BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song E, Gaudin A, King AR, Seo YE, Suh HW, Deng Y, Cui J, Tietjen GT, Huttner A, Saltzman WM. Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat Commun 2017;8:15322. [PMID: 28524852 DOI: 10.1038/ncomms15322] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Negron K, Kwak G, Wang H, Li H, Huang YT, Chen SW, Tyler B, Eberhart CG, Hanes J, Suk JS. A Highly Translatable Dual-arm Local Delivery Strategy To Achieve Widespread Therapeutic Coverage in Healthy and Tumor-bearing Brain Tissues. Small 2023;:e2207278. [PMID: 36651002 DOI: 10.1002/smll.202207278] [Reference Citation Analysis]
2 Carney CP, Kapur A, Anastasiadis P, Ritzel RM, Chen C, Woodworth GF, Winkles JA, Kim AJ. Fn14-Directed DART Nanoparticles Selectively Target Neoplastic Cells in Preclinical Models of Triple-Negative Breast Cancer Brain Metastasis. Mol Pharm 2023;20:314-30. [PMID: 36374573 DOI: 10.1021/acs.molpharmaceut.2c00663] [Reference Citation Analysis]
3 Spencer AC, Surnar B, Kolishetti N, Toborek M, Dhar S. Restoring the neuroprotective capacity of glial cells under opioid addiction. Addiction Neuroscience 2022;4:100027. [DOI: 10.1016/j.addicn.2022.100027] [Reference Citation Analysis]
4 Deiss-yehiely E, Brucks SD, Boehnke N, Pickering AJ, Kiessling LL, Hammond PT. Surface Presentation of Hyaluronic Acid Modulates Nanoparticle–Cell Association. Bioconjugate Chem 2022. [DOI: 10.1021/acs.bioconjchem.2c00412] [Reference Citation Analysis]
5 Mai Y, Ouyang Y, Yu M, Qin Y, Girardi M, Saltzman WM, Cocco E, Zhao C, Yu L, Jia Y, Xiao L, Dou L, Deng W, Liu Y, Xie J, Deng Y. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release 2022;349:354-66. [PMID: 35817278 DOI: 10.1016/j.jconrel.2022.07.006] [Reference Citation Analysis]
6 Yu M, Zeng W, Ouyang Y, Liang S, Yi Y, Hao H, Yu J, Liu Y, Nie Y, Wang T, Deng Y, Wu M. ATP-exhausted nanocomplexes for intratumoral metabolic intervention and photoimmunotherapy. Biomaterials 2022;284:121503. [DOI: 10.1016/j.biomaterials.2022.121503] [Reference Citation Analysis]
7 Glassman PM, Nong J, Myerson JW, Zuluaga-ramirez V, Rodriguez-garcia A, Mukalel A, Omo-lamai S, Walsh LR, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-contreras OA. Targeted nanocarriers coopting pulmonary leukocytes for drug delivery to the injured brain.. [DOI: 10.1101/2022.02.04.479150] [Reference Citation Analysis]
8 Wang Y, Malik S, Suh H, Xiao Y, Deng Y, Fan R, Huttner A, Bindra RS, Saltzman WM, Bahal R. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy.. [DOI: 10.1101/2022.01.31.478549] [Reference Citation Analysis]
9 Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. A novel hypocrellin-based assembly for sonodynamic therapy against glioblastoma. J Mater Chem B 2021;10:57-63. [PMID: 34842264 DOI: 10.1039/d1tb01886h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Lv S. Research fronts of Chemical Biology. Pure and Applied Chemistry 2021;93:1473-85. [DOI: 10.1515/pac-2020-1004] [Reference Citation Analysis]
11 Zheng M, Du Q, Wang X, Zhou Y, Li J, Xia X, Lu Y, Yin J, Zou Y, Park JB, Shi B. Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. Adv Sci (Weinh) 2021;8:e2102001. [PMID: 34423581 DOI: 10.1002/advs.202102001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
