BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, Kutach A, Joo W, Gao Z, Fu D, To C, Mondal K, Li B, Kekatpure A, Wang M, Laird T, Horner G, Chan J, McEntee M, Lopez M, Lakshminarasimhan D, White A, Wang SP, Yao J, Yie J, Matern H, Solloway M, Haldankar R, Parsons T, Tang J, Shen WD, Alice Chen Y, Tian H, Allan BB. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 2017;550:255-9. [PMID: 28953886 DOI: 10.1038/nature24042] [Cited by in Crossref: 274] [Cited by in F6Publishing: 286] [Article Influence: 54.8] [Reference Citation Analysis]
Number Citing Articles
1 Asthana P, Guo X, Wong HLX. MT1-MMP – A potential drug target for the management of the obesity. Expert Opinion on Therapeutic Targets 2022. [DOI: 10.1080/14728222.2022.2147271] [Reference Citation Analysis]
2 Aguilar-recarte D, Barroso E, Zhang M, Rada P, Pizarro-delgado J, Peña L, Palomer X, Valverde ÁM, Wahli W, Vázquez-carrera M. A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106578] [Reference Citation Analysis]
3 Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175379] [Reference Citation Analysis]
4 Wu X, Wang JJ, Wang X, Wang H. Progress of neural circuits mechanism underlying metabolic and hedonic feeding. Stress and Brain 2022. [DOI: 10.26599/sab.2022.9060021] [Reference Citation Analysis]
5 Igual Gil C, Coull BM, Jonas W, Lippert RN, Klaus S, Ost M. Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior. Life Sci Alliance 2022;5:e202201495. [DOI: 10.26508/lsa.202201495] [Reference Citation Analysis]
6 De Paepe B. The Cytokine Growth Differentiation Factor-15 and Skeletal Muscle Health: Portrait of an Emerging Widely Applicable Disease Biomarker. IJMS 2022;23:13180. [DOI: 10.3390/ijms232113180] [Reference Citation Analysis]
7 Morita-tanaka S, Miyagawa-hayashino A, Yamada T, Matsui Y, Morimoto K, Hiranuma O, Masuzawa N, Yoshimura A, Iwasaku M, Tokuda S, Kaneko Y, Kim YH, Konishi E, Takayama K. Localized expression and role of full-length growth differentiation factor 15 in non-small cell lung cancer.. [DOI: 10.21203/rs.3.rs-2151180/v1] [Reference Citation Analysis]
8 Chen J, Peng H, Chen C, Wang Y, Sang T, Cai Z, Zhao Q, Chen S, Lin X, Eling T, Wang X. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.121142] [Reference Citation Analysis]
9 Andrews PL, Williams RS, Sanger GJ. Anti-emetic effects of thalidomide: Evidence, mechanism of action, and future directions. Current Research in Pharmacology and Drug Discovery 2022. [DOI: 10.1016/j.crphar.2022.100138] [Reference Citation Analysis]
10 Herpich C, Lehmann S, Kochlik B, Kleinert M, Klaus S, Müller-Werdan U, Norman K. The Effect of Dextrose or Protein Ingestion on Circulating Growth Differentiation Factor 15 and Appetite in Older Compared to Younger Women. Nutrients 2022;14:4066. [PMID: 36235718 DOI: 10.3390/nu14194066] [Reference Citation Analysis]
11 Aguilar-Recarte D, Barroso E, Palomer X, Wahli W, Vázquez-Carrera M. Knocking on GDF15's door for the treatment of type 2 diabetes mellitus. Trends Endocrinol Metab 2022:S1043-2760(22)00163-1. [PMID: 36151002 DOI: 10.1016/j.tem.2022.08.004] [Reference Citation Analysis]
12 Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol 2022;13:975509. [DOI: 10.3389/fendo.2022.975509] [Reference Citation Analysis]
13 Ilanges A, Shiao R, Shaked J, Luo JD, Yu X, Friedman JM. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 2022. [PMID: 36071158 DOI: 10.1038/s41586-022-05161-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Patel S, Haider A, Alvarez-Guaita A, Bidault G, El-Sayed Moustafa JS, Guiu-Jurado E, Tadross JA, Warner J, Harrison J, Virtue S, Scurria F, Zvetkova I, Blüher M, Small KS, O'Rahilly S, Savage DB. Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice. Mol Metab 2022;:101589. [PMID: 36064109 DOI: 10.1016/j.molmet.2022.101589] [Reference Citation Analysis]
15 Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, Xu X, Li T. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022;7:298. [PMID: 36031641 DOI: 10.1038/s41392-022-01149-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Haraguchi-Suzuki K, Kawabata-Iwakawa R, Suzuki T, Suto T, Takazawa T, Saito S. Local anesthetic lidocaine-inducible gene, growth differentiation factor-15 suppresses the growth of cancer cell lines. Sci Rep 2022;12:14520. [PMID: 36008442 DOI: 10.1038/s41598-022-18572-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Klein AB, Nicolaisen TS, Johann K, Fritzen AM, Mathiesen CV, Gil C, Pilmark NS, Karstoft K, Blond MB, Quist JS, Seeley RJ, Færch K, Lund J, Kleinert M, Clemmensen C. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep 2022;40:111258. [PMID: 36001956 DOI: 10.1016/j.celrep.2022.111258] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Radwanska A, Cottage CT, Piras A, Overed-sayer C, Sihlbom C, Budida R, Wrench C, Connor J, Monkley S, Hazon P, Schluter H, Thomas MJ, Hogaboam CM, Murray LA. Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight 2022;7:e153058. [DOI: 10.1172/jci.insight.153058] [Reference Citation Analysis]
19 Welsh P, Kimenai DM, Marioni RE, Hayward C, Campbell A, Porteous D, Mills NL, O'Rahilly S, Sattar N. Reference ranges for GDF-15, and risk factors associated with GDF-15, in a large general population cohort. Clin Chem Lab Med 2022. [PMID: 35976089 DOI: 10.1515/cclm-2022-0135] [Reference Citation Analysis]
20 Liu Y, De Castro Ribeiro O, Haapanen O, Craven GB, Sharma V, Muench SP, Goldman A. Unexpected structures formed by the kinase RET C634R mutant extracellular domain suggest potential oncogenic mechanisms in MEN2A. J Biol Chem 2022;:102380. [PMID: 35985422 DOI: 10.1016/j.jbc.2022.102380] [Reference Citation Analysis]
21 Jeong S, Lee SG, Kim KH, Zhu X, Lee WK, Lee HY, Park S, Lee M, Cheng S, Lee J, Jo YS. Cell non-autonomous effect of hepatic growth differentiation factor 15 on the thyroid gland. Front Endocrinol 2022;13:966644. [DOI: 10.3389/fendo.2022.966644] [Reference Citation Analysis]
22 Chen YC, Wu CT, Chen JH, Tsai CF, Wu CY, Chang PC, Yeh WL. Diltiazem inhibits breast cancer metastasis via mediating growth differentiation factor 15 and epithelial-mesenchymal transition. Oncogenesis 2022;11:48. [PMID: 35963873 DOI: 10.1038/s41389-022-00423-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Karusheva Y, Ratcliff M, Mörseburg A, Barker P, Melvin A, Sattar N, Burling K, Backmark A, Roth R, Jermutus L, Guiu-jurado E, Blüher M, Welsh P, Hyvönen M, O’rahilly S. The Common H202D Variant in GDF-15 Does Not Affect Its Bioactivity but Can Significantly Interfere with Measurement of Its Circulating Levels. The Journal of Applied Laboratory Medicine 2022. [DOI: 10.1093/jalm/jfac055] [Reference Citation Analysis]
24 Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG Jr. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022;4:826-35. [PMID: 35879458 DOI: 10.1038/s42255-022-00606-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Cai K, Zhang X, Bai XC. Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors. Chem Rev 2022. [PMID: 35715229 DOI: 10.1021/acs.chemrev.1c01035] [Reference Citation Analysis]
26 Patel S, Haider A, Alvarez-guaita A, Bidault G, El-sayed Moustafa JS, Guiu-jurado E, Tadross JA, Warner J, Harrison J, Virtue S, Scurria F, Zvetkova I, Blüher M, Small KS, O’rahilly S, Savage DB. Endogenous GDF15 and FGF21 additively alleviate hepatic steatosis and insulin resistance in obese mice.. [DOI: 10.1101/2022.06.08.495255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C, Liu Y. Growth Differentiation Factor 15 Protects SH-SY5Y Cells From Rotenone-Induced Toxicity by Suppressing Mitochondrial Apoptosis. Front Aging Neurosci 2022;14:869558. [DOI: 10.3389/fnagi.2022.869558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ghidewon M, Wald HS, McKnight AD, De Jonghe BC, Breen DM, Alhadeff AL, Borner T, Grill HJ. Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms. Diabetes Obes Metab 2022;24:1010-20. [PMID: 35129264 DOI: 10.1111/dom.14663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Wang Y, Chen J, Sang T, Chen C, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. NAG-1/GDF15 protects against streptozotocin-induced type 1 diabetes by inhibiting apoptosis, preserving beta-cell function, and suppressing inflammation in pancreatic islets. Molecular and Cellular Endocrinology 2022;549:111643. [DOI: 10.1016/j.mce.2022.111643] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biology 2022;52:102322. [DOI: 10.1016/j.redox.2022.102322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
31 Zhang Y, Mei Z, Jia X, Song H, Liu J, Tian X. Cardioprotective Effect of Growth Differentiation Factor 15 Against Isoproterenol-Induced Cardiomyocyte Apoptosis via Regulation of the Mitochondrial Fusion. Cardiology Discovery 2022;2:89-96. [DOI: 10.1097/cd9.0000000000000051] [Reference Citation Analysis]
32 Eisenstein A, Hilliard BK, Pope SD, Zhang C, Taskar P, Waizman DA, Israni-Winger K, Tian H, Luan HH, Wang A. Activation of the transcription factor NRF2 mediates the anti-inflammatory properties of a subset of over-the-counter and prescription NSAIDs. Immunity 2022:S1074-7613(22)00186-8. [PMID: 35588739 DOI: 10.1016/j.immuni.2022.04.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
