BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y. Basal forebrain circuit for sleep-wake control. Nat Neurosci 2015;18:1641-7. [PMID: 26457552 DOI: 10.1038/nn.4143] [Cited by in Crossref: 234] [Cited by in F6Publishing: 212] [Article Influence: 33.4] [Reference Citation Analysis]
Number Citing Articles
1 Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019;9:3607. [PMID: 30837664 DOI: 10.1038/s41598-019-40398-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
2 Howe WM, Gritton HJ, Lusk NA, Roberts EA, Hetrick VL, Berke JD, Sarter M. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection. J Neurosci 2017;37:3215-30. [PMID: 28213446 DOI: 10.1523/JNEUROSCI.2737-16.2017] [Cited by in Crossref: 57] [Cited by in F6Publishing: 36] [Article Influence: 11.4] [Reference Citation Analysis]
3 Nair J, Klaassen AL, Arato J, Vyssotski AL, Harvey M, Rainer G. Basal forebrain contributes to default mode network regulation. Proc Natl Acad Sci U S A 2018;115:1352-7. [PMID: 29363595 DOI: 10.1073/pnas.1712431115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
4 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
5 Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Lazarus M, Qu WM, Huang ZL. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology 2020;168:107923. [PMID: 31874169 DOI: 10.1016/j.neuropharm.2019.107923] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
6 Chen L, Li S, Zhou Y, Liu T, Cai A, Zhang Z, Xu F, Manyande A, Wang J, Peng M. Neuronal mechanisms of adenosine A2A receptors in the loss of consciousness induced by propofol general anesthesia with functional magnetic resonance imaging. J Neurochem 2021;156:1020-32. [PMID: 32785947 DOI: 10.1111/jnc.15146] [Reference Citation Analysis]
7 Bell BJ, Wang AA, Kim DW, Xiong J, Blackshaw S, Wu MN. Characterization of mWake expression in the murine brain. J Comp Neurol 2021;529:1954-87. [PMID: 33140455 DOI: 10.1002/cne.25066] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci 2016;36:2057-67. [PMID: 26865627 DOI: 10.1523/JNEUROSCI.3318-15.2016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
9 Pancotti L, Topolnik L. Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience 2021:S0306-4522(21)00303-1. [PMID: 34129910 DOI: 10.1016/j.neuroscience.2021.06.011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018;12:47. [PMID: 29988373 DOI: 10.3389/fncir.2018.00047] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
11 Chen MC, Sorooshyari SK, Lin JS, Lu J. A Layered Control Architecture of Sleep and Arousal. Front Comput Neurosci 2020;14:8. [PMID: 32116622 DOI: 10.3389/fncom.2020.00008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Yatziv SL, Yudco O, Vaso K, Mizrahi A, Devor M. Anesthesia in mice activates discrete populations of neurons throughout the brain. J Neurosci Res 2021. [PMID: 34510528 DOI: 10.1002/jnr.24950] [Reference Citation Analysis]
13 Yamada RG, Ueda HR. Molecular Mechanisms of REM Sleep. Front Neurosci 2019;13:1402. [PMID: 32009883 DOI: 10.3389/fnins.2019.01402] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
14 Parkar A, Fedrigon DC, Alam F, Vanini G, Mashour GA, Pal D. Carbachol and Nicotine in Prefrontal Cortex Have Differential Effects on Sleep-Wake States. Front Neurosci 2020;14:567849. [PMID: 33328847 DOI: 10.3389/fnins.2020.567849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 [DOI: 10.1101/703090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
17 Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017;81:536-47. [PMID: 27259817 DOI: 10.1016/j.biopsych.2016.04.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
18 Bostanciklioğlu M. Neuromodulation of Memory Formation and Extinction. Curr Neurovasc Res 2020;17:319-26. [PMID: 32316891 DOI: 10.2174/1567202617999200421202818] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Beck J, Loretz E, Rasch B. Exposure to relaxing words during sleep promotes slow-wave sleep and subjective sleep quality. Sleep 2021:zsab148. [PMID: 34115139 DOI: 10.1093/sleep/zsab148] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Zhuang L, Zhang B, Qin Z, Wang P. Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb. Neuroscience 2019;398:218-30. [PMID: 30553790 DOI: 10.1016/j.neuroscience.2018.12.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
21 Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018;362:429-34. [DOI: 10.1126/science.aat2512] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 22.5] [Reference Citation Analysis]
22 Bardóczi Z, Pál B, Kőszeghy Á, Wilheim T, Watanabe M, Záborszky L, Liposits Z, Kalló I. Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons. J Neurosci 2017;37:9534-49. [PMID: 28874448 DOI: 10.1523/JNEUROSCI.3348-16.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
23 Yuan R, Biswal BB, Zaborszky L. Functional Subdivisions of Magnocellular Cell Groups in Human Basal Forebrain: Test-Retest Resting-State Study at Ultra-high Field, and Meta-analysis. Cereb Cortex 2019;29:2844-58. [PMID: 30137295 DOI: 10.1093/cercor/bhy150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
24 Wu X, Bai F, Wang Y, Zhang L, Liu L, Chen Y, Li H, Zhang T. Circadian Rhythm Disorders and Corresponding Functional Brain Abnormalities in Young Female Nurses: A Preliminary Study. Front Neurol 2021;12:664610. [PMID: 33995261 DOI: 10.3389/fneur.2021.664610] [Reference Citation Analysis]
25 Rosenthal ZP, Raut RV, Bowen RM, Snyder AZ, Culver JP, Raichle ME, Lee JM. Peripheral sensory stimulation elicits global slow waves by recruiting somatosensory cortex bilaterally. Proc Natl Acad Sci U S A 2021;118:e2021252118. [PMID: 33597303 DOI: 10.1073/pnas.2021252118] [Reference Citation Analysis]
26 Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017;96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
27 Lellouche Y, Minert A, Schreiber C, Aroch I, Vaso K, Fishman Y, Devor M. Individual Mesopontine Neurons Implicated in Anesthetic Loss-of-consciousness Employ Separate Ascending Pathways to the Cerebral Cortex. Neuroscience 2020;432:188-204. [DOI: 10.1016/j.neuroscience.2020.02.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
