BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
Number Citing Articles
1 Yamada RG, Ueda HR. Molecular Mechanisms of REM Sleep. Front Neurosci 2019;13:1402. [PMID: 32009883 DOI: 10.3389/fnins.2019.01402] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
2 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
3 Tseng YT, Zhao B, Liu J, Ding H, Wang F, Wang L. Sleep deprivation and adrenalectomy lead to enhanced innate escape response to visual looming stimuli. Biochem Biophys Res Commun 2020;527:737-43. [PMID: 32444141 DOI: 10.1016/j.bbrc.2020.04.061] [Reference Citation Analysis]
4 Kent BA, Mistlberger RE. Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Front Neuroendocrinol 2017;45:35-52. [PMID: 28249715 DOI: 10.1016/j.yfrne.2017.02.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
5 Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017;9:a027730. [PMID: 28432135 DOI: 10.1101/cshperspect.a027730] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 13.8] [Reference Citation Analysis]
6 Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019;102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 13.3] [Reference Citation Analysis]
7 Zhang LB, Zhang J, Sun MJ, Chen H, Yan J, Luo FL, Yao ZX, Wu YM, Hu B. Neuronal Activity in the Cerebellum During the Sleep-Wakefulness Transition in Mice. Neurosci Bull 2020;36:919-31. [PMID: 32430873 DOI: 10.1007/s12264-020-00511-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Lewis LD. The interconnected causes and consequences of sleep in the brain. Science 2021;374:564-8. [PMID: 34709917 DOI: 10.1126/science.abi8375] [Reference Citation Analysis]
9 Maluck E, Busack I, Besseling J, Masurat F, Turek M, Busch KE, Bringmann H. A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biol 2020;18:e3000361. [PMID: 32078631 DOI: 10.1371/journal.pbio.3000361] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
10 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
11 Fujii S, Kaushik MK, Zhou X, Korkutata M, Lazarus M. Acute Social Defeat Stress Increases Sleep in Mice. Front Neurosci 2019;13:322. [PMID: 31001080 DOI: 10.3389/fnins.2019.00322] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
12 Miyawaki H, Watson BO, Diba K. Neuronal firing rates diverge during REM and homogenize during non-REM. Sci Rep 2019;9:689. [PMID: 30679509 DOI: 10.1038/s41598-018-36710-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
13 Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018;85:21-33. [PMID: 28757457 DOI: 10.1016/j.neubiorev.2017.07.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
14 Avigdor T, Minert A, Baron M, Devor M. Paradoxical anesthesia: Sleep-like EEG during anesthesia induced by mesopontine microinjection of GABAergic agents. Exp Neurol 2021;343:113760. [PMID: 34000248 DOI: 10.1016/j.expneurol.2021.113760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zhuang L, Zhang B, Qin Z, Wang P. Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb. Neuroscience 2019;398:218-30. [PMID: 30553790 DOI: 10.1016/j.neuroscience.2018.12.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
16 Blum ID, Keleş MF, Baz ES, Han E, Park K, Luu S, Issa H, Brown M, Ho MCW, Tabuchi M, Liu S, Wu MN. Astroglial Calcium Signaling Encodes Sleep Need in Drosophila. Curr Biol 2021;31:150-162.e7. [PMID: 33186550 DOI: 10.1016/j.cub.2020.10.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
17 Førland-Schill A, Berring-Uldum A, Debes NM. Migraine Pathophysiology in Children and Adolescents: A Review of the Literature. J Child Neurol 2022;:8830738221100888. [PMID: 35607281 DOI: 10.1177/08830738221100888] [Reference Citation Analysis]
18 Perez-Atencio L, Garcia-Aracil N, Fernandez E, Barrio LC, Barios JA. A four-state Markov model of sleep-wakefulness dynamics along light/dark cycle in mice. PLoS One 2018;13:e0189931. [PMID: 29304108 DOI: 10.1371/journal.pone.0189931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
19 Jepson JEC. Sleep: Astrocytes Take Their Toll on Tired Flies. Curr Biol 2021;31:R27-30. [PMID: 33434483 DOI: 10.1016/j.cub.2020.10.083] [Reference Citation Analysis]
20 Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.04.005] [Reference Citation Analysis]
21 Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021;11:1373-423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Reference Citation Analysis]
