BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kitchen RR, Rozowsky JS, Gerstein MB, Nairn AC. Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 2014;17:1491-9. [PMID: 25349915 DOI: 10.1038/nn.3829] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Komorowski A, Murgaš M, Vidal R, Singh A, Gryglewski G, Kasper S, Wiltfang J, Lanzenberger R, Goya-Maldonado R. Regional gene expression patterns are associated with task-specific brain activation during reward and emotion processing measured with functional MRI. Hum Brain Mapp 2022. [PMID: 35796185 DOI: 10.1002/hbm.26001] [Reference Citation Analysis]
2 Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Schizophrenia. Int J Mol Sci 2022;23:4917. [PMID: 35563307 DOI: 10.3390/ijms23094917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Panegyres PK. Stochasticity, Entropy and Neurodegeneration. Brain Sciences 2022;12:226. [DOI: 10.3390/brainsci12020226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Biswas D, Shenoy SV, Chetanya C, Lachén-Montes M, Barpanda A, Athithyan AP, Ghosh S, Ausín K, Zelaya MV, Fernández-Irigoyen J, Manna A, Roy S, Talukdar A, Ball GR, Santamaría E, Srivastava S. Deciphering the Interregional and Interhemisphere Proteome of the Human Brain in the Context of the Human Proteome Project. J Proteome Res 2021;20:5280-93. [PMID: 34714085 DOI: 10.1021/acs.jproteome.1c00511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Cartas-Cejudo P, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Tackling the Biological Meaning of the Human Olfactory Bulb Dyshomeostatic Proteome across Neurological Disorders: An Integrative Bioinformatic Approach. Int J Mol Sci 2021;22:11340. [PMID: 34768771 DOI: 10.3390/ijms222111340] [Reference Citation Analysis]
6 Dumrongprechachan V, Salisbury RB, Soto G, Kumar M, MacDonald ML, Kozorovitskiy Y. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum. Nat Commun 2021;12:4855. [PMID: 34381044 DOI: 10.1038/s41467-021-25144-y] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
7 Fingleton E, Li Y, Roche KW. Advances in Proteomics Allow Insights Into Neuronal Proteomes. Front Mol Neurosci 2021;14:647451. [PMID: 33935646 DOI: 10.3389/fnmol.2021.647451] [Reference Citation Analysis]
8 Basu A, Ash PE, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021;21:e1900311. [PMID: 33314619 DOI: 10.1002/pmic.201900311] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Raman R, Rousseau EB, Wade M, Tong A, Cotler MJ, Kuang J, Lugo AA, Zhang E, Graybiel AM, White FM, Langer R, Cima MJ. Platform for micro-invasive membrane-free biochemical sampling of brain interstitial fluid. Sci Adv 2020;6:eabb0657. [PMID: 32978160 DOI: 10.1126/sciadv.abb0657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
10 Lim SL, Rodriguez-Ortiz CJ, Hsu HW, Wu J, Zumkehr J, Kilian J, Vidal J, Ayata P, Kitazawa M. Chronic copper exposure directs microglia towards degenerative expression signatures in wild-type and J20 mouse model of Alzheimer's disease. J Trace Elem Med Biol 2020;62:126578. [PMID: 32599538 DOI: 10.1016/j.jtemb.2020.126578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020;68:1692-728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Cited by in Crossref: 13] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
12 Noorbakhsh J, Chandok H, Karuturi RKM, George J. Machine Learning in Biology and Medicine. Advances in Molecular Pathology 2019;2:143-52. [DOI: 10.1016/j.yamp.2019.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
13 Naveed M, Tallat A, Butt A, Khalid M, Shehzadi M, Bashir N, Malik KKU, Tufail S, Nouroz F. Neuroproteomics in Paving the Pathway for Drug Abuse Research. CP 2019;16:256-66. [DOI: 10.2174/1570164616666181127144621] [Reference Citation Analysis]
14 Yoshimi A, Yamada S, Kunimoto S, Aleksic B, Hirakawa A, Ohashi M, Matsumoto Y, Hada K, Itoh N, Arioka Y, Kimura H, Kushima I, Nakamura Y, Shiino T, Mori D, Tanaka S, Hamada S, Noda Y, Nagai T, Yamada K, Ozaki N. Proteomic analysis of lymphoblastoid cell lines from schizophrenic patients. Transl Psychiatry 2019;9:126. [PMID: 31011151 DOI: 10.1038/s41398-019-0461-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Keepers B, Liu J, Qian L. What's in a cardiomyocyte - And how do we make one through reprogramming? Biochim Biophys Acta Mol Cell Res 2020;1867:118464. [PMID: 30922868 DOI: 10.1016/j.bbamcr.2019.03.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
16 Davis S, Scott C, Ansorge O, Fischer R. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. J Proteome Res 2019;18:1787-95. [PMID: 30768908 DOI: 10.1021/acs.jproteome.8b00981] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
17 Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018;6:51. [PMID: 30544872 DOI: 10.3390/proteomes6040051] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
18 Carlyle BC, Kitchen RR, Zhang J, Wilson RS, Lam TT, Rozowsky JS, Williams KR, Sestan N, Gerstein MB, Nairn AC. Isoform-Level Interpretation of High-Throughput Proteomics Data Enabled by Deep Integration with RNA-seq. J Proteome Res 2018;17:3431-44. [PMID: 30125121 DOI: 10.1021/acs.jproteome.8b00310] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