29 Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Sci Rep 2019;9:2570. [PMID: 30796293 DOI: 10.1038/s41598-019-39203-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic Modulation of the Default Mode Like Network in Rats. iScience 2020;23:101455. [PMID: 32846343 DOI: 10.1016/j.isci.2020.101455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Lelkes Z, Abdurakhmanova S, Porkka-Heiskanen T. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate. J Sleep Res 2018;27:e12605. [PMID: 28921744 DOI: 10.1111/jsr.12605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
33 Grandner MA. Sleep, Health, and Society. Sleep Medicine Clinics 2020;15:319-40. [DOI: 10.1016/j.jsmc.2020.02.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
34 Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. J Neurosci 2018;38:5168-81. [PMID: 29735555 DOI: 10.1523/JNEUROSCI.2955-17.2018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Melnattur K, Zhang B, Shaw PJ. Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. Sci Adv 2020;6:eaaz2166. [PMID: 32494708 DOI: 10.1126/sciadv.aaz2166] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Zhang T, Jiang X, Xu M, Wang H, Sang X, Qin M, Bao P, Wang R, Zhang C, Lu H, Li Y, Ren J, Chang HC, Yan J, Sun Q, Xu J. Sleep and circadian abnormalities precede cognitive deficits in R521C FUS knockin rats. Neurobiol Aging 2018;72:159-70. [PMID: 30273830 DOI: 10.1016/j.neurobiolaging.2018.08.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
37 Xiang X, Chen Y, Li K, Fang J, Bickler PE, Guan Z, Zhou W. Neuroanatomical Basis for the Orexinergic Modulation of Anesthesia Arousal and Pain Control. Front Cell Neurosci 2022;16:891631. [DOI: 10.3389/fncel.2022.891631] [Reference Citation Analysis]
38 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Grandner MA. Sleep, Health, and Society. Sleep Medicine Clinics 2022. [DOI: 10.1016/j.jsmc.2022.03.001] [Reference Citation Analysis]
41 Nair J, Klaassen AL, Poirot J, Vyssotski A, Rasch B, Rainer G. Gamma band directional interactions between basal forebrain and visual cortex during wake and sleep states. J Physiol Paris 2016;110:19-28. [PMID: 27913167 DOI: 10.1016/j.jphysparis.2016.11.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
42 Hua R, Wang X, Chen X, Wang X, Huang P, Li P, Mei W, Li H. Calretinin Neurons in the Midline Thalamus Modulate Starvation-Induced Arousal. Current Biology 2018;28:3948-3959.e4. [DOI: 10.1016/j.cub.2018.11.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
43 Funato H, Miyoshi C, Fujiyama T, Kanda T, Sato M, Wang Z, Ma J, Nakane S, Tomita J, Ikkyu A, Kakizaki M, Hotta-Hirashima N, Kanno S, Komiya H, Asano F, Honda T, Kim SJ, Harano K, Muramoto H, Yonezawa T, Mizuno S, Miyazaki S, Connor L, Kumar V, Miura I, Suzuki T, Watanabe A, Abe M, Sugiyama F, Takahashi S, Sakimura K, Hayashi Y, Liu Q, Kume K, Wakana S, Takahashi JS, Yanagisawa M. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016;539:378-83. [PMID: 27806374 DOI: 10.1038/nature20142] [Cited by in Crossref: 132] [Cited by in F6Publishing: 109] [Article Influence: 22.0] [Reference Citation Analysis]
44 Matsumoto S, Tsunematsu T. Association between Sleep, Alzheimer's, and Parkinson's Disease. Biology (Basel) 2021;10:1127. [PMID: 34827122 DOI: 10.3390/biology10111127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
45 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
46 Zhu C, Yao Y, Xiong Y, Cheng M, Chen J, Zhao R, Liao F, Shi R, Song S. Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake. Cell Rep 2017;20:112-23. [PMID: 28683305 DOI: 10.1016/j.celrep.2017.06.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
47 Yang C, Larin A, McKenna JT, Jacobson KA, Winston S, Strecker RE, Kalinchuk A, Basheer R, Brown RE. Activation of basal forebrain purinergic P2 receptors promotes wakefulness in mice. Sci Rep 2018;8:10730. [PMID: 30013200 DOI: 10.1038/s41598-018-29103-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Kodani S, Soya S, Sakurai T. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice. J Neurosci 2017;37:7164-76. [PMID: 28642284 DOI: 10.1523/JNEUROSCI.0245-17.2017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 5.2] [Reference Citation Analysis]
49 Ode KL, Katsumata T, Tone D, Ueda HR. Fast and slow Ca2+-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr Opin Neurobiol 2017;44:212-21. [PMID: 28575719 DOI: 10.1016/j.conb.2017.05.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
50 Li X, Yu B, Sun Q, Zhang Y, Ren M, Zhang X, Li A, Yuan J, Madisen L, Luo Q, Zeng H, Gong H, Qiu Z. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A 2018;115:415-20. [PMID: 29259118 DOI: 10.1073/pnas.1703601115] [Cited by in Crossref: 104] [Cited by in F6Publishing: 94] [Article Influence: 20.8] [Reference Citation Analysis]
51 Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 2017;8:734. [PMID: 28963505 DOI: 10.1038/s41467-017-00781-4] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 16.6] [Reference Citation Analysis]
52 Mieda M, Hasegawa E, Kessaris N, Sakurai T. Fine-Tuning Circadian Rhythms: The Importance of Bmal1 Expression in the Ventral Forebrain. Front Neurosci 2017;11:55. [PMID: 28232786 DOI: 10.3389/fnins.2017.00055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
53 Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hörmann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 2017;545:477-81. [PMID: 28514446 DOI: 10.1038/nature22350] [Cited by in Crossref: 141] [Cited by in F6Publishing: 117] [Article Influence: 28.2] [Reference Citation Analysis]
54 Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018;222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
55 Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, Xiong Q. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun 2021;12:4646. [PMID: 34330901 DOI: 10.1038/s41467-021-24915-x] [Reference Citation Analysis]