33 Wang Y, Chen J, Chen C, Peng H, Lin X, Zhao Q, Chen S, Wang X. Growth differentiation factor-15 overexpression promotes cell proliferation and predicts poor prognosis in cerebral lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci 2022;302:120645. [PMID: 35588865 DOI: 10.1016/j.lfs.2022.120645] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Ma Y, Zheng L, Wang Y, Gao Y, Xu Y. Arachidonic Acid in Follicular Fluid of PCOS Induces Oxidative Stress in a Human Ovarian Granulosa Tumor Cell Line (KGN) and Upregulates GDF15 Expression as a Response. Front Endocrinol 2022;13:865748. [DOI: 10.3389/fendo.2022.865748] [Reference Citation Analysis]
35 Okugawa Y, Kitajima T, Yamamoto A, Shimura T, Kawamura M, Fujiwara T, Mochiki I, Okita Y, Tsujiura M, Yokoe T, Ohi M, Toiyama Y. Clinical Relevance of Myopenia and Myosteatosis in Colorectal Cancer. JCM 2022;11:2617. [DOI: 10.3390/jcm11092617] [Reference Citation Analysis]
36 Yamamoto H, Takeshima F, Haraguchi M, Akazawa Y, Matsushima K, Kitayama M, Ogihara K, Tabuchi M, Hashiguchi K, Yamaguchi N, Miyaaki H, Kondo H, Nakao K. High serum concentrations of growth differentiation factor-15 and their association with Crohn's disease and a low skeletal muscle index. Sci Rep 2022;12:6591. [PMID: 35449185 DOI: 10.1038/s41598-022-10587-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang TH, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022;34:564-580.e8. [PMID: 35385705 DOI: 10.1016/j.cmet.2022.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhang W, Sun W, Gu X, Miao C, Feng L, Shen Q, Liu X, Zhang X. GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discov 2022;8:162. [PMID: 35379793 DOI: 10.1038/s41420-022-00972-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
39 Albuquerque B, Chen X, Hirenallur-Shanthappa D, Zhao Y, Stansfield JC, Zhang BB, Sheikh A, Wu Z. Neutralization of GDF15 Prevents Anorexia and Weight Loss in the Monocrotaline-Induced Cardiac Cachexia Rat Model. Cells 2022;11:1073. [PMID: 35406637 DOI: 10.3390/cells11071073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Takahashi M. RET receptor signaling: Function in development, metabolic disease, and cancer. Proc Jpn Acad Ser B Phys Biol Sci 2022;98:112-25. [PMID: 35283407 DOI: 10.2183/pjab.98.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Jiang P, Liu Z, Fang T, Zhang Z, Wang D, Xu S, Weng J. Effect of GDF15 on acetaminophen (APAP)-induced liver injury in mice.. [DOI: 10.1101/2022.03.13.484113] [Reference Citation Analysis]
42 Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022;13:820350. [PMID: 35251002 DOI: 10.3389/fimmu.2022.820350] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
43 Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022;75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
44 Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Fejzo MS, MacGibbon KW, First O, Quan C, Mullin PM. Whole-exome sequencing uncovers new variants in GDF15 associated with hyperemesis gravidarum. BJOG 2022. [PMID: 35218128 DOI: 10.1111/1471-0528.17129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Klein AB, Nicolaisen TS, Johann K, Fritzen AM, Mathiesen CV, Gil C, Pilmark NS, Karstoft K, Blond MB, Quist JS, Seeley RJ, Færch K, Lund J, Kleinert M, Clemmensen C. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance.. [DOI: 10.1101/2022.02.16.480373] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Chow CFW, Guo X, Asthana P, Zhang S, Wong SKK, Fallah S, Che S, Gurung S, Wang Z, Lee KB, Ge X, Yuan S, Xu H, Ip JPK, Jiang Z, Zhai L, Wu J, Zhang Y, Mahato AK, Saarma M, Lin CY, Kwan HY, Huang T, Lyu A, Zhou Z, Bian ZX, Wong HLX. Body weight regulation via MT1-MMP-mediated cleavage of GFRAL. Nat Metab 2022. [PMID: 35177851 DOI: 10.1038/s42255-022-00529-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
48 Sarkar S, Melchior JT, Henry HR, Syed F, Mirmira RG, Nakayasu ES, Metz TO. GDF15: a potential therapeutic target for type 1 diabetes. Expert Opin Ther Targets 2022;:1-11. [PMID: 35138971 DOI: 10.1080/14728222.2022.2029410] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
49 Huang P, Wierbowski BM, Lian T, Chan C, García-linares S, Jiang J, Salic A. Structural basis for catalyzed assembly of the Sonic hedgehog–Patched1 signaling complex. Developmental Cell 2022. [DOI: 10.1016/j.devcel.2022.02.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Talbert EE, Guttridge DC. Emerging signaling mediators in the anorexia–cachexia syndrome of cancer. Trends in Cancer 2022. [DOI: 10.1016/j.trecan.2022.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
51 Lu JF, Zhu MQ, Xie BC, Shi XC, Liu H, Zhang RX, Xia B, Wu JW. Camptothecin effectively treats obesity in mice through GDF15 induction. PLoS Biol 2022;20:e3001517. [PMID: 35202387 DOI: 10.1371/journal.pbio.3001517] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
52 Cimino I, Coll AP. The role of GDF15 in food intake and appetitive behaviour. Current Opinion in Endocrine and Metabolic Research 2022;22:100299. [DOI: 10.1016/j.coemr.2021.100299] [Reference Citation Analysis]
53 Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022;234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Maddala R, Ho LTY, Karnam S, Navarro I, Osterwald A, Stinnett SS, Ullmer C, Vann RR, Challa P, Rao PV. Elevated Levels of Growth/Differentiation Factor-15 in the Aqueous Humor and Serum of Glaucoma Patients. JCM 2022;11:744. [DOI: 10.3390/jcm11030744] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, Datta K, Nasser MW, Batra SK. GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res 2022;10. [DOI: 10.1038/s41413-021-00178-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
57 Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. BPL 2022. [DOI: 10.3233/bpl-210133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Karusheva Y, Ratcliff M, Melvin A, Mörseburg A, Sattar N, Barker P, Burling K, Backmark A, Roth R, Jermutus L, Guiu-jurado E, Blüher M, Welsh P, Hyvönen M, O’rahilly S. The common H202D variant in GDF-15 does not affect its bioactivity but can significantly interfere with measurement of its circulating levels.. [DOI: 10.1101/2022.01.03.22268655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Klein AB, Kleinert M, Richter EA, Clemmensen C. GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander? Endocrinology 2022;163:bqab242. [PMID: 34849709 DOI: 10.1210/endocr/bqab242] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
60 Karras SN, Tzotzas T. Gestational Transient Hyperthyroidism. Thyroid Diseases in Pregnancy 2022. [DOI: 10.1007/978-3-030-98777-0_10] [Reference Citation Analysis]
61 Hardie DG. A New Understanding of Metformin. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00099-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Fujita Y, Tanaka M. Mitochondrial Dysfunction and Growth Differentiation Factor 15 in Aging. Aging Mechanisms II 2022. [DOI: 10.1007/978-981-16-7977-3_9] [Reference Citation Analysis]
63 Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2021;:101427. [PMID: 34973469 DOI: 10.1016/j.molmet.2021.101427] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
64 Pedersen MGB, Søndergaard E, Nielsen CB, Johannsen M, Gormsen LC, Møller N, Jessen N, Rittig N. Oral lactate slows gastric emptying and suppresses appetite in young males. Clin Nutr 2021;41:517-25. [PMID: 35016146 DOI: 10.1016/j.clnu.2021.12.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Xiao QA, He Q, Zeng J, Xia X. GDF-15, a future therapeutic target of glucolipid metabolic disorders and cardiovascular disease. Biomed Pharmacother 2021;146:112582. [PMID: 34959119 DOI: 10.1016/j.biopha.2021.112582] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
66 Tu L, Liu JYH, Lu Z, Cui D, Ngan MP, Du P, Rudd JA. Insights Into Acute and Delayed Cisplatin-Induced Emesis From a Microelectrode Array, Radiotelemetry and Whole-Body Plethysmography Study of Suncus murinus (House Musk Shrew). Front Pharmacol 2021;12:746053. [PMID: 34925008 DOI: 10.3389/fphar.2021.746053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
67 Negishi K, Hoshide S, Shimpo M, Kanegae H, Kario K. Growth Differentiation Factor-15 Predicts Death and Stroke Event in Outpatients With Cardiovascular Risk Factors: The J-HOP Study. J Am Heart Assoc 2021;10:e022601. [PMID: 34889104 DOI: 10.1161/JAHA.121.022601] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021;:101422. [PMID: 34942400 DOI: 10.1016/j.molmet.2021.101422] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Miyake M, Zhang J, Yasue A, Hisanaga S, Tsugawa K, Sakaue H, Oyadomari M, Kiyonari H, Oyadomari S. Integrated stress response regulates GDF15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity. iScience 2021;24:103448. [PMID: 34877504 DOI: 10.1016/j.isci.2021.103448] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
70 Lemmelä S, Wigmore EM, Benner C, Havulinna A, Ong RMY, Kempf T, Wollert KC, Blankenberg S, Zeller T, Peters JE, Salomaa V, Fritsch M, March R, Palotie A, Daly M, Butterworth AS, Kinnunen M, Paul DS, Matakidou A. Integrated Analyses of Growth Differentiation Factor-15 Concentration and Cardiometabolic Diseases in Humans.. [DOI: 10.1101/2021.12.15.21267719] [Reference Citation Analysis]
71 Townsend LK, Medak KD, Weber AJ, Dibe H, Shamshoum H, Wright DC. CHOP is Dispensable for Exercise-Induced Increases in GDF15. J Appl Physiol (1985) 2021. [PMID: 34913737 DOI: 10.1152/japplphysiol.00698.2021] [Reference Citation Analysis]
72 Silva-bermudez LS, Sevastyanova TN, Schmuttermaier C, De La Torre C, Schumacher L, Klüter H, Kzhyshkowska J. Titanium Nanoparticles Enhance Production and Suppress Stabilin-1-Mediated Clearance of GDF-15 in Human Primary Macrophages. Front Immunol 2021;12. [DOI: 10.3389/fimmu.2021.760577] [Reference Citation Analysis]