12 Negron K, Zhu C, Chen SW, Shahab S, Rao D, Raabe EH, Eberhart CG, Hanes J, Suk JS. Non-adhesive and highly stable biodegradable nanoparticles that provide widespread and safe transgene expression in orthotopic brain tumors. Drug Deliv Transl Res 2020;10:572-81. [PMID: 32323162 DOI: 10.1007/s13346-020-00759-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 He K, Wei Y, Zhang Z, Chen H, Yuan B, Pang HB, Yang K. Membrane-curvature-mediated co-endocytosis of bystander and functional nanoparticles. Nanoscale 2021;13:9626-33. [PMID: 34008687 DOI: 10.1039/d1nr01443a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Wang Y, Jiang Y, Wei D, Singh P, Yu Y, Lee T, Zhang L, Mandl HK, Piotrowski-Daspit AS, Chen X, Li F, Li X, Cheng Y, Josowitz A, Yang F, Zhao Y, Wang F, Zhao Z, Huttner A, Bindra RS, Xiao H, Mark Saltzman W. Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng 2021. [PMID: 34045730 DOI: 10.1038/s41551-021-00728-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
15 Li X, Xiong H, Rommelfanger N, Xu X, Youn J, Slesinger PA, Hong G, Qin Z. Nanotransducers for Wireless Neuromodulation. Matter 2021;4:1484-510. [PMID: 33997768 DOI: 10.1016/j.matt.2021.02.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Di Mascolo D, Palange AL, Primavera R, Macchi F, Catelani T, Piccardi F, Spanò R, Ferreira M, Marotta R, Armirotti A, Gallotti AL, Galli R, Wilson C, Grant GA, Decuzzi P. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol 2021;16:820-9. [PMID: 33795849 DOI: 10.1038/s41565-021-00879-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
17 Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomater 2021;123:346-53. [PMID: 33484911 DOI: 10.1016/j.actbio.2021.01.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
18 Hu JK, Suh HW, Qureshi M, Lewis JM, Yaqoob S, Moscato ZM, Griff S, Lee AK, Yin ES, Saltzman WM, Girardi M. Nonsurgical treatment of skin cancer with local delivery of bioadhesive nanoparticles. Proc Natl Acad Sci U S A 2021;118:e2020575118. [PMID: 33526595 DOI: 10.1073/pnas.2020575118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
19 Negron K, Khalasawi N, Suk JS. Strategies to Enhance the Distribution of Therapeutic Nanoparticles in the Brain by Convection Enhanced Delivery. Neuromethods 2021. [DOI: 10.1007/978-1-0716-1052-7_7] [Reference Citation Analysis]
20 Demirel GB, Dag A, Albayrak G, Cimen Z. Current and future challenges in polymeric nanomaterials for biomedical applications. Advances in Polymeric Nanomaterials for Biomedical Applications 2021. [DOI: 10.1016/b978-0-12-814657-6.00003-3] [Reference Citation Analysis]
21 Jung BT, Jung K, Lim M, Li M, Santos R, Ozawa T, Xu T. Design of 18 nm Doxorubicin-Loaded 3-Helix Micelles: Cellular Uptake and Cytotoxicity in Patient-Derived GBM6 Cells. ACS Biomater Sci Eng 2021;7:196-206. [PMID: 33338381 DOI: 10.1021/acsbiomaterials.0c01639] [Reference Citation Analysis]
22 Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X. Strategies and materials of "SMART" non-viral vectors: Overcoming the barriers for brain gene therapy. Nano Today 2020;35:101006. [DOI: 10.1016/j.nantod.2020.101006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
23 Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng 2020;30:112-9. [PMID: 33304774 DOI: 10.1016/j.coche.2020.08.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang R, Han S, Ren N, Liang L, Liang N, Liu F, Chen Y, Li D, Liu W, Liu H, Sun C. Topographical regulation of stem cell differentiation by plant-derived micro/nanostructures. Nanoscale 2020;12:18305-12. [PMID: 32869818 DOI: 10.1039/d0nr02765k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. Adv Therap 2020;3:2000118. [DOI: 10.1002/adtp.202000118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Alafeef M, Srivastava I, Pan D. Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization. ACS Sens 2020;5:1689-98. [PMID: 32466640 DOI: 10.1021/acssensors.0c00329] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