56 Bhat A, Pires AS, Tan V, Babu Chidambaram S, Guillemin GJ. Effects of Sleep Deprivation on the Tryptophan Metabolism. Int J Tryptophan Res 2020;13:1178646920970902. [PMID: 33281456 DOI: 10.1177/1178646920970902] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, De Guzman E, Galbusera A, Uboldi M, Panzeri S, Gozzi A. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr Biol 2022;32:631-644.e6. [PMID: 34998465 DOI: 10.1016/j.cub.2021.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wilson CA, Fouda S, Sakata S. Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer's disease pathology. Sci Rep 2020;10:15456. [PMID: 32963298 DOI: 10.1038/s41598-020-72421-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Giovanni A, Giorgia A. The neurophysiological basis of bruxism. Heliyon 2021;7:e07477. [PMID: 34286138 DOI: 10.1016/j.heliyon.2021.e07477] [Reference Citation Analysis]
60 Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto KH, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep 2018;24:2231-2247.e7. [PMID: 30157420 DOI: 10.1016/j.celrep.2018.07.082] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
61 Ding M, Li P, Wen Y, Zhao Y, Cheng B, Zhang L, Ma M, Cheng S, Liu L, Du Y, Liang X, He A, Guo X, Zhang F. Integrative analysis of genome-wide association study and brain region related enhancer maps identifies biological pathways for insomnia. Prog Neuropsychopharmacol Biol Psychiatry 2018;86:180-5. [PMID: 29883697 DOI: 10.1016/j.pnpbp.2018.05.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
62 Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017;11:102. [PMID: 29321728 DOI: 10.3389/fncir.2017.00102] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
63 Jensen KP, DeVito EE, Yip S, Carroll KM, Sofuoglu M. The Cholinergic System as a Treatment Target for Opioid Use Disorder. CNS Drugs 2018;32:981-96. [PMID: 30259415 DOI: 10.1007/s40263-018-0572-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
64 McKenna JT, Thankachan S, Uygun DS, Shukla C, McNally JM, Schiffino FL, Cordeira J, Katsuki F, Zant JC, Gamble MC, Deisseroth K, McCarley RW, Brown RE, Strecker RE, Basheer R. Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Curr Biol 2020;30:2379-2385.e4. [PMID: 32413301 DOI: 10.1016/j.cub.2020.04.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
65 Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status. Front Neurosci 2019;13:237. [PMID: 30930741 DOI: 10.3389/fnins.2019.00237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
66 Joiner WJ. Unraveling the Evolutionary Determinants of Sleep. Curr Biol 2016;26:R1073-87. [PMID: 27780049 DOI: 10.1016/j.cub.2016.08.068] [Cited by in Crossref: 94] [Cited by in F6Publishing: 63] [Article Influence: 18.8] [Reference Citation Analysis]
67 Zielinski MR, McKenna JT, McCarley RW. Functions and Mechanisms of Sleep. AIMS Neurosci 2016;3:67-104. [PMID: 28413828 DOI: 10.3934/Neuroscience.2016.1.67] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
68 Luo TY, Cai S, Qin ZX, Yang SC, Shu Y, Liu CX, Zhang Y, Zhang L, Zhou L, Yu T, Yu SY. Basal Forebrain Cholinergic Activity Modulates Isoflurane and Propofol Anesthesia. Front Neurosci 2020;14:559077. [PMID: 33192246 DOI: 10.3389/fnins.2020.559077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
69 Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, Peng W, Qian T, Tan K, Zou J, Trinh S, Wu R, Zhang S, Pan S, Hires SA, Xu M, Li H, Saksida LM, Prado VF, Bussey TJ, Prado MAM, Chen L, Cheng H, Li Y. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods 2020;17:1139-46. [PMID: 32989318 DOI: 10.1038/s41592-020-0953-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 18.5] [Reference Citation Analysis]
70 Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017;94:1205-1219.e8. [PMID: 28602690 DOI: 10.1016/j.neuron.2017.05.020] [Cited by in Crossref: 112] [Cited by in F6Publishing: 107] [Article Influence: 22.4] [Reference Citation Analysis]
71 Wang L, Zhang W, Wu Y, Gao Y, Sun N, Ding H, Ren J, Yu L, Wang L, Yang F, Xi W, Yan M. Cholinergic-Induced Specific Oscillations in the Medial Prefrontal Cortex to Reverse Propofol Anesthesia. Front Neurosci 2021;15:664410. [PMID: 34121993 DOI: 10.3389/fnins.2021.664410] [Reference Citation Analysis]
72 Likhtik E, Johansen JP. Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019;22:1586-97. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
73 Lozano-Montes L, Dimanico M, Mazloum R, Li W, Nair J, Kintscher M, Schneggenburger R, Harvey M, Rainer G. Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. Cell Rep 2020;33:108359. [PMID: 33176133 DOI: 10.1016/j.celrep.2020.108359] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
75 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
76 Yang C, Thankachan S, McCarley RW, Brown RE. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 2017;44:159-66. [PMID: 28538168 DOI: 10.1016/j.conb.2017.05.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
77 Donlea JM, Alam MN, Szymusiak R. Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice. Curr Opin Neurobiol 2017;44:228-35. [PMID: 28628804 DOI: 10.1016/j.conb.2017.05.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 6.2] [Reference Citation Analysis]
78 Barbero-Castillo A, Riefolo F, Matera C, Caldas-Martínez S, Mateos-Aparicio P, Weinert JF, Garrido-Charles A, Claro E, Sanchez-Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. Adv Sci (Weinh) 2021;8:e2005027. [PMID: 34018704 DOI: 10.1002/advs.202005027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Cengiz M, Karaj V, Kocabasoğlu N, Gozubatik-celik G, Dirican A, Bayoglu B. Orexin/hypocretin receptor, Orx 1 , gene variants are associated with major depressive disorder. International Journal of Psychiatry in Clinical Practice 2019;23:114-21. [DOI: 10.1080/13651501.2018.1551549] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
80 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
81 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
82 Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2020;108:435-44. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
83 Maezono SEB, Kanuka M, Tatsuzawa C, Morita M, Kawano T, Kashiwagi M, Nondhalee P, Sakaguchi M, Saito T, Saido TC, Hayashi Y. Progressive Changes in Sleep and Its Relations to Amyloid-β Distribution and Learning in Single App Knock-In Mice. eNeuro 2020;7:ENEURO. [PMID: 32321771 DOI: 10.1523/ENEURO.0093-20.2020] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