73 Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021;9:1903. [PMID: 34944728 DOI: 10.3390/biomedicines9121903] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
74 Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA, Ferdinand JR, Gaul L, Tadross JA, Arends MJ, O'Rahilly S, Crossan GP, Clatworthy MR, Patel KJ. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 2021;600:158-63. [PMID: 34819667 DOI: 10.1038/s41586-021-04133-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
75 Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P, Jain M, Nasser MW, Batra SK. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021:S1359-6101(21)00081-2. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
76 Johann K, Kleinert M, Klaus S. The Role of GDF15 as a Myomitokine. Cells 2021;10:2990. [PMID: 34831213 DOI: 10.3390/cells10112990] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
77 Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Non-invasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2021:bnab034. [PMID: 34698815 DOI: 10.1210/endrev/bnab034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
78 Baazim H, Antonio-Herrera L, Bergthaler A. The interplay of immunology and cachexia in infection and cancer. Nat Rev Immunol 2021. [PMID: 34608281 DOI: 10.1038/s41577-021-00624-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
79 Jiang WW, Zhang ZZ, He PP, Jiang LP, Chen JZ, Zhang XT, Hu M, Zhang YK, Ouyang XP. Emerging roles of growth differentiation factor-15 in brain disorders (Review). Exp Ther Med 2021;22:1270. [PMID: 34594407 DOI: 10.3892/etm.2021.10705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Gil CI, Coull BM, Jonas W, Lippert R, Ost M, Klaus S. Mitochondrial stress-induced GDF15-GFRAL axis promotes anxiety-like behavior and CRH-dependent anorexia.. [DOI: 10.1101/2021.09.22.461199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021;32:904-15. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
82 Zhao Y, Reyes J, Rovira-Diaz E, Fox BA, Bzik DJ, Yap GS. Cutting Edge: CD36 Mediates Phagocyte Tropism and Avirulence of Toxoplasma gondii. J Immunol 2021;207:1507-12. [PMID: 34400524 DOI: 10.4049/jimmunol.2100605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
83 Dolo PR, Yao L, Shao Y, Widjaja J, Li C, Zhu X. The effect of sleeve ablation of gastric mucosa on body weight and glucose homeostasis in Sprague-Dawley rat model. Surg Obes Relat Dis 2021;17:1984-94. [PMID: 34479813 DOI: 10.1016/j.soard.2021.07.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol (Lausanne) 2021;12:718942. [PMID: 34421827 DOI: 10.3389/fendo.2021.718942] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
85 Imbert A, Vialaneix N, Marquis J, Vion J, Charpagne A, Metairon S, Laurens C, Moro C, Boulet N, Walter O, Lefebvre G, Hager J, Langin D, Saris WHM, Astrup A, Viguerie N, Valsesia A. Network analyses reveal negative link between changes in adipose tissue GDF15 and BMI during dietary induced weight loss. J Clin Endocrinol Metab 2021:dgab621. [PMID: 34415992 DOI: 10.1210/clinem/dgab621] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021;22:8889. [PMID: 34445593 DOI: 10.3390/ijms22168889] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
87 Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021. [PMID: 34381196 DOI: 10.1038/s41574-021-00529-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 47.0] [Reference Citation Analysis]
88 Aguilar-Recarte D, Palomer X, Wahli W, Vázquez-Carrera M. The PPARβ/δ-AMPK Connection in the Treatment of Insulin Resistance. Int J Mol Sci 2021;22:8555. [PMID: 34445261 DOI: 10.3390/ijms22168555] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
89 Martinussen C, Svane MS, Bojsen-Møller KN, Jensen CZ, Kristiansen VB, Bookout AL, Jorgensen SB, Holst JJ, Wewer Albrechtsen NJ, Madsbad S, Kuhre RE. Plasma GDF15 levels are similar between subjects after bariatric surgery and matched controls and are unaffected by meals. Am J Physiol Endocrinol Metab 2021. [PMID: 34370594 DOI: 10.1152/ajpendo.00190.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Sabatini PV, Frikke-Schmidt H, Arthurs J, Gordian D, Patel A, Rupp AC, Adams JM, Wang J, Beck Jørgensen S, Olson DP, Palmiter RD, Myers MG Jr, Seeley RJ. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc Natl Acad Sci U S A 2021;118:e2021357118. [PMID: 33593916 DOI: 10.1073/pnas.2021357118] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 24.0] [Reference Citation Analysis]
91 Aguilar-Recarte D, Barroso E, Gumà A, Pizarro-Delgado J, Peña L, Ruart M, Palomer X, Wahli W, Vázquez-Carrera M. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep 2021;36:109501. [PMID: 34380027 DOI: 10.1016/j.celrep.2021.109501] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
92 Seyfried F, Hoffmann A, Rullmann M, Schlegel N, Otto C, Hankir MK. Weight loss from caloric restriction vs Roux-en-Y gastric bypass surgery differentially regulates systemic and portal vein GDF15 levels in obese Zucker fatty rats. Physiol Behav 2021;240:113534. [PMID: 34303715 DOI: 10.1016/j.physbeh.2021.113534] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Lockhart SM, Saudek V, O'Rahilly S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr Rev 2020;41:bnaa007. [PMID: 32310257 DOI: 10.1210/endrev/bnaa007] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 60.0] [Reference Citation Analysis]
94 Berthoud HR, Seeley RJ, Roberts SB. Physiology of Energy Intake in the Weight-Reduced State. Obesity (Silver Spring) 2021;29 Suppl 1:S25-30. [PMID: 33759396 DOI: 10.1002/oby.23080] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Townsend LK, Weber AJ, Day EA, Shamshoum H, Shaw SJ, Perry CGR, Kemp BE, Steinberg GR, Wright DC. AMPK mediates energetic stress-induced liver GDF15. FASEB J 2021;35:e21218. [PMID: 33337559 DOI: 10.1096/fj.202000954R] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
96 Obata F, Ozuru R, Tsuji T, Matsuba T, Fujii J. Stx2 induces differential gene expression by activating several pathways and disturbs circadian rhythm genes in the proximal tubule.. [DOI: 10.1101/2021.06.11.448004] [Reference Citation Analysis]
97 Santoso B, Rahmawati NY, Sa'adi A, Dwiningsih SR, Annas JY, Tunjungseto A, Widyanugraha MYA, Mufid AF, Ahsan F. Elevated peritoneal soluble endoglin and GDF-15 in infertile women with severe endometriosis and pelvic adhesion. J Reprod Immunol 2021;146:103343. [PMID: 34116485 DOI: 10.1016/j.jri.2021.103343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Negishi K, Hoshide S, Shimpo M, Kario K. Growth Differentiation Factor 15 Predicts Cancer Death in Patients With Cardiovascular Risk Factors: The J-HOP Study. Front Cardiovasc Med 2021;8:660317. [PMID: 34150865 DOI: 10.3389/fcvm.2021.660317] [Reference Citation Analysis]
99 Chang JY, Hong HJ, Kang SG, Kim JT, Zhang BY, Shong M. The Role of Growth Differentiation Factor 15 in Energy Metabolism. Diabetes Metab J 2020;44:363-71. [PMID: 32613776 DOI: 10.4093/dmj.2020.0087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
100 Buchholz K, Antosik P, Grzanka D, Gagat M, Smolińska M, Grzanka A, Gzil A, Kasperska A, Klimaszewska-Wiśniewska A. Expression of the Body-Weight Signaling Players: GDF15, GFRAL and RET and their clinical relevance in Gastric Cancer. J Cancer 2021;12:4698-709. [PMID: 34149933 DOI: 10.7150/jca.55511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
101 He X, Su J, Ma X, Lu J, Wang Y, Yin J, Bao Y, Hu G, Zhou J. Decreased serum growth differentiation factor 15 levels after lifestyle intervention in patients with newly diagnosed type 2 diabetes mellitus. Obesity Medicine 2021;24:100345. [DOI: 10.1016/j.obmed.2021.100345] [Reference Citation Analysis]
102 Andersson-Hall U, Svedin P, Mallard C, Blennow K, Zetterberg H, Holmäng A. Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy. PLoS One 2021;16:e0248980. [PMID: 34043633 DOI: 10.1371/journal.pone.0248980] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
103 Breen DM, Jagarlapudi S, Patel A, Zou C, Joaquim S, Li X, Kang L, Pang J, Hales K, Ziso-Qejvanaj E, Vera NB, Bennett D, He T, Lambert M, Kelleher K, Wu Z, Zhang BB, Lin L, Seeley RJ, Bezy O. Growth differentiation factor 15 neutralization does not impact anorexia or survival in lipopolysaccharide-induced inflammation. iScience 2021;24:102554. [PMID: 34189431 DOI: 10.1016/j.isci.2021.102554] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
104 Borner T, Wald HS, Ghidewon MY, Zhang B, Wu Z, De Jonghe BC, Breen D, Grill HJ. GDF15 Induces an Aversive Visceral Malaise State that Drives Anorexia and Weight Loss. Cell Rep 2020;31:107543. [PMID: 32320650 DOI: 10.1016/j.celrep.2020.107543] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 35.0] [Reference Citation Analysis]
105 Townsend LK, MacPherson REK, Wright DC. New Horizon: Exercise and a Focus on Tissue-Brain Crosstalk. J Clin Endocrinol Metab 2021;106:2147-63. [PMID: 33982072 DOI: 10.1210/clinem/dgab333] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
106 O'Rahilly S. "Treasure Your Exceptions"-Studying Human Extreme Phenotypes to Illuminate Metabolic Health and Disease: The 2019 Banting Medal for Scientific Achievement Lecture. Diabetes 2021;70:29-38. [PMID: 33355307 DOI: 10.2337/dbi19-0037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
107 Dowsett GKC, Lam BYH, Tadross JA, Cimino I, Rimmington D, Coll AP, Polex-Wolf J, Knudsen LB, Pyke C, Yeo GSH. A survey of the mouse hindbrain in the fed and fasted states using single-nucleus RNA sequencing. Mol Metab 2021;53:101240. [PMID: 33962048 DOI: 10.1016/j.molmet.2021.101240] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
