BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kinoshita C, Aoyama K, Matsumura N, Kikuchi-Utsumi K, Watabe M, Nakaki T. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat Commun 2014;5:3823. [PMID: 24804999 DOI: 10.1038/ncomms4823] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Mo L, Wang Z, Huang H, Li J, Ma C, Zhang J, Huang F, He W, Liu Y, Zhou C, Moloney GM. Integrated Analysis of Crucial Genes and miRNAs Associated with Osteoporotic Fracture of Type 2 Diabetes. BioMed Research International 2022;2022:1-18. [DOI: 10.1155/2022/3921570] [Reference Citation Analysis]
2 Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022;9:893846. [PMID: 35755805 DOI: 10.3389/fmolb.2022.893846] [Reference Citation Analysis]
3 Paschou M, Papazafiri P, Charalampous C, Zachariadis M, Dedos SG, Doxakis E. Neuronal microRNAs safeguard ER Ca2+ homeostasis and attenuate the unfolded protein response upon stress. Cell Mol Life Sci 2022;79:373. [PMID: 35727337 DOI: 10.1007/s00018-022-04398-9] [Reference Citation Analysis]
4 Durur DY, Tastan B, Ugur Tufekci K, Olcum M, Uzuner H, Karakülah G, Yener G, Genc S. Alteration of miRNAs in Small Neuron-Derived Extracellular Vesicles of Alzheimer's Disease Patients and the Effect of Extracellular Vesicles on Microglial Immune Responses. J Mol Neurosci 2022. [PMID: 35488079 DOI: 10.1007/s12031-022-02012-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Heilmeier U, Hackl M, Schroeder F, Torabi S, Kapoor P, Vierlinger K, Eiriksdottir G, Gudmundsson EF, Harris TB, Gudnason V, Link TM, Grillari J, Schwartz AV. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 2022. [DOI: 10.1016/j.bone.2021.116308] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Vanhaverbeke M, Attard R, Bartekova M, Ben-Aicha S, Brandenburger T, de Gonzalo-Calvo D, Emanueli C, Farrugia R, Grillari J, Hackl M, Kalocayova B, Martelli F, Scholz M, Wettinger SB, Devaux Y; EU-CardioRNA COST Action CA17129. Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: A Position Paper from the EU-CardioRNA COST Action CA17129. Cardiovasc Res 2021:cvab327. [PMID: 34648023 DOI: 10.1093/cvr/cvab327] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Zhu M, Jia L, Jia J. Inhibition of miR-96-5p May Reduce Aβ42/Aβ40 Ratio via Regulating ATP-binding cassette transporter A1. J Alzheimers Dis 2021;83:367-77. [PMID: 34334400 DOI: 10.3233/JAD-210411] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Verma AK, Singh S, Garg G, Rizvi SI. Melatonin exerts neuroprotection in a chronodisrupted rat model through reduction in oxidative stress and modulation of autophagy. Chronobiol Int 2021;:1-12. [PMID: 34384302 DOI: 10.1080/07420528.2021.1966025] [Reference Citation Analysis]
9 Higashi Y, Aratake T, Shimizu T, Shimizu S, Saito M. Protective Role of Glutathione in the Hippocampus after Brain Ischemia. Int J Mol Sci 2021;22:7765. [PMID: 34360532 DOI: 10.3390/ijms22157765] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
10 Zhang M, Yang JK, Ma J. Regulation of the long noncoding RNA XIST on the inflammatory polarization of microglia in cerebral infarction. Exp Ther Med 2021;22:924. [PMID: 34306193 DOI: 10.3892/etm.2021.10356] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021;13:2979. [PMID: 34198662 DOI: 10.3390/cancers13122979] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
12 Aoyama K. Glutathione in the Brain. Int J Mol Sci 2021;22:5010. [PMID: 34065042 DOI: 10.3390/ijms22095010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 24] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kinoshita C, Aoyama K. The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione. Int J Mol Sci 2021;22:4245. [PMID: 33921907 DOI: 10.3390/ijms22084245] [Reference Citation Analysis]