85 Girard F, von Siebenthal M, Davis FP, Celio MR. Gene expression analysis in the mouse brainstem identifies Cart and Nesfatin as neuropeptides coexpressed in the Calbindin-positive neurons of the Nucleus papilio. Sleep 2020;43:zsaa085. [PMID: 32343818 DOI: 10.1093/sleep/zsaa085] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Zhang X, Liu Y, Yang B, Xu H. Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats. Neurochem Res 2020;45:1791-801. [DOI: 10.1007/s11064-020-03040-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Zhong P, Zhang Z, Barger Z, Ma C, Liu D, Ding X, Dan Y. Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Neuron 2019;104:795-809.e6. [PMID: 31582313 DOI: 10.1016/j.neuron.2019.08.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
88 Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019;39:9852-63. [PMID: 31666356 DOI: 10.1523/JNEUROSCI.0886-19.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
89 Yague JG, Tsunematsu T, Sakata S. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex. Front Neural Circuits 2017;11:64. [PMID: 28959191 DOI: 10.3389/fncir.2017.00064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
90 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves. J Neurosci 2017;37:9132-48. [PMID: 28821651 DOI: 10.1523/JNEUROSCI.1303-17.2017] [Cited by in Crossref: 58] [Cited by in F6Publishing: 29] [Article Influence: 11.6] [Reference Citation Analysis]
92 Wang F, Zhang J, Yuan Y, Chen M, Gao Z, Zhan S, Fan C, Sun W, Hu J. Salience processing by glutamatergic neurons in the ventral pallidum. Science Bulletin 2020;65:389-401. [DOI: 10.1016/j.scib.2019.11.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
93 Yamaguchi H, de Lecea L. In vivo cell type-specific CRISPR gene editing for sleep research. J Neurosci Methods 2019;316:99-102. [PMID: 30439390 DOI: 10.1016/j.jneumeth.2018.10.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
94 Hwang E, Brown RE, Kocsis B, Kim T, McKenna JT, McNally JM, Han HB, Choi JH. Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct 2019;224:1505-18. [PMID: 30826928 DOI: 10.1007/s00429-019-01845-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
95 Turchi J, Chang C, Ye FQ, Russ BE, Yu DK, Cortes CR, Monosov IE, Duyn JH, Leopold DA. The Basal Forebrain Regulates Global Resting-State fMRI Fluctuations. Neuron 2018;97:940-952.e4. [PMID: 29398365 DOI: 10.1016/j.neuron.2018.01.032] [Cited by in Crossref: 103] [Cited by in F6Publishing: 81] [Article Influence: 25.8] [Reference Citation Analysis]
96 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Lee H, Peever J. Neuroscience: An Arousal Circuit that Senses Danger in Sleep. Curr Biol 2020;30:R708-9. [PMID: 32574633 DOI: 10.1016/j.cub.2020.04.082] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021;15:664781. [PMID: 34276287 DOI: 10.3389/fnins.2021.664781] [Reference Citation Analysis]
99 Zhang F, Zhong R, Li S, Fu Z, Wang R, Wang T, Huang Z, Le W. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer's disease preceding the disease pathology and cognitive decline. Alzheimers Dement 2019;15:590-7. [PMID: 30819626 DOI: 10.1016/j.jalz.2018.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
100 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 Galvin VC, Arnsten AFT, Wang M. Involvement of Nicotinic Receptors in Working Memory Function. Curr Top Behav Neurosci 2020;45:89-99. [PMID: 32451954 DOI: 10.1007/7854_2020_142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
102 Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, Mohan SK, Mahalakshmi AM, Ray B, Tuladhar S, Chang S, Chidambaram SB, Sakharkar MK, Guillemin GJ, Qoronfleh MW, Ojcius DM. Sleep Deprivation and Neurological Disorders. Biomed Res Int 2020;2020:5764017. [PMID: 33381558 DOI: 10.1155/2020/5764017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
103 Murillo-Rodríguez E, Arankowsky-Sandoval G, Budde H, Imperatori C, Machado S, Yamamoto T, Yadollahpour A, Torterolo P. In vivo brain levels of acetylcholine and 5-hydroxytryptamine after oleoylethanolamide or palmitoylethanolamide administrations are mediated by PPARα engagement. Eur J Neurosci 2021. [PMID: 34396611 DOI: 10.1111/ejn.15409] [Reference Citation Analysis]
104 Mondino A, Delucchi L, Moeser A, Cerdá-González S, Vanini G. Sleep Disorders in dogs: A Pathophysiological and Clinical Review. Top Companion Anim Med 2021;43:100516. [PMID: 33556640 DOI: 10.1016/j.tcam.2021.100516] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Kovalzon VM. Ascending Reticular Activating System of the Brain. Translational Neuroscience and Clinics 2016;2:275-85. [DOI: 10.18679/cn11-6030_r.2016.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
106 Eck SR, Xu SJ, Telenson A, Duggan MR, Cole R, Wicks B, Bergmann J, Lefebo H, Shore M, Shepard KA, Akins MR, Parikh V, Heller EA, Bangasser DA. Stress Regulation of Sustained Attention and the Cholinergic Attention System. Biol Psychiatry 2020;88:566-75. [PMID: 32600739 DOI: 10.1016/j.biopsych.2020.04.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
107 Zhang GW, Shen L, Zhong W, Xiong Y, Zhang LI, Tao HW. Transforming Sensory Cues into Aversive Emotion via Septal-Habenular Pathway. Neuron 2018;99:1016-1028.e5. [PMID: 30122379 DOI: 10.1016/j.neuron.2018.07.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
108 Sarter M, Lustig C. Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020;40:712-9. [PMID: 31969489 DOI: 10.1523/JNEUROSCI.1305-19.2019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 13.5] [Reference Citation Analysis]
109 Reichert S, Pavón Arocas O, Rihel J. The Neuropeptide Galanin Is Required for Homeostatic Rebound Sleep following Increased Neuronal Activity. Neuron 2019;104:370-384.e5. [PMID: 31537465 DOI: 10.1016/j.neuron.2019.08.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
110 Lewin M, Lopachin J, Delorme J, Opendak M, Sullivan RM, Wilson DA. Early Life Trauma Has Lifelong Consequences for Sleep And Behavior. Sci Rep 2019;9:16701. [PMID: 31723235 DOI: 10.1038/s41598-019-53241-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018;91:958-66. [PMID: 30355703 DOI: 10.1212/WNL.0000000000006537] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