108 Fung E, Kang L, Sapashnik D, Benard S, Sievers A, Liu Y, Yan G, Zhou J, Rodriguez L, Ma W, Stochaj WR, LaVallie E, Wroblewska L, Kelleher K, Tam A, Bezy O, Breen D, Chabot JR, He T, Lin L, Wu Z, Mosyak L. Fc-GDF15 glyco-engineering and receptor binding affinity optimization for body weight regulation. Sci Rep 2021;11:8921. [PMID: 33903632 DOI: 10.1038/s41598-021-87959-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
109 Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020;53:496-509. [PMID: 32937151 DOI: 10.1016/j.immuni.2020.08.012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 38.0] [Reference Citation Analysis]
110 Siff T, Parajuli P, Razzaque MS, Atfi A. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management. Trends Endocrinol Metab 2021;32:382-402. [PMID: 33888422 DOI: 10.1016/j.tem.2021.03.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
111 Wilhelm C, Surendar J, Karagiannis F. Enemy or ally? Fasting as an essential regulator of immune responses. Trends Immunol 2021;42:389-400. [PMID: 33865714 DOI: 10.1016/j.it.2021.03.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
112 Salman A, Shaaban HE, Salman M, M Seif El Nasr S, Soliman A, Salem A, Tag El-Din M, Mikhail HMS, El Domiaty H, Abd Allah N, GabAllah GMK, Youssef A. Changes in Plasma Growth Differentiation Factor-15 After Laparoscopic Sleeve Gastrectomy in Morbidly Obese Patients: A Prospective Study. J Inflamm Res 2021;14:1365-73. [PMID: 33880052 DOI: 10.2147/JIR.S304929] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021;9:2367-83. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
114 Dowsett GK, Lam BY, Tadross J, Cimino I, Rimmington D, Coll AP, Polex-wolf J, Knudsen LB, Pyke C, Yeo GS. A survey of the mouse hindbrain in the fed and fasted state using single-nucleus RNA sequencing.. [DOI: 10.1101/2021.03.11.434948] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Kobayashi M, Nezu Y, Tagawa R, Higami Y. Mitochondrial Unfolded Protein Responses in White Adipose Tissue: Lipoatrophy, Whole-Body Metabolism and Lifespan. Int J Mol Sci 2021;22:2854. [PMID: 33799894 DOI: 10.3390/ijms22062854] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
116 Andersson-hall U, Svedin P, Mallard C, Blennow K, Zetterberg H, Holmäng A. Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy.. [DOI: 10.1101/2021.03.10.434730] [Reference Citation Analysis]
117 Kaneto H, Kimura T, Obata A, Shimoda M, Kaku K. Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History. Int J Mol Sci 2021;22:2596. [PMID: 33807522 DOI: 10.3390/ijms22052596] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
118 Guo D, Guo C, Fang L, Sang T, Wang Y, Wu K, Guo C, Wang Y, Pan H, Chen R, Wang X. Qizhen capsule inhibits colorectal cancer by inducing NAG-1/GDF15 expression that mediated via MAPK/ERK activation. J Ethnopharmacol 2021;273:113964. [PMID: 33640439 DOI: 10.1016/j.jep.2021.113964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
119 Klein AB, Nicolaisen TS, Ørtenblad N, Gejl KD, Jensen R, Fritzen AM, Larsen EL, Karstoft K, Poulsen HE, Morville T, Sahl RE, Helge JW, Lund J, Falk S, Lyngbæk M, Ellingsgaard H, Pedersen BK, Lu W, Finan B, Jørgensen SB, Seeley RJ, Kleinert M, Kiens B, Richter EA, Clemmensen C. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat Commun 2021;12:1041. [PMID: 33589633 DOI: 10.1038/s41467-021-21309-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 31.0] [Reference Citation Analysis]
120 Andersson-Hall U, Joelsson L, Svedin P, Mallard C, Holmäng A. Growth-differentiation-factor 15 levels in obese and healthy pregnancies: Relation to insulin resistance and insulin secretory function. Clin Endocrinol (Oxf) 2021;95:92-100. [PMID: 33547817 DOI: 10.1111/cen.14433] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
121 Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021;236:5564-81. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 Kang SG, Choi MJ, Jung SB, Chung HK, Chang JY, Kim JT, Kang YE, Lee JH, Hong HJ, Jun SM, Ro HJ, Suh JM, Kim H, Auwerx J, Yi HS, Shong M. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience 2021;24:102181. [PMID: 33718833 DOI: 10.1016/j.isci.2021.102181] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 20.0] [Reference Citation Analysis]
123 Melvin A, Chantzichristos D, Kyle CJ, Mackenzie SD, Walker BR, Johannsson G, Stimson RH, O'Rahilly S. GDF15 Is Elevated in Conditions of Glucocorticoid Deficiency and Is Modulated by Glucocorticoid Replacement. J Clin Endocrinol Metab 2020;105:dgz277. [PMID: 31853550 DOI: 10.1210/clinem/dgz277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
124 Yeom E, Shin H, Yoo W, Jun E, Kim S, Hong SH, Kwon DW, Ryu TH, Suh JM, Kim SC, Lee KS, Yu K. Tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding neuropeptides via Lgr3/8 in the brain. Nat Cell Biol 2021;23:172-83. [PMID: 33558728 DOI: 10.1038/s41556-020-00628-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
125 Mayer O, Bruthans J, Seidlerová J, Karnosová P, Mateřánková M, Gelžinský J, Rychecká M, Opatrný J, Wohlfahrt P, Kučera R, Trefil L, Cífková R, Filipovský J, Vermeer C. The coincidence of low vitamin K status and high expression of growth differentiation factor 15 may indicate increased mortality risk in stable coronary heart disease patients. Nutrition, Metabolism and Cardiovascular Diseases 2021;31:540-51. [DOI: 10.1016/j.numecd.2020.09.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
126 Yang M, Darwish T, Larraufie P, Rimmington D, Cimino I, Goldspink DA, Jenkins B, Koulman A, Brighton CA, Ma M, Lam BYH, Coll AP, O'Rahilly S, Reimann F, Gribble FM. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep 2021;11:2529. [PMID: 33510216 DOI: 10.1038/s41598-021-81349-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
127 Adams SE, Purkiss AG, Knowles PP, Nans A, Briggs DC, Borg A, Earl CP, Goodman KM, Nawrotek A, Borg AJ, McIntosh PB, Houghton FM, Kjær S, McDonald NQ. A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing. Structure 2021;29:694-708.e7. [PMID: 33484636 DOI: 10.1016/j.str.2020.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
128 Klaus S, Igual Gil C, Ost M. Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci 2021;78:3369-84. [PMID: 33464381 DOI: 10.1007/s00018-020-03748-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
129 Li E, Chen P, Lu J, Dai J, Yi J, Zhang S, Jin H, Guo M, Wang H, Yu X. Serum growth differentiation factor 15 is closely associated with metabolic abnormalities in Chinese pregnant women. J Diabetes Investig 2021;12:1501-7. [PMID: 33369156 DOI: 10.1111/jdi.13488] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
130 Jackson TC, Gorse K, Herrmann JR, Kochanek PM. Hippocampal and Prefrontal Cortical Brain Tissue Levels of Irisin and GDF15 Receptor Subunits in Children. Mol Neurobiol 2021;58:2145-57. [PMID: 33411243 DOI: 10.1007/s12035-020-02250-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
131 Liu H, Huang Y, Lyu Y, Dai W, Tong Y, Li Y. GDF15 as a biomarker of ageing. Exp Gerontol 2021;146:111228. [PMID: 33421539 DOI: 10.1016/j.exger.2021.111228] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
132 Ahmed DS, Isnard S, Lin J, Routy B, Routy JP. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J Cancer 2021;12:1125-32. [PMID: 33442410 DOI: 10.7150/jca.50376] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
133 Molfino A, Amabile MI, Imbimbo G, Rizzo V, Pediconi F, Catalano C, Emiliani A, Belli R, Ramaccini C, Parisi C, Nigri G, Muscaritoli M. Association between Growth Differentiation Factor-15 (GDF-15) Serum Levels, Anorexia and Low Muscle Mass among Cancer Patients. Cancers (Basel) 2020;13:E99. [PMID: 33396237 DOI: 10.3390/cancers13010099] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
134 Kim KH, Lee MS. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim Biophys Acta Gen Subj 2021;1865:129834. [PMID: 33358864 DOI: 10.1016/j.bbagen.2020.129834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
135 Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, Lee MR, Menzies KJ, Ryu D. Sarcopenia and Muscle Aging: A Brief Overview. Endocrinol Metab (Seoul) 2020;35:716-32. [PMID: 33397034 DOI: 10.3803/EnM.2020.405] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
136 L'homme L, Sermikli BP, Staels B, Piette J, Legrand-Poels S, Dombrowicz D. Saturated Fatty Acids Promote GDF15 Expression in Human Macrophages through the PERK/eIF2/CHOP Signaling Pathway. Nutrients 2020;12:E3771. [PMID: 33302552 DOI: 10.3390/nu12123771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
137 Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2021;44:101138. [PMID: 33285302 DOI: 10.1016/j.molmet.2020.101138] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 17.5] [Reference Citation Analysis]
138 Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. Area Postrema Cell Types that Mediate Nausea-Associated Behaviors. Neuron 2021;109:461-472.e5. [PMID: 33278342 DOI: 10.1016/j.neuron.2020.11.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
139 Al-Mudares F, Reddick S, Ren J, Venkatesh A, Zhao C, Lingappan K. Role of Growth Differentiation Factor 15 in Lung Disease and Senescence: Potential Role Across the Lifespan. Front Med (Lausanne) 2020;7:594137. [PMID: 33344478 DOI: 10.3389/fmed.2020.594137] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