14 Kinoshita C, Kikuchi-Utsumi K, Aoyama K, Suzuki R, Okamoto Y, Matsumura N, Omata D, Maruyama K, Nakaki T. Inhibition of miR-96-5p in the mouse brain increases glutathione levels by altering NOVA1 expression. Commun Biol 2021;4:182. [PMID: 33568779 DOI: 10.1038/s42003-021-01706-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Aratake T, Higashi Y, Hamada T, Ueba Y, Shimizu T, Shimizu S, Yawata T, Ueba T, Saito M. The role of diurnal fluctuations in excitatory amino acid carrier 1 levels in post-ischemic hippocampal Zn2+ accumulation. Exp Neurol 2021;336:113538. [PMID: 33253705 DOI: 10.1016/j.expneurol.2020.113538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
16 Wu BW, Guo JD, Wu MS, Liu Y, Lu M, Zhou YH, Han HW. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer's disease. Epigenomics 2020;12:1501-13. [PMID: 32901506 DOI: 10.2217/epi-2019-0215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
17 Kinoshita C, Okamoto Y, Aoyama K, Nakaki T. MicroRNA: A Key Player for the Interplay of Circadian Rhythm Abnormalities, Sleep Disorders and Neurodegenerative Diseases. Clocks Sleep 2020;2:282-307. [PMID: 33089205 DOI: 10.3390/clockssleep2030022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
18 Gong B, Wang X, Li B, Li Y, Lu R, Zhang K, Li B, Ma Y, Li Y. miR-205-5p inhibits thymic epithelial cell proliferation via FA2H-TFAP2A feedback regulation in age-associated thymus involution. Mol Immunol 2020;122:173-85. [PMID: 32371259 DOI: 10.1016/j.molimm.2020.04.011] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
19 Su Z, Sheng L, Yu P, Ren N, Li Y, Qin Z. Regulation of microRNAs by IRE1α in apoptosis: implications for the pathomechanism of neurodegenerative diseases. Int J Neurosci 2020;130:1230-6. [PMID: 32070174 DOI: 10.1080/00207454.2020.1730833] [Reference Citation Analysis]
20 Zhang Y, Wang C, Lu J, Jin Y, Xu C, Meng Q, Liu Q, Dong D, Ma X, Liu K, Sun H. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging (Albany NY) 2020;12:2049-69. [PMID: 32023549 DOI: 10.18632/aging.102721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
21 Desjarlais M, Wirth M, Rivera JC, Lahaie I, Dabouz R, Omri S, Ruknudin P, Borras C, Chemtob S. MicroRNA-96 Promotes Vascular Repair in Oxygen-Induced Retinopathy-A Novel Uncovered Vasoprotective Function. Front Pharmacol 2020;11:13. [PMID: 32116694 DOI: 10.3389/fphar.2020.00013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wang Y, Lv K, Zhao M, Chen H, Ji G, Zhang Y, Wang T, Cao H, Li Y, Qu L. Analysis of miRNA expression profiles in the liver of Clock Δ19 mutant mice. PeerJ 2019;7:e8119. [PMID: 31799078 DOI: 10.7717/peerj.8119] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
23 Almurshidi B, Carver W, Scott G, Ray SK. Roles of miRNAs in spinal cord injury and potential therapeutic interventions. Neuroimmunol Neuroinflamm 2019;6:11. [PMID: 33869675 DOI: 10.20517/2347-8659.2019.19] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Su Y, Chen Z, Du H, Liu R, Wang W, Li H, Ning B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J 2019;33:10859-71. [PMID: 31266356 DOI: 10.1096/fj.201900743R] [Cited by in Crossref: 18] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
25 Andrade GM, Bomfim MM, Del Collado M, Meirelles FV, Perecin F, da Silveira JC. Oxygen tension modulates extracellular vesicles and its miRNA contents in bovine embryo culture medium. Mol Reprod Dev 2019;86:1067-80. [PMID: 31192511 DOI: 10.1002/mrd.23223] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
26 Wang T, Li B, Wang Z, Yuan X, Chen C, Zhang Y, Xia Z, Wang X, Yu M, Tao W, Zhang L, Wang X, Zhang Z, Guo X, Ning G, Feng S, Chen X. miR-155-5p Promotes Dorsal Root Ganglion Neuron Axonal Growth in an Inhibitory Microenvironment via the cAMP/PKA Pathway. Int J Biol Sci 2019;15:1557-70. [PMID: 31337984 DOI: 10.7150/ijbs.31904] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