112 Meir I, Katz Y, Lampl I. Membrane Potential Correlates of Network Decorrelation and Improved SNR by Cholinergic Activation in the Somatosensory Cortex. J Neurosci 2018;38:10692-708. [PMID: 30373769 DOI: 10.1523/JNEUROSCI.1159-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
113 Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep 2021;44:zsab017. [PMID: 33493349 DOI: 10.1093/sleep/zsab017] [Reference Citation Analysis]
114 Hindman J, Bowren MD, Bruss J, Wright B, Geerling JC, Boes AD. Thalamic strokes that severely impair arousal extend into the brainstem. Ann Neurol 2018;84:926-30. [PMID: 30421457 DOI: 10.1002/ana.25377] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
115 Luppi PH, Billwiller F, Fort P. Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Curr Opin Neurobiol 2017;44:59-64. [PMID: 28347885 DOI: 10.1016/j.conb.2017.03.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
116 Wang Z, Zhong Y, Jiang S, Qu W, Huang Z, Chen C. Case Report: Dysfunction of the Paraventricular Hypothalamic Nucleus Area Induces Hypersomnia in Patients. Front Neurosci 2022;16:830474. [DOI: 10.3389/fnins.2022.830474] [Reference Citation Analysis]
117 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
118 Su YT, Gu MY, Chu X, Feng X, Yu YQ. Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone. Neurosci Bull 2018;34:485-96. [PMID: 29557546 DOI: 10.1007/s12264-018-0216-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
119 Katz Y, Sokoletsky M, Lampl I. Stereotactic system for accurately targeting deep brain structures in awake head-fixed mice. J Neurophysiol 2019;122:975-83. [PMID: 31291134 DOI: 10.1152/jn.00218.2019] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
120 Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018;28:392-400.e3. [PMID: 29358069 DOI: 10.1016/j.cub.2017.12.049] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
121 Boes AD, Fischer D, Geerling JC, Bruss J, Saper CB, Fox MD. Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep 2018;41. [PMID: 29850898 DOI: 10.1093/sleep/zsy108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
122 Weber F. Modeling the mammalian sleep cycle. Current Opinion in Neurobiology 2017;46:68-75. [DOI: 10.1016/j.conb.2017.07.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
123 Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 2017;8:1405. [PMID: 29123082 DOI: 10.1038/s41467-017-01004-6] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 13.8] [Reference Citation Analysis]
124 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
125 Lin J, Roussel B, Gaspar A, Zhao Y, Hou Y, Schmidt M, Jouvet A, Jouvet M. The unfinished journey with modafinil and discovery of a novel population of modafinil-immunoreactive neurons. Sleep Medicine 2018;49:40-52. [DOI: 10.1016/j.sleep.2018.06.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
126 Li SB, Giardino WJ, de Lecea L. Hypocretins and Arousal. Curr Top Behav Neurosci 2017;33:93-104. [PMID: 28012091 DOI: 10.1007/7854_2016_58] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
127 Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 2020;14:625397. [PMID: 33519372 DOI: 10.3389/fnins.2020.625397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
128 Li Y, Chen L, Zhu D, Chen Y, Qin W, Cui J. Propofol downregulates the activity of glutamatergic neurons in the basal forebrain via affecting intrinsic membrane properties and postsynaptic GABAARs. Neuroreport 2020;31:1242-8. [PMID: 33075002 DOI: 10.1097/WNR.0000000000001540] [Reference Citation Analysis]
129 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
130 Chen L, Yang ZL, Cheng J, Zhang PP, Zhang LS, Liu XS, Wang LC. Propofol decreases the excitability of cholinergic neurons in mouse basal forebrain via GABAA receptors. Acta Pharmacol Sin 2019;40:755-61. [PMID: 30367153 DOI: 10.1038/s41401-018-0168-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
131 Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019;13:24. [PMID: 31031601 DOI: 10.3389/fncir.2019.00024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
132 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
134 Liu C, Liu J, Zhou L, He H, Zhang Y, Cai S, Yuan C, Luo T, Zheng J, Yu T, Zhang M. Lateral Habenula Glutamatergic Neurons Modulate Isoflurane Anesthesia in Mice. Front Mol Neurosci 2021;14:628996. [PMID: 33746711 DOI: 10.3389/fnmol.2021.628996] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
135 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
136 Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020;45:141-65. [PMID: 31234199 DOI: 10.1038/s41386-019-0446-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
137 McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, McKenna JT, Strecker RE, Deisseroth K, Spencer KM, Brown RE. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 2020. [PMID: 32690865 DOI: 10.1038/s41380-020-0840-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
138 Roman-Ortiz C, Guevara JA, Clem RL. GABAergic basal forebrain projections to the periaqueductal gray promote food consumption, reward and predation. Sci Rep 2021;11:22638. [PMID: 34811442 DOI: 10.1038/s41598-021-02157-7] [Reference Citation Analysis]
139 Cai P, Chen L, Guo YR, Yao J, Chen HY, Lu YP, Huang SN, He P, Zheng ZH, Liu JY, Chen J, Hu LH, Chen SY, Huang LT, Chen GQ, Tang WT, Su WK, Li HY, Wang WX, Yu CX. Basal forebrain GABAergic neurons promote arousal and predatory hunting. Neuropharmacology 2020;180:108299. [PMID: 32916145 DOI: 10.1016/j.neuropharm.2020.108299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
140 Qi J, Li BZ, Zhang Y, Pan B, Gao YH, Zhan H, Liu Y, Shao YC, Zhang X. Altered functional connectivity between the nucleus basalis of Meynert and anterior cingulate cortex is associated with declined attentional performance after total sleep deprivation. Behav Brain Res 2021;409:113321. [PMID: 33910027 DOI: 10.1016/j.bbr.2021.113321] [Reference Citation Analysis]
141 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