140 Isor A, O'dea AT, Petroff JT, Skubic KN, Grady SF, Arnatt CK, Mcculla RD. Synthesis of triphenylphosphonium dibenzothiophene S-oxide derivatives and their effect on cell cycle as photodeoxygenation-based cytotoxic agents. Bioorganic Chemistry 2020;105:104442. [DOI: 10.1016/j.bioorg.2020.104442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Eddy AC, Trask AJ. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev 2021;57:11-8. [PMID: 33317942 DOI: 10.1016/j.cytogfr.2020.11.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
142 Liu Y, Ribeiro OC, Robinson J, Goldman A. Expression and purification of the extracellular domain of wild-type humanRET and the dimeric oncogenic mutant C634R. Int J Biol Macromol 2020;164:1621-30. [PMID: 32777409 DOI: 10.1016/j.ijbiomac.2020.07.290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 Campderrós L, Sánchez-Infantes D, Villarroya J, Nescolarde L, Bayès-Genis A, Cereijo R, Roca E, Villarroya F. Altered GDF15 and FGF21 Levels in Response to Strenuous Exercise: A Study in Marathon Runners. Front Physiol 2020;11:550102. [PMID: 33329017 DOI: 10.3389/fphys.2020.550102] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
144 Hale C, Véniant MM. Growth differentiation factor 15 as a potential therapeutic for treating obesity. Mol Metab 2021;46:101117. [PMID: 33220493 DOI: 10.1016/j.molmet.2020.101117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
145 Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Chen Y, Routy JP. GDF-15 as a Weight Watcher for Diabetic and Non-Diabetic People Treated With Metformin. Front Endocrinol (Lausanne) 2020;11:581839. [PMID: 33312159 DOI: 10.3389/fendo.2020.581839] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
146 Zhao Z, Zhang J, Yin L, Yang J, Zheng Y, Zhang M, Ni B, Wang H. Upregulated GDF-15 expression facilitates pancreatic ductal adenocarcinoma progression through orphan receptor GFRAL. Aging (Albany NY) 2020;12:22564-81. [PMID: 33201838 DOI: 10.18632/aging.103830] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
147 Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metab 2020;32:938-950.e6. [PMID: 33207247 DOI: 10.1016/j.cmet.2020.10.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
148 Fujita Y, Ito M, Ohsawa I. Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys 2020;696:108668. [PMID: 33188737 DOI: 10.1016/j.abb.2020.108668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
149 Rochette L, Zeller M, Cottin Y, Vergely C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol Metab 2020;31:939-51. [PMID: 33172749 DOI: 10.1016/j.tem.2020.10.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
150 Klein AB, Nicolaisen TS, Ørtenblad N, Gejl KD, Jensen R, Fritzen AM, Larsen EL, Karstoft K, Poulsen HE, Morville T, Sahl RE, Helge JW, Lund J, Falk S, Lyngbæk M, Ellingsgaard H, Pedersen BK, Lu W, Finan B, Jørgensen SB, Seeley RJ, Kleinert M, Kiens B, Richter EA, Clemmensen C. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise.. [DOI: 10.1101/2020.10.23.352864] [Reference Citation Analysis]
151 Kralisch S, Hoffmann A, Estrada-Kunz J, Stumvoll M, Fasshauer M, Tönjes A, Miehle K. Increased Growth Differentiation Factor 15 in Patients with Hypoleptinemia-Associated Lipodystrophy. Int J Mol Sci 2020;21:E7214. [PMID: 33003626 DOI: 10.3390/ijms21197214] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
152 Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020;11:1429-46. [PMID: 32985801 DOI: 10.1002/jcsm.12630] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
153 Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. JACC Basic Transl Sci 2020;5:949-60. [PMID: 33015416 DOI: 10.1016/j.jacbts.2020.05.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
154 Mahato AK, Sidorova YA. RET Receptor Tyrosine Kinase: Role in Neurodegeneration, Obesity, and Cancer. Int J Mol Sci 2020;21:E7108. [PMID: 32993133 DOI: 10.3390/ijms21197108] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
155 Pradilla Dieste A, Chenlo M, Perez-Romero S, Garcia-Rendueles ÁR, Suarez-Fariña M, Garcia-Lavandeira M, Bernabeu I, Cameselle-Teijeiro JM, Alvarez CV. GFRα 1-2-3-4 co-receptors for RET Are co-expressed in Pituitary Stem Cells but Individually Retained in Some Adenopituitary Cells. Front Endocrinol (Lausanne) 2020;11:631. [PMID: 33071961 DOI: 10.3389/fendo.2020.00631] [Reference Citation Analysis]
156 Assadi A, Zahabi A, Hart RA. GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch 2020;472:1535-46. [PMID: 32936319 DOI: 10.1007/s00424-020-02459-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
157 Adams SE, Purkiss AG, Knowles PP, Nans A, Briggs DC, Borg A, Earl CP, Goodman KM, Nawrotek A, Borg AJ, Mcintosh PB, Houghton FM, Kjær S, Mcdonald NQ. A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing.. [DOI: 10.1101/2020.09.13.286047] [Reference Citation Analysis]
158 Sidorova YA, Saarma M. Small Molecules and Peptides Targeting Glial Cell Line-Derived Neurotrophic Factor Receptors for the Treatment of Neurodegeneration. Int J Mol Sci 2020;21:E6575. [PMID: 32911810 DOI: 10.3390/ijms21186575] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
159 Rohm M, Herzig S. An Antibody Attack against Body Wasting in Cancer. Cell Metab 2020;32:331-3. [PMID: 32877689 DOI: 10.1016/j.cmet.2020.08.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
160 Dolo PR, Yao L, Liu PP, Widjaja J, Meng S, Li C, Zhu X. Effect of sleeve gastrectomy on plasma growth differentiation factor-15 (GDF15) in human. The American Journal of Surgery 2020;220:725-30. [DOI: 10.1016/j.amjsurg.2020.01.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
161 Stolina M, Luo X, Dwyer D, Han CY, Chen R, Zhang Y, Xiong Y, Chen Y, Yin J, Shkumatov A, Ason B, Hale C, Véniant MM. The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15. PLoS One 2020;15:e0231234. [PMID: 32804947 DOI: 10.1371/journal.pone.0231234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
162 Semba RD, Gonzalez-Freire M, Tanaka T, Biancotto A, Zhang P, Shardell M, Moaddel R; CHI Consortium, Ferrucci L. Elevated Plasma Growth and Differentiation Factor 15 Is Associated With Slower Gait Speed and Lower Physical Performance in Healthy Community-Dwelling Adults. J Gerontol A Biol Sci Med Sci. 2020;75:175-180. [PMID: 30874790 DOI: 10.1093/gerona/glz071] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
163 Freeman DW, Noren Hooten N, Kim Y, Mode NA, Ejiogu N, Zonderman AB, Evans MK. Association between GDF15, poverty and mortality in urban middle-aged African American and white adults. PLoS One 2020;15:e0237059. [PMID: 32764826 DOI: 10.1371/journal.pone.0237059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Aviello G, Cristiano C, Luckman SM, D'agostino G. Brain control of appetite during sickness. Br J Pharmacol 2021;178:2096-110. [DOI: 10.1111/bph.15189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
165 Worth AA, Shoop R, Tye K, Feetham CH, D'Agostino G, Dodd GT, Reimann F, Gribble FM, Beebe EC, Dunbar JD, Alexander-Chacko JT, Sindelar DK, Coskun T, Emmerson PJ, Luckman SM. The cytokine GDF15 signals through a population of brainstem cholecystokinin neurons to mediate anorectic signalling. Elife 2020;9:e55164. [PMID: 32723474 DOI: 10.7554/eLife.55164] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
166 Runeberg-Roos P, Penn RD. Improving therapeutic potential of GDNF family ligands. Cell Tissue Res 2020;382:173-83. [PMID: 32725425 DOI: 10.1007/s00441-020-03256-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
167 Lockhart SM, O'Rahilly S. The wasting hormone GDF15 frees up fat to fight infection. Nat Metab 2019;1:935-6. [PMID: 32694841 DOI: 10.1038/s42255-019-0131-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
168 Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, Li D, Starck SR, Chen HH, McEntee M, Katewa SD, Phung V, Wang M, Kekatpure A, Lakshminarasimhan D, White A, Olland A, Haldankar R, Solloway MJ, Hsu JY, Wang Y, Tang J, Lindhout DA, Allan BB. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med 2020;26:1264-70. [PMID: 32661391 DOI: 10.1038/s41591-020-0945-x] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 41.5] [Reference Citation Analysis]
169 Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020;382:147-60. [PMID: 32556722 DOI: 10.1007/s00441-020-03227-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
170 Husaini Y, Tsai VW, Manandhar R, Zhang HP, Lee-Ng KKM, Lebhar H, Marquis CP, Brown DA, Breit SN. Growth differentiation factor-15 slows the growth of murine prostate cancer by stimulating tumor immunity. PLoS One 2020;15:e0233846. [PMID: 32502202 DOI: 10.1371/journal.pone.0233846] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
171 Spanopoulou A, Gkretsi V. Growth differentiation factor 15 (GDF15) in cancer cell metastasis: from the cells to the patients. Clin Exp Metastasis 2020;37:451-64. [PMID: 32504264 DOI: 10.1007/s10585-020-10041-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
172 Harada N. Effects of metformin on blood glucose levels and bodyweight mediated through intestinal effects. J Diabetes Investig 2020;11:1420-1. [PMID: 32428991 DOI: 10.1111/jdi.13301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
173 Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint.Front Immunol. 2020;11:951. [PMID: 32508832 DOI: 10.3389/fimmu.2020.00951] [Cited by in Crossref: 107] [Cited by in F6Publishing: 118] [Article Influence: 53.5] [Reference Citation Analysis]
174 Ding M, Tegel H, Sivertsson Å, Hober S, Snijder A, Ormö M, Strömstedt PE, Davies R, Holmberg Schiavone L. Secretome-Based Screening in Target Discovery. SLAS Discov 2020;25:535-51. [PMID: 32425085 DOI: 10.1177/2472555220917113] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
