BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: AzimiHashemi N, Erbguth K, Vogt A, Riemensperger T, Rauch E, Woodmansee D, Nagpal J, Brauner M, Sheves M, Fiala A, Kattner L, Trauner D, Hegemann P, Gottschalk A, Liewald JF. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nat Commun 2014;5:5810. [PMID: 25503804 DOI: 10.1038/ncomms6810] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Rost BR, Wietek J, Yizhar O, Schmitz D. Optogenetics at the presynapse. Nat Neurosci 2022. [PMID: 35835882 DOI: 10.1038/s41593-022-01113-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022;10:879609. [DOI: 10.3389/fchem.2022.879609] [Reference Citation Analysis]
3 Wijtmans M, Josimovic I, Vischer HF, Leurs R. Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Current Opinion in Pharmacology 2022;63:102192. [DOI: 10.1016/j.coph.2022.102192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
4 Govorunova EG, Sineshchekov OA, Spudich JL. Emerging Diversity of Channelrhodopsins and Their Structure-Function Relationships. Front Cell Neurosci 2022;15:800313. [DOI: 10.3389/fncel.2021.800313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
5 Tsuneishi T, Takahashi M, Tsujimura M, Kojima K, Ishikita H, Takeuchi Y, Sudo Y. Exploring the Retinal Binding Cavity of Archaerhodopsin-3 by Replacing the Retinal Chromophore With a Dimethyl Phenylated Derivative. Front Mol Biosci 2021;8:794948. [PMID: 34988122 DOI: 10.3389/fmolb.2021.794948] [Reference Citation Analysis]
6 Schoeters R, Tarnaud T, Martens L, Joseph W, Raedt R, Tanghe E. Double Two-State Opsin Model With Autonomous Parameter Inference. Front Comput Neurosci 2021;15:688331. [PMID: 34220478 DOI: 10.3389/fncom.2021.688331] [Reference Citation Analysis]
7 Yim PD, Hyuga S, Wu AD, Dan W, Vink JY, Gallos G. Activation of an Endogenous Opsin 3 Light Receptor Mediates Photo-Relaxation of Pre-Contracting Late Gestation Human Uterine Smooth Muscle Ex Vivo. Reprod Sci 2020;27:1791-801. [PMID: 32166706 DOI: 10.1007/s43032-020-00180-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2020;59:218-29. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
9 Mao J, Aladin V, Jin X, Leeder AJ, Brown LJ, Brown RCD, He X, Corzilius B, Glaubitz C. Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019;141:19888-901. [DOI: 10.1021/jacs.9b11195] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
10 Mei G, Mamaeva N, Ganapathy S, Wang P, DeGrip WJ, Rothschild KJ. Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Near-infrared. Photochem Photobiol 2020;96:55-66. [PMID: 31556123 DOI: 10.1111/php.13169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
11 Marazzi M, Gattuso H, Giussani A, Zhang H, Navarrete-miguel M, Chipot C, Cai W, Roca-sanjuán D, Dehez F, Monari A. Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. J Phys Chem Lett 2019;10:7133-40. [DOI: 10.1021/acs.jpclett.9b02911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
12 Azimi Hashemi N, Bergs ACF, Schüler C, Scheiwe AR, Steuer Costa W, Bach M, Liewald JF, Gottschalk A. Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019;116:17051-60. [PMID: 31371514 DOI: 10.1073/pnas.1902443116] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
13 Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019;123:4242-50. [PMID: 30998011 DOI: 10.1021/acs.jpcb.9b01136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
14 Ganapathy S, Kratz S, Chen Q, Hellingwerf KJ, de Groot HJM, Rothschild KJ, de Grip WJ. Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem Photobiol 2019;95:959-68. [PMID: 30860604 DOI: 10.1111/php.13093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
15 Manathunga M, Yang X, Olivucci M. Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues. J Phys Chem Lett 2018;9:6350-5. [PMID: 30336038 DOI: 10.1021/acs.jpclett.8b02550] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
16 Simpson JH, Looger LL. Functional Imaging and Optogenetics in Drosophila. Genetics 2018;208:1291-309. [PMID: 29618589 DOI: 10.1534/genetics.117.300228] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
17 Shen Y, Sasaki T, Matsuyama T, Yamashita T, Shichida Y, Okitsu T, Yamano Y, Wada A, Ishizuka T, Yawo H, Imamoto Y. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018;57:5544-56. [DOI: 10.1021/acs.biochem.8b00583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
18 Rost BR, Schneider-Warme F, Schmitz D, Hegemann P. Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017;96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Cited by in Crossref: 161] [Cited by in F6Publishing: 150] [Article Influence: 32.2] [Reference Citation Analysis]
19 Higgins J, Hermanns C, Malloy C, Cooper RL. Considerations in repetitive activation of light sensitive ion channels for long-term studies: Channel rhodopsin in the Drosophila model. Neurosci Res 2017;125:1-10. [PMID: 28728913 DOI: 10.1016/j.neures.2017.07.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
20 Herwig L, Rice AJ, Bedbrook CN, Zhang RK, Lignell A, Cahn JKB, Renata H, Dodani SC, Cho I, Cai L, Gradinaru V, Arnold FH. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chem Biol 2017;24:415-25. [PMID: 28262559 DOI: 10.1016/j.chembiol.2017.02.008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 7.6] [Reference Citation Analysis]
21 Ganapathy S, Venselaar H, Chen Q, de Groot HJ, Hellingwerf KJ, de Grip WJ. Retinal-Based Proton Pumping in the Near Infrared. J Am Chem Soc 2017;139:2338-44. [PMID: 28094925 DOI: 10.1021/jacs.6b11366] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
22 Govorunova EG, Koppel LA. The Road to Optogenetics: Microbial Rhodopsins. Biochemistry (Mosc) 2016;81:928-40. [PMID: 27682165 DOI: 10.1134/S0006297916090029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
23 Naughton JR, Connolly T, Varela JA, Lundberg J, Burns MJ, Chiles TC, Christianson JP, Naughton MJ. Shielded Coaxial Optrode Arrays for Neurophysiology. Front Neurosci 2016;10:252. [PMID: 27375415 DOI: 10.3389/fnins.2016.00252] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
24 Owald D, Lin S, Waddell S. Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc Lond B Biol Sci 2015;370:20140211. [PMID: 26240426 DOI: 10.1098/rstb.2014.0211] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 9.7] [Reference Citation Analysis]
25 Evans BD, Jarvis S, Schultz SR, Nikolic K. PyRhO: A Multiscale Optogenetics Simulation Platform. Front Neuroinform 2016;10:8. [PMID: 27148037 DOI: 10.3389/fninf.2016.00008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
26 Yu J, Chen K, Lucero RV, Ambrosi CM, Entcheva E. Cardiac Optogenetics: Enhancement by All-trans-Retinal. Sci Rep 2015;5:16542. [PMID: 26568132 DOI: 10.1038/srep16542] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
27 Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 2015;6:8046. [PMID: 26345128 DOI: 10.1038/ncomms9046] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 8.1] [Reference Citation Analysis]
28 O'Neill PR, Gautam N. Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochem Photobiol Sci 2015;14:1578-85. [PMID: 26135203 DOI: 10.1039/c5pp00171d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]