142 Damborsky JC, Smith KG, Jensen P, Yakel JL. Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2017;222:1385-400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
143 Sánchez-lópez A, Silva-pérez M, Escudero M. Temporal dynamics of the transition period between nonrapid eye movement and rapid eye movement sleep in the rat. Sleep 2018;41. [DOI: 10.1093/sleep/zsy121] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
144 Wang J, Li J, Yang Q, Xie YK, Wen YL, Xu ZZ, Li Y, Xu T, Wu ZY, Duan S, Xu H. Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proc Natl Acad Sci U S A 2021;118:e2019295118. [PMID: 33563763 DOI: 10.1073/pnas.2019295118] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
145 Zhang GW, Sun WJ, Zingg B, Shen L, He J, Xiong Y, Tao HW, Zhang LI. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning. Neuron 2018;97:406-417.e4. [PMID: 29290554 DOI: 10.1016/j.neuron.2017.12.010] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
146 [DOI: 10.1101/861690] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
147 Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 2019;143:113-8. [PMID: 30894329 DOI: 10.1016/j.phrs.2019.03.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
148 Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021:S1084-9521(21)00149-X. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Reference Citation Analysis]
149 Luppi P, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews 2017;32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 9.8] [Reference Citation Analysis]
150 Patel JM, Swanson J, Ung K, Herman A, Hanson E, Ortiz-Guzman J, Selever J, Tong Q, Arenkiel BR. Sensory perception drives food avoidance through excitatory basal forebrain circuits. Elife 2019;8:e44548. [PMID: 31074744 DOI: 10.7554/eLife.44548] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
151 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
152 Tantirigama MLS, Zolnik T, Judkewitz B, Larkum ME, Sachdev RNS. Perspective on the Multiple Pathways to Changing Brain States. Front Syst Neurosci 2020;14:23. [PMID: 32457583 DOI: 10.3389/fnsys.2020.00023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
153 Cahan JG, Abbott SM. Use of Light Therapy for Insomnia in the Elderly: Role of Circadian Rhythm Disorders. Curr Sleep Medicine Rep 2020;6:176-83. [DOI: 10.1007/s40675-020-00181-z] [Reference Citation Analysis]
154 Yamakawa GR, Basu P, Cortese F, MacDonnell J, Whalley D, Smith VM, Antle MC. The cholinergic forebrain arousal system acts directly on the circadian pacemaker. Proc Natl Acad Sci U S A 2016;113:13498-503. [PMID: 27821764 DOI: 10.1073/pnas.1610342113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
155 Vetrivelan R, Lu J. Neural Circuitry Regulating REM Sleep and Its Implication in REM Sleep Behavior Disorder. In: Schenck CH, Högl B, Videnovic A, editors. Rapid-Eye-Movement Sleep Behavior Disorder. Cham: Springer International Publishing; 2019. pp. 559-77. [DOI: 10.1007/978-3-319-90152-7_39] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
156 Iacovides S, Kamerman P, Baker FC, Mitchell D. Why It Is Important to Consider the Effects of Analgesics on Sleep: A Critical Review. Compr Physiol 2021;11:2589-619. [PMID: 34558668 DOI: 10.1002/cphy.c210006] [Reference Citation Analysis]
157 Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018;12:67. [PMID: 30210306 DOI: 10.3389/fncir.2018.00067] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
158 Chellappa SL, Aeschbach D. Sleep and anxiety: From mechanisms to interventions. Sleep Med Rev 2021;61:101583. [PMID: 34979437 DOI: 10.1016/j.smrv.2021.101583] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Kumbhare D, Palys V, Toms J, Wickramasinghe CS, Amarasinghe K, Manic M, Hughes E, Holloway KL. Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations. Front Neurosci 2018;12:614. [PMID: 30233297 DOI: 10.3389/fnins.2018.00614] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
160 Tsunematsu T. Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. Adv Exp Med Biol 2021;1293:391-406. [PMID: 33398828 DOI: 10.1007/978-981-15-8763-4_25] [Reference Citation Analysis]
161 Liguz-lecznar M, Dobrzanski G, Kossut M. Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022;12:312. [DOI: 10.3390/biom12020312] [Reference Citation Analysis]
162 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
163 Brickley SG, Franks NP, Wisden W. Modulation of GABA A receptor function and sleep. Current Opinion in Physiology 2018;2:51-7. [DOI: 10.1016/j.cophys.2017.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
164 Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2020;52:3507-30. [DOI: 10.1111/ejn.14485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
165 Holst SC, Landolt HP. Sleep-Wake Neurochemistry. Sleep Med Clin 2022;17:151-60. [PMID: 35659070 DOI: 10.1016/j.jsmc.2022.03.002] [Reference Citation Analysis]
166 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
167 Joiner WJ. The Neurobiological Basis of Sleep and Sleep Disorders. Physiology (Bethesda) 2018;33:317-27. [PMID: 30109824 DOI: 10.1152/physiol.00013.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
168 Hanson E, Brandel-Ankrapp KL, Arenkiel BR. Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Front Cell Neurosci 2021;15:635837. [PMID: 33603646 DOI: 10.3389/fncel.2021.635837] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
169 Shen L, Zhang G, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28854-z] [Reference Citation Analysis]
170 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
171 Zhang Y, Cao SX, Sun P, He HY, Yang CH, Chen XJ, Shen CJ, Wang XD, Chen Z, Berg DK, Duan S, Li XM. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus. Cell Res 2016;26:728-42. [PMID: 27103432 DOI: 10.1038/cr.2016.48] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
172 Harrison TC, Pinto L, Brock JR, Dan Y. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors. Front Neural Circuits 2016;10:36. [PMID: 27242444 DOI: 10.3389/fncir.2016.00036] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