19 Surowka A, Ziomber A, Czyzycki M, Migliori A, Pieklo L, Kasper K, Szczerbowska-boruchowska M. Combined use of infrared and hard X-ray microprobes for spectroscopy-based neuroanatomy. J Inst 2018;13:C05008-C05008. [DOI: 10.1088/1748-0221/13/05/c05008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Liu Y, Gonzàlez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R, Venkitaraman AR, Wickramasinghe VO. Impact of Alternative Splicing on the Human Proteome. Cell Rep 2017;20:1229-41. [PMID: 28768205 DOI: 10.1016/j.celrep.2017.07.025] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 18.3] [Reference Citation Analysis]
21 Chang L, Di Lorenzo C, Farrugia G, Hamilton FA, Mawe GM, Pasricha PJ, Wiley JW. Functional Bowel Disorders: A Roadmap to Guide the Next Generation of Research. Gastroenterology. 2018;154:723-735. [PMID: 29288656 DOI: 10.1053/j.gastro.2017.12.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 31] [Article Influence: 4.2] [Reference Citation Analysis]
22 Krogager TP, Ernst RJ, Elliott TS, Calo L, Beránek V, Ciabatti E, Spillantini MG, Tripodi M, Hastings MH, Chin JW. Labeling and identifying cell-specific proteomes in the mouse brain. Nat Biotechnol 2018;36:156-9. [PMID: 29251727 DOI: 10.1038/nbt.4056] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 8.8] [Reference Citation Analysis]
23 Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, Lam TT, Gerstein MB, Sestan N, Nairn AC. A multiregional proteomic survey of the postnatal human brain. Nat Neurosci 2017;20:1787-95. [PMID: 29184206 DOI: 10.1038/s41593-017-0011-2] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 12.6] [Reference Citation Analysis]
24 Hosp F, Mann M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron 2017;96:558-71. [DOI: 10.1016/j.neuron.2017.09.025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
25 Sagar V, Pilakka-Kanthikeel S, Martinez PC, Atluri VSR, Nair M. Common gene-network signature of different neurological disorders and their potential implications to neuroAIDS. PLoS One 2017;12:e0181642. [PMID: 28792504 DOI: 10.1371/journal.pone.0181642] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
26 Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS, Vondriska TM, Whitelegge JP, Coppola G, Khakh BS. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron 2017;95:531-549.e9. [PMID: 28712653 DOI: 10.1016/j.neuron.2017.06.029] [Cited by in Crossref: 270] [Cited by in F6Publishing: 310] [Article Influence: 54.0] [Reference Citation Analysis]
27 Szoko N, Mcshane AJ, Natowicz MR. Proteomic explorations of autism spectrum disorder: Proteomic explorations of ASD. Autism Research 2017;10:1460-9. [DOI: 10.1002/aur.1803] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
28 Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017;10:45. [PMID: 28286470 DOI: 10.3389/fnmol.2017.00045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
29 He KY, Ge D, He MM. Big Data Analytics for Genomic Medicine. Int J Mol Sci 2017;18:E412. [PMID: 28212287 DOI: 10.3390/ijms18020412] [Cited by in Crossref: 96] [Cited by in F6Publishing: 57] [Article Influence: 19.2] [Reference Citation Analysis]
30 Nair M, Sagar V, Pilakka-Kanthikeel S. Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection. Sci Rep 2016;6:34862. [PMID: 27756902 DOI: 10.1038/srep34862] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
31 Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Deconstructing the molecular architecture of olfactory areas using proteomics. Proteomics Clin Appl 2016;10:1178-90. [PMID: 27226001 DOI: 10.1002/prca.201500147] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
32 Zhao Y, Castellanos FX. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations. J Child Psychol Psychiatry 2016;57:421-39. [PMID: 26732133 DOI: 10.1111/jcpp.12503] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 7.3] [Reference Citation Analysis]
33 Twiss JL, Fainzilber M. Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 2016;15:341-3. [PMID: 26729708 DOI: 10.1074/mcp.E116.057828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 2015;18:1819-31. [PMID: 26523646 DOI: 10.1038/nn.4160] [Cited by in Crossref: 392] [Cited by in F6Publishing: 394] [Article Influence: 56.0] [Reference Citation Analysis]
35 Cho J, Yu NK, Choi JH, Sim SE, Kang SJ, Kwak C, Lee SW, Kim JI, Choi DI, Kim VN, Kaang BK. Multiple repressive mechanisms in the hippocampus during memory formation. Science 2015;350:82-7. [PMID: 26430118 DOI: 10.1126/science.aac7368] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 12.6] [Reference Citation Analysis]
36 Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, Vidal M, Sebat J, Iakoucheva LM. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron 2015;85:742-54. [PMID: 25695269 DOI: 10.1016/j.neuron.2015.01.010] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 14.1] [Reference Citation Analysis]
37 Fernández-Irigoyen J, Zelaya MV, Perez-Valderrama E, Santamaría E. New insights into the human brain proteome: Protein expression profiling of deep brain stimulation target areas. J Proteomics 2015;127:395-405. [PMID: 25845585 DOI: 10.1016/j.jprot.2015.03.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]