: 10.1016/j.brainres.2020.147125] [Reference Citation Analysis]
64 Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021:S0960-9822(21)00826-5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Reference Citation Analysis]
65 Weber F. Modeling the mammalian sleep cycle. Current Opinion in Neurobiology 2017;46:68-75. [DOI: 10.1016/j.conb.2017.07.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
66 Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol 2016;26:2137-43. [PMID: 27426511 DOI: 10.1016/j.cub.2016.05.078] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 15.3] [Reference Citation Analysis]
67 Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience & Biobehavioral Reviews 2018;85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
68 Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 2017;7:47-56. [PMID: 28377991 DOI: 10.1016/j.ynstr.2017.03.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 11.2] [Reference Citation Analysis]
69 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
70 Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020;117:19590-8. [PMID: 32732431 DOI: 10.1073/pnas.1921909117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
71 Racz FS, Stylianou O, Mukli P, Eke A. Multifractal and Entropy-Based Analysis of Delta Band Neural Activity Reveals Altered Functional Connectivity Dynamics in Schizophrenia. Front Syst Neurosci 2020;14:49. [PMID: 32792917 DOI: 10.3389/fnsys.2020.00049] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
72 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
74 Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021;15:628229. [PMID: 34305549 DOI: 10.3389/fnhum.2021.628229] [Reference Citation Analysis]
75 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
76 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci 2018;21:974-84. [PMID: 29892048 DOI: 10.1038/s41593-018-0164-7] [Cited by in Crossref: 77] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
78 Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019;29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
79 Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019;20:746-62. [DOI: 10.1038/s41583-019-0223-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
80 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
81 Kosse C, Burdakov D. Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ. eNeuro 2018;5:ENEURO. [PMID: 29423437 DOI: 10.1523/ENEURO.0012-18.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
82 Radwan B, Jansen G, Chaudhury D. Sleep-wake dynamics pre- and post-exposure to chronic social stress. iScience 2021;24:103204. [PMID: 34703999 DOI: 10.1016/j.isci.2021.103204] [Reference Citation Analysis]
83 Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, Denardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020;29. [DOI: 10.1111/jsr.12976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
85 Cheng Z, Wang C, Wei B, Gan W, Zhou Q, Cui M. High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging. Brain Stimul 2021;15:190-6. [PMID: 34952226 DOI: 10.1016/j.brs.2021.12.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 May A, Burstein R. Hypothalamic regulation of headache and migraine. Cephalalgia 2019;39:1710-9. [PMID: 31466456 DOI: 10.1177/0333102419867280] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 11.7] [Reference Citation Analysis]
87 Qi J, Li BZ, Zhang Y, Pan B, Gao YH, Zhan H, Liu Y, Shao YC, Zhang X. Altered Hypothalamic Functional Connectivity Following Total Sleep Deprivation in Young Adult Males. Front Neurosci 2021;15:688247. [PMID: 34658753 DOI: 10.3389/fnins.2021.688247] [Reference Citation Analysis]
88 Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2018;41. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Carus-Cadavieco M, Gorbati M, Ye L, Bender F, van der Veldt S, Kosse C, Börgers C, Lee SY, Ramakrishnan C, Hu Y, Denisova N, Ramm F, Volitaki E, Burdakov D, Deisseroth K, Ponomarenko A, Korotkova T. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature 2017;542:232-6. [PMID: 28146472 DOI: 10.1038/nature21066] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 12.0] [Reference Citation Analysis]
90 Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019;13:73. [PMID: 31798420 DOI: 10.3389/fncir.2019.00073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
91 Hong J, Lee J, Song K, Ha GE, Yang YR, Ma JS, Yamamoto M, Shin HS, Suh PG, Cheong E. The thalamic mGluR1-PLCβ4 pathway is critical in sleep architecture. Mol Brain 2016;9:100. [PMID: 27998287 DOI: 10.1186/s13041-016-0276-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