27 Kandell RM, Waggoner LE, Kwon EJ. Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine. Mol Pharm 2021;18:522-38. [PMID: 32584042 DOI: 10.1021/acs.molpharmaceut.0c00287] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
28 Jung BT, Jung K, Lim M, Li M, Santos R, Ozawa T, Xu T. Design of 18 nm Doxorubicin-loaded 3-helix Micelles: Cellular Uptake and Cytotoxicity in Patient-derived GBM6 Cells.. [DOI: 10.1101/2020.05.04.072892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res 2020;10:1876-87. [PMID: 32367425 DOI: 10.1007/s13346-020-00773-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
30 Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020;22:143-50. [PMID: 32015437 DOI: 10.1038/s41556-019-0454-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
31 Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020;8:E13. [PMID: 31941057 DOI: 10.3390/biomedicines8010013] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 17.3] [Reference Citation Analysis]
32 Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Engineered Regeneration 2020;1:35-50. [DOI: 10.1016/j.engreg.2020.06.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
33 Mazza M, Ahmad H, Hadjidemetriou M, Agliardi G, Pathmanaban ON, King AT, Bigger BW, Vranic S, Kostarelos K. Hampering brain tumor proliferation and migration using peptide nanofiber:siPLK1/MMP2 complexes. Nanomedicine (Lond) 2019;14:3127-42. [PMID: 31855120 DOI: 10.2217/nnm-2019-0298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
34 Curtis C, McKenna M, Pontes H, Toghani D, Choe A, Nance E. Predicting in situ nanoparticle behavior using multiple particle tracking and artificial neural networks. Nanoscale 2019;11:22515-30. [PMID: 31746912 DOI: 10.1039/c9nr06327g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
35 Liu SJ, Yang ST, Chen SM, Huang YC, Lee WH, Ho J, Chen YC, Tseng YY. Novel multi-drugs incorporating hybrid-structured nanofibers enhance alkylating agent activity in malignant gliomas. Ther Adv Med Oncol 2019;11:1758835919875555. [PMID: 31632467 DOI: 10.1177/1758835919875555] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
36 Xiao J, Zhang G, Xu R, Chen H, Wang H, Tian G, Wang B, Yang C, Bai G, Zhang Z, Yang H, Zhong K, Zou D, Wu Z. A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials 2019;216:119254. [DOI: 10.1016/j.biomaterials.2019.119254] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 16.5] [Reference Citation Analysis]
37 Negron K, Khalasawi N, Lu B, Ho CY, Lee J, Shenoy S, Mao HQ, Wang TH, Hanes J, Suk JS. Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation. J Control Release 2019;303:1-11. [PMID: 30978431 DOI: 10.1016/j.jconrel.2019.04.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
38 Seo YE, Suh HW, Bahal R, Josowitz A, Zhang J, Song E, Cui J, Noorbakhsh S, Jackson C, Bu T, Piotrowski-Daspit A, Bindra R, Saltzman WM. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019;201:87-98. [PMID: 30802686 DOI: 10.1016/j.biomaterials.2019.02.016] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 12.3] [Reference Citation Analysis]
39 Fadeel B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front Immunol 2019;10:133. [PMID: 30774634 DOI: 10.3389/fimmu.2019.00133] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 17.8] [Reference Citation Analysis]
40 Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 229] [Cited by in F6Publishing: 242] [Article Influence: 57.3] [Reference Citation Analysis]
41 Hsu W, Sánchez-gómez P, Gomez-ibarlucea E, Ivanov DP, Rahman R, Grabowska AM, Csaba N, Alexander C, Garcia-fuentes M. Structure-Optimized Interpolymer Polyphosphazene Complexes for Effective Gene Delivery against Glioblastoma. Adv Therap 2019;2:1800126. [DOI: 10.1002/adtp.201800126] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