173 Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020;10:13639. [PMID: 32788592 DOI: 10.1038/s41598-020-70481-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
175 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
176 Li SB, Borniger JC, Yamaguchi H, Hédou J, Gaudilliere B, de Lecea L. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci Adv 2020;6:eabc2590. [PMID: 32917689 DOI: 10.1126/sciadv.abc2590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
177 Nichols ALA, Eichler T, Latham R, Zimmer M. A global brain state underlies C. elegans sleep behavior. Science 2017;356:eaam6851. [PMID: 28642382 DOI: 10.1126/science.aam6851] [Cited by in Crossref: 76] [Cited by in F6Publishing: 58] [Article Influence: 15.2] [Reference Citation Analysis]
178 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
179 Liu D, Deng J, Zhang Z, Zhang ZY, Sun YG, Yang T, Yao H. Orbitofrontal control of visual cortex gain promotes visual associative learning. Nat Commun 2020;11:2784. [PMID: 32493971 DOI: 10.1038/s41467-020-16609-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
180 Cai P, Chen H, Tang W, Hu Y, Chen S, Lu J, Lin Z, Huang S, Hu L, Su W, Li Q, Lin Z, Kang T, Yan X, Liu P, Chen L, Yin D, Wu S, Li H, Yu C. A glutamatergic basal forebrain to midbrain circuit mediates wakefulness and defensive behavior. Neuropharmacology 2022. [DOI: 10.1016/j.neuropharm.2022.108979] [Reference Citation Analysis]
181 Hong J, Lee J, Song K, Ha GE, Yang YR, Ma JS, Yamamoto M, Shin HS, Suh PG, Cheong E. The thalamic mGluR1-PLCβ4 pathway is critical in sleep architecture. Mol Brain 2016;9:100. [PMID: 27998287 DOI: 10.1186/s13041-016-0276-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
182 Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 2017;352:249-61. [PMID: 28411158 DOI: 10.1016/j.neuroscience.2017.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
183 Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017;11:231. [PMID: 28487631 DOI: 10.3389/fnins.2017.00231] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
184 Mondino A, Hambrecht-Wiedbusch VS, Li D, York AK, Pal D, González J, Torterolo P, Mashour GA, Vanini G. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics. J Neurosci 2021;41:3462-78. [PMID: 33664133 DOI: 10.1523/JNEUROSCI.2718-20.2021] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
185 Dittrich L, Petese A, Jackson WS. The natural Disc1-deletion present in several inbred mouse strains does not affect sleep. Sci Rep 2017;7:5665. [PMID: 28720848 DOI: 10.1038/s41598-017-06015-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
186 Sun MJ, Tang Y. Extracellular levels of the sleep homeostasis mediator, adenosine, are regulated by glutamatergic neurons during wakefulness and sleep. Purinergic Signal 2020;16:475-6. [PMID: 33404956 DOI: 10.1007/s11302-020-09758-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
188 Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018;38:9446-58. [PMID: 30381436 DOI: 10.1523/JNEUROSCI.1676-18.2018] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
189 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
190 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
191 Giorgi FS, Galgani A, Gaglione A, Ferese R, Fornai F. Effects of Prolonged Seizures on Basal Forebrain Cholinergic Neurons: Evidence and Potential Clinical Relevance. Neurotox Res 2020;38:249-65. [PMID: 32319018 DOI: 10.1007/s12640-020-00198-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
192 An S, Sun H, Wu M, Xie D, Hu S, Ding H, Cao J. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Current Biology 2021;31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
193 Li K, Zhou Y, Fu B. Dopaminergic D1 receptors in the nucleus basalis modulate recovery from propofol anesthesia in rats. Iran J Basic Med Sci 2020;23:298-302. [PMID: 32440315 DOI: 10.22038/IJBMS.2019.37716.8962] [Reference Citation Analysis]
194 Shiromani PJ, Blanco-Centurion C, Vidal-Ortiz A. Mapping Network Activity in Sleep. Front Neurosci 2021;15:646468. [PMID: 33828453 DOI: 10.3389/fnins.2021.646468] [Reference Citation Analysis]
195 Holst SC, Landolt HP. Sleep-Wake Neurochemistry. Sleep Med Clin 2018;13:137-46. [PMID: 29759265 DOI: 10.1016/j.jsmc.2018.03.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
196 Do JP, Xu M, Lee SH, Chang WC, Zhang S, Chung S, Yung TJ, Fan JL, Miyamichi K, Luo L, Dan Y. Cell type-specific long-range connections of basal forebrain circuit. Elife 2016;5:e13214. [PMID: 27642784 DOI: 10.7554/eLife.13214] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
197 Kokkinos V, Vulliémoz S, Koupparis AM, Koutroumanidis M, Kostopoulos GK, Lemieux L, Garganis K. A hemodynamic network involving the insula, the cingulate, and the basal forebrain correlates with EEG synchronization phases of sleep instability. Sleep 2019;42. [DOI: 10.1093/sleep/zsy259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
198 Wan J, Peng W, Li X, Qian T, Song K, Zeng J, Deng F, Hao S, Feng J, Zhang P, Zhang Y, Zou J, Pan S, Shin M, Venton BJ, Zhu JJ, Jing M, Xu M, Li Y. A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci 2021;24:746-52. [PMID: 33821000 DOI: 10.1038/s41593-021-00823-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
199 Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity. Cereb Cortex 2019;29:42-53. [PMID: 29161383 DOI: 10.1093/cercor/bhx302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
200 Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 2020;369:eabb0556. [DOI: 10.1126/science.abb0556] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
201 Nikonova EV, Gilliland JD, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017;40. [PMID: 28419375 DOI: 10.1093/sleep/zsx059] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
202 Schmitz TW, Zaborszky L. Spatial topography of the basal forebrain cholinergic projections: Organization and vulnerability to degeneration. Handb Clin Neurol 2021;179:159-73. [PMID: 34225960 DOI: 10.1016/B978-0-12-819975-6.00008-X] [Reference Citation Analysis]