175 Santos I, Colaço HG, Neves-Costa A, Seixas E, Velho TR, Pedroso D, Barros A, Martins R, Carvalho N, Payen D, Weis S, Yi HS, Shong M, Moita LF. CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc Natl Acad Sci U S A 2020;117:12281-7. [PMID: 32424099 DOI: 10.1073/pnas.1918508117] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
176 Sabatini PV, Frikke-schmidt H, Arthurs J, Gordian D, Patel A, Adams JM, Wang J, Jørgensen SB, Olson DP, Palmiter RD, Myers MG, Seeley RJ. Gfral-expressing Neurons Suppress Food Intake via Aversive Pathways.. [DOI: 10.1101/2020.05.11.088773] [Reference Citation Analysis]
177 McCarville JL, Ayres JS. Host-Pathogen Relationship Advice: Fat Protects against a Broken Heart. Cell Metab 2019;30:409-11. [PMID: 31484052 DOI: 10.1016/j.cmet.2019.08.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
178 Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020;11:354. [PMID: 32372975 DOI: 10.3389/fphys.2020.00354] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
179 Takenouchi Y, Kitakaze K, Tsuboi K, Okamoto Y. Growth differentiation factor 15 facilitates lung fibrosis by activating macrophages and fibroblasts. Exp Cell Res 2020;391:112010. [PMID: 32305327 DOI: 10.1016/j.yexcr.2020.112010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
180 Pereiro P, Librán-Pérez M, Figueras A, Novoa B. Conserved function of zebrafish (Danio rerio) Gdf15 as a sepsis tolerance mediator. Dev Comp Immunol 2020;109:103698. [PMID: 32289326 DOI: 10.1016/j.dci.2020.103698] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
181 Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer 2020;20:274-84. [PMID: 32235902 DOI: 10.1038/s41568-020-0251-4] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 34.5] [Reference Citation Analysis]
182 Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, Vion J, Boulet N, Fontaine C, Marquès M, Larrouy D, Harant I, Thalamas C, Montastier E, Caspar-Bauguil S, Bourlier V, Tavernier G, Grolleau JL, Bouloumié A, Langin D, Viguerie N, Bertile F, Blanc S, de Glisezinski I, O'Gorman D, Moro C. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 2020;5:131870. [PMID: 32106110 DOI: 10.1172/jci.insight.131870] [Cited by in Crossref: 41] [Cited by in F6Publishing: 48] [Article Influence: 20.5] [Reference Citation Analysis]
183 Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer 2020;1873:188359. [PMID: 32222610 DOI: 10.1016/j.bbcan.2020.188359] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
184 Stolina M, Luo X, Dwyer D, Han C, Chen R, Zhang Y, Xiong Y, Chen Y, Yin J, Ason B, Hale C, Véniant MM. The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15.. [DOI: 10.1101/2020.03.20.000307] [Reference Citation Analysis]
185 Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. Annu Rev Cancer Biol 2020;4:391-411. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
186 Pucillo C, Vitale G. Crossroads between immune responses and physiological regulation: Metabolic control of resistance versus tolerance against disease. Eur J Immunol 2020;50:484-9. [PMID: 32108935 DOI: 10.1002/eji.201948159] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
187 Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020;87:610-33. [PMID: 32097765 DOI: 10.1016/j.bbi.2020.02.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
188 Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2019;60:621-8. [PMID: 30633545 DOI: 10.1165/rcmb.2018-0379TR] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
189 Liu J, Kumar S, Heinzel A, Gao M, Guo J, Alvarado GF, Reindl-Schwaighofer R, Krautzberger AM, Cippà PE, McMahon J, Oberbauer R, McMahon AP. Renoprotective and Immunomodulatory Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury. J Am Soc Nephrol 2020;31:701-15. [PMID: 32034106 DOI: 10.1681/ASN.2019090876] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
190 Liu X, Li X, Zhao G, Wang F, Wang L. Sexual dimorphic distribution of cannabinoid 1 receptor mRNA in adult C57BL/6J mice. J Comp Neurol 2020;528:1986-99. [DOI: 10.1002/cne.24868] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
191 Ost M, Igual Gil C, Coleman V, Keipert S, Efstathiou S, Vidic V, Weyers M, Klaus S. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep 2020;21:e48804. [PMID: 32026535 DOI: 10.15252/embr.201948804] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 18.0] [Reference Citation Analysis]
192 Hoyer N, Zielke P, Hu C, Petersen M, Sauter K, Scharrenberg R, Peng Y, Kim CC, Han C, Parrish JZ, Soba P. Ret and Substrate-Derived TGF-β Maverick Regulate Space-Filling Dendrite Growth in Drosophila Sensory Neurons. Cell Rep 2018;24:2261-2272.e5. [PMID: 30157422 DOI: 10.1016/j.celrep.2018.07.092] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
193 Blanco AM, Bertucci JI, Velasco C, Unniappan S. Growth differentiation factor 15 (GDF-15) is a novel orexigen in fish. Mol Cell Endocrinol 2020;505:110720. [PMID: 31991159 DOI: 10.1016/j.mce.2020.110720] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
194 Sandoval DR, Gomez Toledo A, Painter CD, Tota EM, Sheikh MO, West AMV, Frank MM, Wells L, Xu D, Bicknell R, Corbett KD, Esko JD. Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. J Biol Chem 2020;295:2804-21. [PMID: 31964714 DOI: 10.1074/jbc.RA119.011639] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
195 Borner T, Shaulson ED, Ghidewon MY, Barnett AB, Horn CC, Doyle RP, Grill HJ, Hayes MR, De Jonghe BC. GDF15 Induces Anorexia through Nausea and Emesis. Cell Metab 2020;31:351-362.e5. [PMID: 31928886 DOI: 10.1016/j.cmet.2019.12.004] [Cited by in Crossref: 83] [Cited by in F6Publishing: 90] [Article Influence: 41.5] [Reference Citation Analysis]
196 Nakayasu ES, Syed F, Tersey SA, Gritsenko MA, Mitchell HD, Chan CY, Dirice E, Turatsinze JV, Cui Y, Kulkarni RN, Eizirik DL, Qian WJ, Webb-Robertson BM, Evans-Molina C, Mirmira RG, Metz TO. Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a Target for Type 1 Diabetes Intervention. Cell Metab 2020;31:363-374.e6. [PMID: 31928885 DOI: 10.1016/j.cmet.2019.12.005] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 25.0] [Reference Citation Analysis]
197 Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka EL, Konopka AR, Esponda RR, Huang JT, Tung YCL, Rodriguez-Cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GSH, Preiss D, Vidal-Puig A, Vallier L, Nair KS, Wareham NJ, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O'Rahilly S. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020;578:444-8. [PMID: 31875646 DOI: 10.1038/s41586-019-1911-y] [Cited by in Crossref: 206] [Cited by in F6Publishing: 212] [Article Influence: 68.7] [Reference Citation Analysis]
198 Zhang Z, Xu X, Tian W, Jiang R, Lu Y, Sun Q, Fu R, He Q, Wang J, Liu Y, Yu H, Sun B. ARRB1 inhibits non-alcoholic steatohepatitis progression by promoting GDF15 maturation. J Hepatol 2020;72:976-89. [PMID: 31857195 DOI: 10.1016/j.jhep.2019.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
199 Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, Koksalar F, Filiz G, Topcu IC, Oncul M, Dilsiz P, Cebecioglu U, Alp MI, Yilmaz B, Davis DR, Hajdukiewicz K, Saito K, Konopka W, Cui H, Atasoy D. NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways. Cell Metab 2020;31:313-326.e5. [PMID: 31839488 DOI: 10.1016/j.cmet.2019.11.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 15.0] [Reference Citation Analysis]
200 Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM, Lu R, Raphenya AR, Kabiri M, McArthur AG, McInnes N, Hess S, Paré G, Gerstein HC, Steinberg GR. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019;1:1202-8. [PMID: 32694673 DOI: 10.1038/s42255-019-0146-4] [Cited by in Crossref: 101] [Cited by in F6Publishing: 108] [Article Influence: 33.7] [Reference Citation Analysis]
201 Klaus S, Ost M. Mitochondrial uncoupling and longevity - A role for mitokines? Exp Gerontol. 2020;130:110796. [PMID: 31786315 DOI: 10.1016/j.exger.2019.110796] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
202 Lu J, Zhang Y, Dong X, Lu J, Zhang C, Liu J, Yu Q, Teng H, Yao Q, Yin J, Qin L. Association between MIC-1 and Type 2 Diabetes: A Combined Analysis. Dis Markers. 2019;2019:7284691. [PMID: 31827641 DOI: 10.1155/2019/7284691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
203 Díaz M, Campderrós L, Guimaraes MP, López-bermejo A, de Zegher F, Villarroya F, Ibáñez L. Circulating growth-and-differentiation factor-15 in early life: relation to prenatal and postnatal growth and adiposity measurements. Pediatr Res 2020;87:897-902. [DOI: 10.1038/s41390-019-0633-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
204 Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, Chávez-Rodríguez L, Bucio L, Souza V, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. GDF11 Implications in Cancer Biology and Metabolism. Facts and Controversies. Front Oncol 2019;9:1039. [PMID: 31681577 DOI: 10.3389/fonc.2019.01039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
205 Tsai VWW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab. 2018;28:353-368. [PMID: 30184485 DOI: 10.1016/j.cmet.2018.07.018] [Cited by in Crossref: 175] [Cited by in F6Publishing: 181] [Article Influence: 58.3] [Reference Citation Analysis]
206 Bahat A, Lahav O, Plotnikov A, Leshkowitz D, Dikstein R. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles. Mol Cell 2019;76:617-631.e4. [PMID: 31564557 DOI: 10.1016/j.molcel.2019.08.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