27 Bajic VP, Van Neste C, Obradovic M, Zafirovic S, Radak D, Bajic VB, Essack M, Isenovic ER. Glutathione "Redox Homeostasis" and Its Relation to Cardiovascular Disease. Oxid Med Cell Longev 2019;2019:5028181. [PMID: 31210841 DOI: 10.1155/2019/5028181] [Cited by in Crossref: 30] [Cited by in F6Publishing: 43] [Article Influence: 10.0] [Reference Citation Analysis]
28 Hannou L, Roy P, Ballester Roig MN, Mongrain V. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2020;51:241-67. [DOI: 10.1111/ejn.14294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
29 Lin X, Liu Y, Meng T, Xie C, Wu X, Yin Y. Circadian calcium feeding regime in laying hens related to zinc concentration, gene expression of circadian clock, calcium transporters and oxidative status. Journal of Trace Elements in Medicine and Biology 2018;50:518-26. [DOI: 10.1016/j.jtemb.2018.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
30 Kamnaksh A, Puhakka N, Ali I, Smith G, Aniceto R, McCullough J, Das Gupta S, Ndode-Ekane XE, Brady R, Casillas-Espinosa P, Hudson M, Santana-Gomez C, Immonen R, Abreu PA, Jones N, Shultz S, Staba RJ, O'Brien TJ, Agoston D, Pitkänen A. Harmonization of pipeline for preclinical multicenter plasma protein and miRNA biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Res 2019;149:92-101. [PMID: 30553097 DOI: 10.1016/j.eplepsyres.2018.11.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
31 Cheng VK, Au PC, Tan KC, Cheung CL. MicroRNA and Human Bone Health. JBMR Plus 2019;3:2-13. [PMID: 30680358 DOI: 10.1002/jbm4.10115] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
32 Harris G, Eschment M, Orozco SP, McCaffery JM, Maclennan R, Severin D, Leist M, Kleensang A, Pamies D, Maertens A, Hogberg HT, Freeman D, Kirkwood A, Hartung T, Smirnova L. Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol 2018;92:2587-606. [PMID: 29955902 DOI: 10.1007/s00204-018-2250-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
33 Chi-Castañeda D, Ortega A. Circadian Regulation of Glutamate Transporters. Front Endocrinol (Lausanne) 2018;9:340. [PMID: 29977228 DOI: 10.3389/fendo.2018.00340] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
34 Milev NB, Rhee SG, Reddy AB. Cellular Timekeeping: It's Redox o'Clock. Cold Spring Harb Perspect Biol 2018;10:a027698. [PMID: 28778867 DOI: 10.1101/cshperspect.a027698] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
35 Yao L, Liu Y, Qiu Z, Kumar S, Curran JE, Blangero J, Chen Y, Lehman DM. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation. J Neuroendocrinol 2017;29. [PMID: 28071834 DOI: 10.1111/jne.12455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Burgos-aceves MA, Cohen A, Smith Y, Faggio C. MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicology and Environmental Safety 2018;148:995-1000. [DOI: 10.1016/j.ecoenv.2017.12.001] [Cited by in Crossref: 133] [Cited by in F6Publishing: 142] [Article Influence: 33.3] [Reference Citation Analysis]
37 Huang J, Jia Y, Li Q, Burris WR, Bridges PJ, Matthews JC. Hepatic glutamate transport and glutamine synthesis capacities are decreased in finished vs. growing beef steers, concomitant with increased GTRAP3-18 content. Amino Acids 2018;50:513-25. [PMID: 29392419 DOI: 10.1007/s00726-018-2540-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
38 Patel D, Mahimainathan L, Narasimhan M, Rathinam M, Henderson G. Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport. Int J Mol Sci 2017;18:E2596. [PMID: 29206135 DOI: 10.3390/ijms18122596] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
39 Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018;119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
40 García-giménez JL, Romá-mateo C, Pérez-machado G, Peiró-chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radical Biology and Medicine 2017;112:36-48. [DOI: 10.1016/j.freeradbiomed.2017.07.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]