92 Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021;123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Gent TC, Bassetti C, Adamantidis AR. Sleep-wake control and the thalamus. Curr Opin Neurobiol 2018;52:188-97. [PMID: 30144746 DOI: 10.1016/j.conb.2018.08.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
94 Szabo GG, Farrell JS, Dudok B, Hou WH, Ortiz AL, Varga C, Moolchand P, Gulsever CI, Gschwind T, Dimidschstein J, Capogna M, Soltesz I. Ripple-selective GABAergic projection cells in the hippocampus. Neuron 2022:S0896-6273(22)00310-5. [PMID: 35489331 DOI: 10.1016/j.neuron.2022.04.002] [Reference Citation Analysis]
95 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
96 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
97 Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev 2020;110:60-76. [PMID: 31059731 DOI: 10.1016/j.neubiorev.2019.04.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
98 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
99 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
100 Luppi P, Fort P. Sleep–wake physiology. Clinical Neurophysiology: Basis and Technical Aspects. Elsevier; 2019. pp. 359-70. [DOI: 10.1016/b978-0-444-64032-1.00023-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
101 Li S, Lo Y, Lai H, Lin S, Lin H, Lin T, Chang C, Chen T, Chin-jung Hsieh C, Yang S, Chiu F, Kuo C, Chen Y. Uncovering the Modulatory Interactions of Brain Networks in Cognition with Central Thalamic Deep Brain Stimulation Using Functional Magnetic Resonance Imaging. Neuroscience 2020;440:65-84. [DOI: 10.1016/j.neuroscience.2020.05.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Dimitriadis SI. Reconfiguration of αmplitude driven dominant coupling modes (DoCM) mediated by α-band in adolescents with schizophrenia spectrum disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2021;108:110073. [DOI: 10.1016/j.pnpbp.2020.110073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
103 Ramadasan-Nair R, Hui J, Zimin PI, Itsara LS, Morgan PG, Sedensky MM. Regional knockdown of NDUFS4 implicates a thalamocortical circuit mediating anesthetic sensitivity. PLoS One 2017;12:e0188087. [PMID: 29136012 DOI: 10.1371/journal.pone.0188087] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
104 El Khoueiry C, Cabungcal J, Rovó Z, Fournier M, Do KQ, Steullet P. Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol Psychiatry. [DOI: 10.1038/s41380-021-01425-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO2 -induced arousal from sleep. J Physiol 2021;599:2559-71. [PMID: 33759184 DOI: 10.1113/JP281305] [Reference Citation Analysis]
106 Huang Y, Li Y, Leng Z. Melatonin inhibits GABAergic neurons in the hypothalamus consistent with a reduction in wakefulness. NeuroReport 2020;31:92-8. [DOI: 10.1097/wnr.0000000000001374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
107 Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018;9:35. [PMID: 29456505 DOI: 10.3389/fphar.2018.00035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
108 Luppi P, Fort P. Neuroanatomical and Neurochemical Bases of Vigilance States. In: Landolt H, Dijk D, editors. Sleep-Wake Neurobiology and Pharmacology. Cham: Springer International Publishing; 2019. pp. 35-58. [DOI: 10.1007/164_2017_84] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
109 Hou G, Smith AG, Zhang ZW. Lack of Intrinsic GABAergic Connections in the Thalamic Reticular Nucleus of the Mouse. J Neurosci 2016;36:7246-52. [PMID: 27383598 DOI: 10.1523/JNEUROSCI.0607-16.2016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 7.2] [Reference Citation Analysis]
110 Luppi P, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews 2017;32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 9.8] [Reference Citation Analysis]
111 Liu Y, Chen B, Cai Y, Han Y, Xia Y, Li N, Fan B, Yuan T, Jiang J, Gao PO, Yu W, Jiao Y, Li W. Activation of anterior thalamic reticular nucleus GABAergic neurons promotes arousal from propofol anesthesia in mice. Acta Biochim Biophys Sin (Shanghai) 2021;53:883-92. [PMID: 33929026 DOI: 10.1093/abbs/gmab056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
113 Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
114 Kaur S, De Luca R, Khanday MA, Bandaru SS, Thomas RC, Broadhurst RY, Venner A, Todd WD, Fuller PM, Arrigoni E, Saper CB. Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nat Commun 2020;11:2769. [PMID: 32488015 DOI: 10.1038/s41467-020-16518-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
115 Mesbah-Oskui L, Gurges P, Liu WY, Horner RL. Optical Stimulation of Thalamic Spindle Circuitry Sustains Electroencephalogram Patterns of General Anesthesia but not Duration of Loss of Consciousness. Neuroscience 2021;468:110-22. [PMID: 34126184 DOI: 10.1016/j.neuroscience.2021.06.009] [Reference Citation Analysis]