42 Giménez-marqués M, Bellido E, Berthelot T, Simón-yarza T, Hidalgo T, Simón-vázquez R, González-fernández Á, Avila J, Asensio MC, Gref R, Couvreur P, Serre C, Horcajada P. GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. Small 2018;14:1801900. [DOI: 10.1002/smll.201801900] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
43 Brenner JS, Pan DC, Myerson JW, Marcos-Contreras OA, Villa CH, Patel P, Hekierski H, Chatterjee S, Tao JQ, Parhiz H, Bhamidipati K, Uhler TG, Hood ED, Kiseleva RY, Shuvaev VS, Shuvaeva T, Khoshnejad M, Johnston I, Gregory JV, Lahann J, Wang T, Cantu E, Armstead WM, Mitragotri S, Muzykantov V. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun 2018;9:2684. [PMID: 29992966 DOI: 10.1038/s41467-018-05079-7] [Cited by in Crossref: 153] [Cited by in F6Publishing: 160] [Article Influence: 30.6] [Reference Citation Analysis]
44 Suh HW, Lewis J, Fong L, Ramseier JY, Carlson K, Peng ZH, Yin ES, Saltzman WM, Girardi M. Biodegradable bioadhesive nanoparticle incorporation of broad-spectrum organic sunscreen agents. Bioeng Transl Med 2019;4:129-40. [PMID: 30680324 DOI: 10.1002/btm2.10092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
45 Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nat Commun 2018;9:2481. [PMID: 29946143 DOI: 10.1038/s41467-018-04894-2] [Cited by in Crossref: 88] [Cited by in F6Publishing: 96] [Article Influence: 17.6] [Reference Citation Analysis]
46 Chen EM, Quijano AR, Seo YE, Jackson C, Josowitz AD, Noorbakhsh S, Merlettini A, Sundaram RK, Focarete ML, Jiang Z, Bindra RS, Saltzman WM. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials 2018;178:193-203. [PMID: 29936153 DOI: 10.1016/j.biomaterials.2018.06.024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
47 Di Silvio D, Silvestri A, Lay L, Polito L, Moya SE. Impact of ConcanavalinA affinity in the intracellular fate of Protein Corona on Glucosamine Au nanoparticles. Sci Rep 2018;8:9046. [PMID: 29899359 DOI: 10.1038/s41598-018-27418-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
48 Collingwood JF. Brain Chemistry: Overview. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2018. [DOI: 10.1016/b978-0-12-409547-2.13961-7] [Reference Citation Analysis]
49 Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. Yale J Biol Med 2017;90:583-98. [PMID: 29259523] [Reference Citation Analysis]
50 Lu VM, Mcdonald KL, Townley HE. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine 2017;12:2389-401. [DOI: 10.2217/nnm-2017-0193] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
51 Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Curr Opin Biomed Eng 2017;4:1-12. [PMID: 29333521 DOI: 10.1016/j.cobme.2017.09.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
52 Chi DL, Song E, Gaudin A, Saltzman WM. Improved threshold selection for the determination of volume of distribution of nanoparticles administered by convection-enhanced delivery. Comput Med Imaging Graph 2017;62:34-40. [PMID: 28927549 DOI: 10.1016/j.compmedimag.2017.08.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
53 King AR, Corso CD, Chen EM, Song E, Bongiorni P, Chen Z, Sundaram RK, Bindra RS, Saltzman WM. Local DNA Repair Inhibition for Sustained Radiosensitization of High-Grade Gliomas. Mol Cancer Ther 2017;16:1456-69. [PMID: 28566437 DOI: 10.1158/1535-7163.MCT-16-0788] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
54 Gaudin A, Seo Y, Song E, Quijano E, King A, Saltzman W. 4.30 Nanomaterials for Drug Delivery to the Brain. Comprehensive Biomaterials II 2017. [DOI: 10.1016/b978-0-12-803581-8.09288-2] [Reference Citation Analysis]