41 Qi G, Mi Y, Fan R, Zhao B, Ren B, Liu X. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food Chem Toxicol 2017;110:189-99. [PMID: 29061316 DOI: 10.1016/j.fct.2017.10.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 31] [Article Influence: 4.2] [Reference Citation Analysis]
42 Yu K, Li N, Cheng Q, Zheng J, Zhu M, Bao S, Chen M, Shi G. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J Mol Med (Berl) 2018;96:65-74. [PMID: 29051972 DOI: 10.1007/s00109-017-1593-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
43 Aoyama K, Bhadhprasit W, Watabe M, Wang F, Matsumura N, Nakaki T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin. FASEB J 2018;32:330-41. [PMID: 28904020 DOI: 10.1096/fj.201700421R] [Reference Citation Analysis]
44 Chacolla-Huaringa R, Moreno-Cuevas J, Trevino V, Scott SP. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs. Int J Mol Sci 2017;18:E1499. [PMID: 28704935 DOI: 10.3390/ijms18071499] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
45 Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, Burghardt AJ, Schwartz AV, Grillari J, Link TM. Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. J Bone Miner Res 2016;31:2173-92. [PMID: 27345526 DOI: 10.1002/jbmr.2897] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 15.7] [Reference Citation Analysis]
46 Xie Y, Chen Y. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease. Front Neurosci 2016;10:298. [PMID: 27445669 DOI: 10.3389/fnins.2016.00298] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
47 Jayaram H, Cepurna WO, Johnson EC, Morrison JC. MicroRNA Expression in the Glaucomatous Retina. Invest Ophthalmol Vis Sci 2015;56:7971-82. [PMID: 26720444 DOI: 10.1167/iovs.15-18088] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
48 Lu SC, Mato JM, Espinosa-Diez C, Lamas S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med 2016;100:66-72. [PMID: 27033954 DOI: 10.1016/j.freeradbiomed.2016.03.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
49 Micó V, Díez-Ricote L, Daimiel L. Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health. Int J Mol Sci 2016;17:299. [PMID: 26927084 DOI: 10.3390/ijms17030299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
50 Zhang Y, Tan F, Xu P, Qu S. Recent Advance in the Relationship between Excitatory Amino Acid Transporters and Parkinson's Disease. Neural Plast 2016;2016:8941327. [PMID: 26981287 DOI: 10.1155/2016/8941327] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
51 Mooney C, Raoof R, El-Naggar H, Sanz-Rodriguez A, Jimenez-Mateos EM, Henshall DC. High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers. PLoS One 2015;10:e0145316. [PMID: 26699132 DOI: 10.1371/journal.pone.0145316] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
52 Saghazadeh A, Rezaei N. MicroRNA machinery in Parkinson's disease: a platform for neurodegenerative diseases. Expert Rev Neurother 2015;:1-27. [PMID: 26574782 DOI: 10.1586/14737175.2015.1114886] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
53 Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015;20:8742-58. [PMID: 26007177 DOI: 10.3390/molecules20058742] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 9.0] [Reference Citation Analysis]
54 Lehmann R, Childs L, Thomas P, Abreu M, Fuhr L, Herzel H, Leser U, Relógio A. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach. PLoS One 2015;10:e0126283. [PMID: 25945798 DOI: 10.1371/journal.pone.0126283] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
55 Klichko VI, Chow ES, Kotwica-Rolinska J, Orr WC, Giebultowicz JM, Radyuk SN. Aging alters circadian regulation of redox in Drosophila. Front Genet 2015;6:83. [PMID: 25806044 DOI: 10.3389/fgene.2015.00083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
56 Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X, Luo Y. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014;1592:65-72. [PMID: 25280466 DOI: 10.1016/j.brainres.2014.09.055] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 8.3] [Reference Citation Analysis]