207 Li J, Shang G, Chen YJ, Brautigam CA, Liou J, Zhang X, Bai XC. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Elife 2019;8:e47650. [PMID: 31535977 DOI: 10.7554/eLife.47650] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
208 Tsai VW, Brown DA, Breit SN. Targeting the divergent TGFβ superfamily cytokine MIC-1/GDF15 for therapy of anorexia/cachexia syndromes. Curr Opin Support Palliat Care 2018;12:404-9. [PMID: 30382947 DOI: 10.1097/SPC.0000000000000384] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
209 Zhang Y, Jiang M, Nouraie M, Roth MG, Tabib T, Winters S, Chen X, Sembrat J, Chu Y, Cardenes N, Tuder RM, Herzog EL, Ryu C, Rojas M, Lafyatis R, Gibson KF, McDyer JF, Kass DJ, Alder JK. GDF15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019;317:L510-21. [PMID: 31432710 DOI: 10.1152/ajplung.00062.2019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
210 Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, Zhang C, Ring AM, Young LH, Medzhitov R. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019;178:1231-1244.e11. [PMID: 31402172 DOI: 10.1016/j.cell.2019.07.033] [Cited by in Crossref: 197] [Cited by in F6Publishing: 169] [Article Influence: 65.7] [Reference Citation Analysis]
211 Bigalke JM, Aibara S, Roth R, Dahl G, Gordon E, Dorbéus S, Amunts A, Sandmark J. Cryo-EM structure of the activated RET signaling complex reveals the importance of its cysteine-rich domain. Sci Adv 2019;5:eaau4202. [PMID: 31392261 DOI: 10.1126/sciadv.aau4202] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
212 Connelly PW, Yan AT, Nash MM, Lok CE, Gunaratnam L, Prasad GVR. Growth differentiation factor 15 is decreased by kidney transplantation. Clin Biochem 2019;73:57-61. [PMID: 31361994 DOI: 10.1016/j.clinbiochem.2019.07.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
213 Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Cited by in Crossref: 221] [Cited by in F6Publishing: 229] [Article Influence: 73.7] [Reference Citation Analysis]
214 Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross J, Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka E, Tung YCL, Rodriguez-cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GS, Preiss D, Vidal-puig A, Vallier L, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O’rahilly S. GDF15 and the beneficial actions of metformin in pre-diabetes.. [DOI: 10.1101/677831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
215 Chang JC, Durinck S, Chen MZ, Martinez-Martin N, Zhang JA, Lehoux I, Li H, Lin M, Wu J, Bainbridge TW, Ernst JA, Ramani SR, Paduchuri S, Kates L, Solon M, Buechler MB, Castiglioni A, Thai M, Breart B, Modrusan Z, Peterson AS, Turley SJ, Sonoda J. Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-based metabolic therapy. Sci Rep 2019;9:8833. [PMID: 31222070 DOI: 10.1038/s41598-019-45354-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
216 Añón-Hidalgo J, Catalán V, Rodríguez A, Ramírez B, Idoate-Bayón A, Silva C, Mugueta C, Galofré JC, Salvador J, Frühbeck G, Gómez-Ambrosi J. Circulating Concentrations of GDF11 are Positively Associated with TSH Levels in Humans. J Clin Med 2019;8:E878. [PMID: 31248139 DOI: 10.3390/jcm8060878] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
217 Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. CPD 2019;25:654-62. [DOI: 10.2174/1381612825666190402101143] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
218 Tang H, Inoki K, Brooks SV, Okazawa H, Lee M, Wang J, Kim M, Kennedy CL, Macpherson PCD, Ji X, Van Roekel S, Fraga DA, Wang K, Zhu J, Wang Y, Sharp ZD, Miller RA, Rando TA, Goldman D, Guan KL, Shrager JB. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell 2019;18:e12943. [PMID: 30924297 DOI: 10.1111/acel.12943] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 21.0] [Reference Citation Analysis]
219 Tsai VW, Zhang HP, Manandhar R, Schofield P, Christ D, Lee-ng KKM, Lebhar H, Marquis CP, Husaini Y, Brown DA, Breit SN. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J Obes 2019;43:2370-80. [DOI: 10.1038/s41366-019-0365-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
220 Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: A novel biomarker with high clinical potential. Critical Reviews in Clinical Laboratory Sciences 2019;56:333-50. [DOI: 10.1080/10408363.2019.1615034] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
221 Ha G, De Torres F, Arouche N, Benzoubir N, Ferratge S, Hatem E, Anginot A, Uzan G. GDF15 secreted by senescent endothelial cells improves vascular progenitor cell functions. PLoS One. 2019;14:e0216602. [PMID: 31075112 DOI: 10.1371/journal.pone.0216602] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
222 Tarabeih N, Shalata A, Trofimov S, Kalinkovich A, Livshits G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine 2019;117:8-14. [DOI: 10.1016/j.cyto.2019.01.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
223 Santos I, Colaço HG, Neves-costa A, Seixas E, Velho TR, Pedroso D, Barros A, Martins R, Carvalho N, Payen D, Weis S, Yi H, Shong M, Moita LF. CXCL5-mediated recruitment of neutrophils into the peritoneal cavity ofGdf15-deficient mice protects against abdominal sepsis.. [DOI: 10.1101/613901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
224 Karakatsani ME, Wang S, Samiotaki G, Kugelman T, Olumolade OO, Acosta C, Sun T, Han Y, Kamimura HAS, Jackson-Lewis V, Przedborski S, Konofagou E. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease. J Control Release 2019;303:289-301. [PMID: 30953664 DOI: 10.1016/j.jconrel.2019.03.030] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 9.3] [Reference Citation Analysis]
225 Huttunen HJ, Saarma M. CDNF Protein Therapy in Parkinson's Disease. Cell Transplant 2019;28:349-66. [PMID: 30947516 DOI: 10.1177/0963689719840290] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
226 Kleinert M, Bojsen-møller KN, Jørgensen NB, Svane MS, Martinussen C, Kiens B, Wojtaszewski JF, Madsbad S, Richter EA, Clemmensen C. Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology-Endocrinology and Metabolism 2019;316:E615-21. [DOI: 10.1152/ajpendo.00010.2019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
227 Fejzo MS, Fasching PA, Schneider MO, Schwitulla J, Beckmann MW, Schwenke E, MacGibbon KW, Mullin PM. Analysis of GDF15 and IGFBP7 in Hyperemesis Gravidarum Support Causality. Geburtshilfe Frauenheilkd 2019;79:382-8. [PMID: 31000883 DOI: 10.1055/a-0830-1346] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
228 Shimada K, Mitchison TJ. Unsupervised identification of disease states from high-dimensional physiological and histopathological profiles. Mol Syst Biol 2019;15:e8636. [PMID: 30782979 DOI: 10.15252/msb.20188636] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
229 Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol Ther 2019;198:46-58. [PMID: 30790643 DOI: 10.1016/j.pharmthera.2019.02.008] [Cited by in Crossref: 70] [Cited by in F6Publishing: 61] [Article Influence: 23.3] [Reference Citation Analysis]
230 Cheung CL, Tan KCB, Au PCM, Li GHY, Cheung BMY. Evaluation of GDF15 as a therapeutic target of cardiometabolic diseases in human: A Mendelian randomization study. EBioMedicine 2019;41:85-90. [PMID: 30772304 DOI: 10.1016/j.ebiom.2019.02.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
231 Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET. Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 2019;38:4540-59. [PMID: 30755731 DOI: 10.1038/s41388-019-0736-3] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
232 Frikke-Schmidt H, Hultman K, Galaske JW, Jørgensen SB, Myers MG Jr, Seeley RJ. GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Mol Metab 2019;21:13-21. [PMID: 30685336 DOI: 10.1016/j.molmet.2019.01.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 13.3] [Reference Citation Analysis]
233 Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, Cimino I, Maurin AC, Roberts GP, Meek CL, Virtue S, Sparks LM, Parsons SA, Redman LM, Bray GA, Liou AP, Woods RM, Parry SA, Jeppesen PB, Kolnes AJ, Harding HP, Ron D, Vidal-Puig A, Reimann F, Gribble FM, Hulston CJ, Farooqi IS, Fafournoux P, Smith SR, Jensen J, Breen D, Wu Z, Zhang BB, Coll AP, Savage DB, O'Rahilly S. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab 2019;29:707-718.e8. [PMID: 30639358 DOI: 10.1016/j.cmet.2018.12.016] [Cited by in Crossref: 191] [Cited by in F6Publishing: 201] [Article Influence: 63.7] [Reference Citation Analysis]
234 Zhao J, Li M, Chen Y, Zhang S, Ying H, Song Z, Lu Y, Li X, Xiong X, Jiang J. Elevated Serum Growth Differentiation Factor 15 Levels in Hyperthyroid Patients. Front Endocrinol (Lausanne) 2018;9:793. [PMID: 30687235 DOI: 10.3389/fendo.2018.00793] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
235 Mulligan LM. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front Physiol 2018;9:1873. [PMID: 30666215 DOI: 10.3389/fphys.2018.01873] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
236 Lai YC, Provencher S, Goncharova EA. TAKling GDF-15 and skeletal muscle atrophy in pulmonary hypertension: are we there yet? Thorax 2019;74:103-5. [PMID: 30554140 DOI: 10.1136/thoraxjnl-2018-212680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
237 Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S, Moore S, Parfitt L, Harries C, Rice M, Paul R, Ormiston ML, Morrell NW, Polkey MI, Wort SJ, Kemp PR. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 2019;74:164-76. [PMID: 30554141 DOI: 10.1136/thoraxjnl-2017-211440] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