203 Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, Isaac JTR, Lowry JP, Mellor JR. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. Cell Rep 2017;18:905-17. [PMID: 28122241 DOI: 10.1016/j.celrep.2016.12.085] [Cited by in Crossref: 79] [Cited by in F6Publishing: 69] [Article Influence: 15.8] [Reference Citation Analysis]
204 Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021:S0960-9822(21)00826-5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Reference Citation Analysis]
205 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
206 Larsen RS, Waters J. Neuromodulatory Correlates of Pupil Dilation. Front Neural Circuits 2018;12:21. [PMID: 29593504 DOI: 10.3389/fncir.2018.00021] [Cited by in Crossref: 84] [Cited by in F6Publishing: 59] [Article Influence: 21.0] [Reference Citation Analysis]
207 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
208 Bostanciklioğlu M. Unexpected awakenings in severe dementia from case reports to laboratory. Alzheimers Dement 2021;17:125-36. [PMID: 33064369 DOI: 10.1002/alz.12162] [Reference Citation Analysis]
209 [DOI: 10.1101/2020.06.04.133603] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
210 Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019;177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
211 Fisher SP, Cui N, McKillop LE, Gemignani J, Bannerman DM, Oliver PL, Peirson SN, Vyazovskiy VV. Stereotypic wheel running decreases cortical activity in mice. Nat Commun 2016;7:13138. [PMID: 27748455 DOI: 10.1038/ncomms13138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
212 Chen KS, Xu M, Zhang Z, Chang WC, Gaj T, Schaffer DV, Dan Y. A Hypothalamic Switch for REM and Non-REM Sleep. Neuron 2018;97:1168-1176.e4. [PMID: 29478915 DOI: 10.1016/j.neuron.2018.02.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 14.3] [Reference Citation Analysis]
213 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
214 Whalley K. Dissecting sleep circuits. Nat Rev Neurosci 2015;16:704-704. [DOI: 10.1038/nrn4059] [Reference Citation Analysis]
215 Gielow MR, Zaborszky L. The Input-Output Relationship of the Cholinergic Basal Forebrain. Cell Rep 2017;18:1817-30. [PMID: 28199851 DOI: 10.1016/j.celrep.2017.01.060] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 18.8] [Reference Citation Analysis]
216 Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019;189:615-30. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
217 Chen E, Lallai V, Sherafat Y, Grimes NP, Pushkin AN, Fowler JP, Fowler CD. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines. J Neurosci 2018;38:2177-88. [PMID: 29371319 DOI: 10.1523/JNEUROSCI.1433-17.2018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
218 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
219 Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020;14:22. [PMID: 32457582 DOI: 10.3389/fnsys.2020.00022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
220 Leenaars CHC, Savelyev SA, Van der Mierden S, Joosten RNJMA, Dematteis M, Porkka-Heiskanen T, Feenstra MGP. Intracerebral Adenosine During Sleep Deprivation: A Meta-Analysis and New Experimental Data. J Circadian Rhythms 2018;16:11. [PMID: 30483348 DOI: 10.5334/jcr.171] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
221 Cai S, Tang AC, Luo TY, Yang SC, Yang H, Liu CX, Shu Y, Pan YC, Zhang Y, Zhou L, Yu T, Yu SY. Effect of basal forebrain somatostatin and parvalbumin neurons in propofol and isoflurane anesthesia. CNS Neurosci Ther 2021;27:792-804. [PMID: 33764684 DOI: 10.1111/cns.13635] [Reference Citation Analysis]
222 Wang D, Guo Y, Li H, Li J, Ran M, Guo J, Yin L, Zhao S, Yang Q, Dong H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br J Anaesth 2021;126:279-92. [PMID: 33131759 DOI: 10.1016/j.bja.2020.09.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
223 Javad-Moosavi BZ, Vaezi G, Nasehi M, Haeri-Rouhani SA, Zarrindast MR. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD). Prog Neuropsychopharmacol Biol Psychiatry 2017;79:128-35. [PMID: 28571775 DOI: 10.1016/j.pnpbp.2017.05.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
224 Pocivavsek A, Baratta AM, Mong JA, Viechweg SS. Acute Kynurenine Challenge Disrupts Sleep-Wake Architecture and Impairs Contextual Memory in Adult Rats. Sleep 2017;40. [PMID: 29029302 DOI: 10.1093/sleep/zsx141] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
225 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
226 Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020;10:10696. [PMID: 32612119 DOI: 10.1038/s41598-020-67276-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
227 Niethard N, Hasegawa M, Itokazu T, Oyanedel C, Born J, Sato T. Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition. Current Biology 2016;26:2739-49. [DOI: 10.1016/j.cub.2016.08.035] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]
228 Grandner MA. Sleep, Health, and Society. Sleep Med Clin 2017;12:1-22. [PMID: 28159089 DOI: 10.1016/j.jsmc.2016.10.012] [Cited by in Crossref: 135] [Cited by in F6Publishing: 106] [Article Influence: 22.5] [Reference Citation Analysis]
229 Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Autonomic Neuroscience 2019;218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
230 Lewin M, Ilina M, Betz J, Masiello K, Hui M, Wilson DA, Saito M. Developmental Ethanol-Induced Sleep Fragmentation, Behavioral Hyperactivity, Cognitive Impairment and Parvalbumin Cell Loss are Prevented by Lithium Co-treatment. Neuroscience 2018;369:269-77. [PMID: 29183826 DOI: 10.1016/j.neuroscience.2017.11.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
231 Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. J Physiol Paris 2016;110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
232 Azimi H, Klaassen AL, Thomas K, Harvey MA, Rainer G. Role of the Thalamus in Basal Forebrain Regulation of Neural Activity in the Primary Auditory Cortex. Cereb Cortex 2020;30:4481-95. [PMID: 32244254 DOI: 10.1093/cercor/bhaa045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
233 Wilson DA, Masiello K, Lewin MP, Hui M, Smiley JF, Saito M. Developmental ethanol exposure-induced sleep fragmentation predicts adult cognitive impairment. Neuroscience 2016;322:18-27. [PMID: 26892295 DOI: 10.1016/j.neuroscience.2016.02.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]