116 Wisden W, Yu X, Franks NP. GABA Receptors and the Pharmacology of Sleep. Handb Exp Pharmacol 2019;253:279-304. [PMID: 28993837 DOI: 10.1007/164_2017_56] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
117 Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LHGABA Neurons. Front Behav Neurosci 2021;15:649428. [PMID: 33716686 DOI: 10.3389/fnbeh.2021.649428] [Reference Citation Analysis]
118 McDevitt DS, Graziane NM. Timing of Morphine Administration Differentially Alters Paraventricular Thalamic Neuron Activity. eNeuro 2019;6:ENEURO. [PMID: 31801741 DOI: 10.1523/ENEURO.0377-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
119 Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 2018;9:1576. [PMID: 29679009 DOI: 10.1038/s41467-018-03889-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 16.8] [Reference Citation Analysis]
120 Zhong YH, Jiang S, Qu WM, Zhang W, Huang ZL, Chen CR. Saikosaponin a promotes sleep by decreasing neuronal activities in the lateral hypothalamus. J Sleep Res 2021;:e13484. [PMID: 34510626 DOI: 10.1111/jsr.13484] [Reference Citation Analysis]
121 Rogers AA, Aiani LM, Blanpain LT, Yuxian S, Moore R, Willie JT. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice. Brain Stimul 2020;13:1305-16. [PMID: 32320748 DOI: 10.1016/j.brs.2020.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
122 Fan D, Duan L, Wang Q, Luan G. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures. Front Comput Neurosci 2017;11:59. [PMID: 28736520 DOI: 10.3389/fncom.2017.00059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
123 Zucca S, D'Urso G, Pasquale V, Vecchia D, Pica G, Bovetti S, Moretti C, Varani S, Molano-Mazón M, Chiappalone M, Panzeri S, Fellin T. An inhibitory gate for state transition in cortex. Elife 2017;6:e26177. [PMID: 28509666 DOI: 10.7554/eLife.26177] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 10.4] [Reference Citation Analysis]
124 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
125 Bao WW, Xu W, Pan GJ, Wang TX, Han Y, Qu WM, Li WX, Huang ZL. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr Biol 2021;31:1893-1902.e5. [PMID: 33705720 DOI: 10.1016/j.cub.2021.02.011] [Reference Citation Analysis]
126 Lőrincz ML, Adamantidis AR. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2017;151:237-53. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
127 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
128 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
129 Facchin L, Schöne C, Mensen A, Bandarabadi M, Pilotto F, Saxena S, Libourel PA, Bassetti CLA, Adamantidis AR. Slow Waves Promote Sleep-Dependent Plasticity and Functional Recovery after Stroke. J Neurosci 2020;40:8637-51. [PMID: 33087472 DOI: 10.1523/JNEUROSCI.0373-20.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
130 Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, Lazarus M, Schiffmann SN, d'Exaerde AK, Li RX, Huang ZL. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. Elife 2017;6:e29055. [PMID: 29022877 DOI: 10.7554/eLife.29055] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 8.2] [Reference Citation Analysis]
131 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
132 Adamantidis A. How the gut talks to the brain. Science 2022;376:248-9. [PMID: 35420955 DOI: 10.1126/science.abo7933] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
134 Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 2021;24:82-92. [PMID: 33288910 DOI: 10.1038/s41593-020-00752-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
135 Fernandez LM, Vantomme G, Osorio-Forero A, Cardis R, Béard E, Lüthi A. Thalamic reticular control of local sleep in mouse sensory cortex. Elife 2018;7:e39111. [PMID: 30583750 DOI: 10.7554/eLife.39111] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
136 Brickley SG, Franks NP, Wisden W. Modulation of GABA A receptor function and sleep. Current Opinion in Physiology 2018;2:51-7. [DOI: 10.1016/j.cophys.2017.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
137 Salemi-Mokri-Boukani P, Karimian-Sani-Varjovi H, Safari MS. The promoting effect of vagus nerve stimulation on Lempel-Ziv complexity index of consciousness. Physiol Behav 2021;240:113553. [PMID: 34375622 DOI: 10.1016/j.physbeh.2021.113553] [Reference Citation Analysis]
138 Lüthi A. Sleep: Switching Off the Off-Switch. Current Biology 2016;26:R765-7. [DOI: 10.1016/j.cub.2016.06.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
139 Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021;118:e2101580118. [PMID: 34903646 DOI: 10.1073/pnas.2101580118] [Reference Citation Analysis]
140 Singh B, McArdle N, Hillman D. Psychopharmacology of sleep disorders. Handb Clin Neurol 2019;165:345-64. [PMID: 31727223 DOI: 10.1016/B978-0-444-64012-3.00021-6] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]