238 Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018;41:280-93. [PMID: 29703377 DOI: 10.1016/j.tins.2018.03.007] [Cited by in Crossref: 171] [Cited by in F6Publishing: 181] [Article Influence: 42.8] [Reference Citation Analysis]
239 Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol 2018;9:1712. [PMID: 30542297 DOI: 10.3389/fphys.2018.01712] [Cited by in Crossref: 91] [Cited by in F6Publishing: 97] [Article Influence: 22.8] [Reference Citation Analysis]
240 Onufer EJ, Tay S, Barron LK, Courtney CM, Warner BW, Guo J. Intestinal epithelial cell-specific Raptor is essential for high fat diet-induced weight gain in mice. Biochem Biophys Res Commun 2018;505:1174-9. [PMID: 30318117 DOI: 10.1016/j.bbrc.2018.10.040] [Reference Citation Analysis]
241 Adolph TE, Grabherr F, Mayr L, Grander C, Enrich B, Moschen AR, Tilg H. Weight Loss Induced by Bariatric Surgery Restricts Hepatic GDF15 Expression. J Obes 2018;2018:7108075. [PMID: 30533221 DOI: 10.1155/2018/7108075] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
242 Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. Elife 2018;7:e40982. [PMID: 30345971 DOI: 10.7554/eLife.40982] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
243 Li JJ, Liu J, Lupino K, Liu X, Zhang L, Pei L. Growth Differentiation Factor 15 Maturation Requires Proteolytic Cleavage by PCSK3, -5, and -6. Mol Cell Biol 2018;38:e00249-18. [PMID: 30104250 DOI: 10.1128/MCB.00249-18] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
244 Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018;19:731-45. [DOI: 10.1038/s41580-018-0068-0] [Cited by in Crossref: 214] [Cited by in F6Publishing: 223] [Article Influence: 53.5] [Reference Citation Analysis]
245 Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K, Wu H, Pei L. Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts. Genes Dev 2018;32:1344-57. [PMID: 30254108 DOI: 10.1101/gad.316802.118] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 19.5] [Reference Citation Analysis]
246 Petry CJ, Ong KK, Burling KA, Barker P, Goodburn SF, Perry JRB, Acerini CL, Hughes IA, Painter RC, Afink GB, Dunger DB, O'Rahilly S. Associations of vomiting and antiemetic use in pregnancy with levels of circulating GDF15 early in the second trimester: A nested case-control study. Wellcome Open Res 2018;3:123. [PMID: 30345390 DOI: 10.12688/wellcomeopenres.14818.1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
247 Fejzo MS, Arzy D, Tian R, MacGibbon KW, Mullin PM. Evidence GDF15 Plays a Role in Familial and Recurrent Hyperemesis Gravidarum. Geburtshilfe Frauenheilkd 2018;78:866-70. [PMID: 30258246 DOI: 10.1055/a-0661-0287] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
248 Furrer R, Handschin C. Muscle Wasting Diseases: Novel Targets and Treatments. Annu Rev Pharmacol Toxicol 2019;59:315-39. [PMID: 30148697 DOI: 10.1146/annurev-pharmtox-010818-021041] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
249 Kim KH, Lee MS. Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches. Front Endocrinol (Lausanne). 2018;9:485. [PMID: 30197624 DOI: 10.3389/fendo.2018.00485] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
250 Tran T, Yang J, Gardner J, Xiong Y. GDF15 deficiency promotes high fat diet-induced obesity in mice. PLoS One 2018;13:e0201584. [PMID: 30070999 DOI: 10.1371/journal.pone.0201584] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
251 Mullican SE, Rangwala SM. Uniting GDF15 and GFRAL: Therapeutic Opportunities in Obesity and Beyond. Trends in Endocrinology & Metabolism 2018;29:560-70. [DOI: 10.1016/j.tem.2018.05.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
252 Walker RG, Thompson TB. New Insight Into Hyperemesis Gravidarum and a Potential Role for GDF15. Endocrinology 2018;159:2698-700. [PMID: 29846562 DOI: 10.1210/en.2018-00439] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
253 Souček K, Malenovská A, Kahounová Z, Remšík J, Holubcová Z, Soukup T, Kurfürstová D, Bouchal J, Suchánková T, Slabáková E, Hampl A. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J Assist Reprod Genet 2018;35:1407-17. [PMID: 29948426 DOI: 10.1007/s10815-018-1230-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
254 Yoon JH, Ryu J, Baek SJ. Moonlighting Activity of Secreted Inflammation-Regulatory Proteins. Yonsei Med J 2018;59:463-9. [PMID: 29749128 DOI: 10.3349/ymj.2018.59.4.463] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
255 Liu Y, Kaljunen H, Pavić A, Saarenpää T, Himanen JP, Nikolov DB, Goldman A. Binding of EphrinA5 to RET receptor tyrosine kinase: An in vitro study. PLoS One 2018;13:e0198291. [PMID: 29889908 DOI: 10.1371/journal.pone.0198291] [Reference Citation Analysis]
256 Kim Y, Noren Hooten N, Evans MK. CRP Stimulates GDF15 Expression in Endothelial Cells through p53. Mediators Inflamm 2018;2018:8278039. [PMID: 29967567 DOI: 10.1155/2018/8278039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
257 Shimada K, Mitchison TJ. Machine characterization of rat toxin responses identifies disease states, tolerance mechanisms and organ to whole-body communication.. [DOI: 10.1101/322446] [Reference Citation Analysis]
258 Smith JK. Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review. Front Physiol 2018;9:574. [PMID: 29867590 DOI: 10.3389/fphys.2018.00574] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
259 Kim KH, Kim SH, Han DH, Jo YS, Lee YH, Lee MS. Growth differentiation factor 15 ameliorates nonalcoholic steatohepatitis and related metabolic disorders in mice. Sci Rep. 2018;8:6789. [PMID: 29717162 DOI: 10.1038/s41598-018-25098-0] [Cited by in Crossref: 53] [Cited by in F6Publishing: 59] [Article Influence: 13.3] [Reference Citation Analysis]
260 Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, Chung HK, Kim YK, Kang SG, Lee JH, Kim KS, Kim HJ, Kim CS, Lee CH, Williams RW, Kim H, Lee HK, Auwerx J, Shong M. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun. 2018;9:1551. [PMID: 29674655 DOI: 10.1038/s41467-018-03998-z] [Cited by in Crossref: 83] [Cited by in F6Publishing: 86] [Article Influence: 20.8] [Reference Citation Analysis]
261 Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018;50:323-35. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
262 Fejzo MS, Sazonova OV, Sathirapongsasuti JF, Hallgrímsdóttir IB, Vacic V, MacGibbon KW, Schoenberg FP, Mancuso N, Slamon DJ, Mullin PM; 23andMe Research Team. Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat Commun 2018;9:1178. [PMID: 29563502 DOI: 10.1038/s41467-018-03258-0] [Cited by in Crossref: 65] [Cited by in F6Publishing: 72] [Article Influence: 16.3] [Reference Citation Analysis]
263 Kim K, Seeley RJ, Sandoval DA. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci 2018;19:185-96. [DOI: 10.1038/nrn.2018.8] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 21.8] [Reference Citation Analysis]
264 Sandmark J, Dahl G, Öster L, Xu B, Johansson P, Akerud T, Aagaard A, Davidsson P, Bigalke JM, Winzell MS, Rainey GJ, Roth RG. Structure and biophysical characterization of the human full-length neurturin-GFRa2 complex: A role for heparan sulfate in signaling. J Biol Chem 2018;293:5492-508. [PMID: 29414779 DOI: 10.1074/jbc.RA117.000820] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
265 Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, Vickers C, Chen H, Lach-trifilieff E, Hadcock JR, Glass DJ. Supraphysiologic Administration of GDF11 Induces Cachexia in Part by Upregulating GDF15. Cell Reports 2018;22:1522-30. [DOI: 10.1016/j.celrep.2018.01.044] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
266 Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JFP, Kiens B, Richter EA. Exercise increases circulating GDF15 in humans. Mol Metab 2018;9:187-91. [PMID: 29398617 DOI: 10.1016/j.molmet.2017.12.016] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 18.8] [Reference Citation Analysis]
267 Thiriet M. Hyperlipidemias and Obesity. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems 2018. [DOI: 10.1007/978-3-319-89315-0_5] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
268 Breit SN, Tsai VW, Brown DA. Targeting Obesity and Cachexia: Identification of the GFRAL Receptor–MIC-1/GDF15 Pathway. Trends in Molecular Medicine 2017;23:1065-7. [DOI: 10.1016/j.molmed.2017.10.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
269 O’rahilly S. GDF15—From Biomarker to Allostatic Hormone. Cell Metabolism 2017;26:807-8. [DOI: 10.1016/j.cmet.2017.10.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
270 Li F, Ruan X, Min L. Targeting both sides of the GDF15-GFRAL-RET receptor complex: A new approach to achieve body weight homeostasis. Genes & Diseases 2017;4:183-4. [DOI: 10.1016/j.gendis.2017.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
271 Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, Kutach A, Joo W, Gao Z, Fu D, To C, Mondal K, Li B, Kekatpure A, Wang M, Laird T, Horner G, Chan J, McEntee M, Lopez M, Lakshminarasimhan D, White A, Wang SP, Yao J, Yie J, Matern H, Solloway M, Haldankar R, Parsons T, Tang J, Shen WD, Alice Chen Y, Tian H, Allan BB. Erratum: Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 2017;551:398. [PMID: 29144449 DOI: 10.1038/nature24481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
272 Vanhook AM. Papers of note in Nature 550 (7675). Sci Signal 2017;10. [DOI: 10.1126/scisignal.aar1923] [Reference Citation Analysis]
273 Saarma M, Goldman A. Receptors identified for a weight regulator. Nature 2017;550:195-7. [DOI: 10.1038/nature24143] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]