22 Kashiwagi M, Hayashi Y. The existence of two states of sleep as a common trait in various animals and its molecular and neuronal mechanisms. Current Opinion in Physiology 2020;15:197-202. [DOI: 10.1016/j.cophys.2020.03.007] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, Xiong Q. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun 2021;12:4646. [PMID: 34330901 DOI: 10.1038/s41467-021-24915-x] [Reference Citation Analysis]
24 Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021;12:5115. [PMID: 34433830 DOI: 10.1038/s41467-021-25378-w] [Reference Citation Analysis]
25 Héricé C, Sakata S. Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep-Wake Cycle. Front Neurosci 2019;13:1380. [PMID: 31920528 DOI: 10.3389/fnins.2019.01380] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Varshavsky A. On the cause of sleep: Protein fragments, the concept of sentinels, and links to epilepsy. Proc Natl Acad Sci U S A 2019;116:10773-82. [PMID: 31085645 DOI: 10.1073/pnas.1904709116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
28 Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. J Biol Rhythms 2018;33:535-54. [PMID: 30084274 DOI: 10.1177/0748730418790401] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
29 Warren TJ, Simeone TA, Smith DD, Grove R, Adamec J, Samson KK, Roundtree HM, Madhavan D, Simeone KA. Adenosine has two faces: Regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders. Neurobiol Dis 2018;114:45-52. [PMID: 29409952 DOI: 10.1016/j.nbd.2018.01.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
30 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
31 Lu J, Li C, Singh-Alvarado J, Zhou ZC, Fröhlich F, Mooney R, Wang F. MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. Cell Rep 2018;23:3673-84. [PMID: 29925007 DOI: 10.1016/j.celrep.2018.05.062] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 15.3] [Reference Citation Analysis]
32 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
33 Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021;348:109015. [PMID: 33259847 DOI: 10.1016/j.jneumeth.2020.109015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Salas-Crisóstomo M, Torterolo P, Veras AB, Rocha NB, Machado S, Murillo-Rodríguez E. Therapeutic Approaches for the Management of Sleep Disorders in Geriatric Population. Curr Med Chem 2019;26:4775-85. [PMID: 30182852 DOI: 10.2174/0929867325666180904113115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
35 Karsan N, Prabhakar P, Goadsby PJ. Premonitory Symptoms of Migraine in Childhood and Adolescence. Curr Pain Headache Rep 2017;21:34. [PMID: 28647791 DOI: 10.1007/s11916-017-0631-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
36 Colwell CS, Donlea J. Temporal Coding of Sleep. Cell 2018;175:1177-9. [PMID: 30445036 DOI: 10.1016/j.cell.2018.10.047] [Reference Citation Analysis]
37 Luo L. Architectures of neuronal circuits. Science 2021;373:eabg7285. [PMID: 34516844 DOI: 10.1126/science.abg7285] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Du L, Xu L, Liang T, Wing YK, Ke Y, Yung WH. Progressive Pontine-Medullary Dysfunction Leads to REM Sleep Behavior Disorder Symptoms in a Chronic Model of Parkinson's Disease. Nat Sci Sleep 2021;13:1723-36. [PMID: 34675721 DOI: 10.2147/NSS.S328365] [Reference Citation Analysis]
39 Song AH, Kucyi A, Napadow V, Brown EN, Loggia ML, Akeju O. Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J Neurosci. 2017;37:6938-6945. [PMID: 28626012 DOI: 10.1523/jneurosci.0446-17.2017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 8.6] [Reference Citation Analysis]
40 Matsumoto S, Tsunematsu T. Association between Sleep, Alzheimer's, and Parkinson's Disease. Biology (Basel) 2021;10:1127. [PMID: 34827122 DOI: 10.3390/biology10111127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
41 Liu W, Zhao D, Wu X, Yue F, Yang H, Hu K. Rapamycin ameliorates chronic intermittent hypoxia and sleep deprivation-induced renal damage via the mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling pathway. Bioengineered 2022;13:5537-50. [DOI: 10.1080/21655979.2022.2037872] [Reference Citation Analysis]
42 Machado DR, Afonso DJ, Kenny AR, Öztu Rk-Çolak A, Moscato EH, Mainwaring B, Kayser M, Koh K. Identification of octopaminergic neurons that modulate sleep suppression by male sex drive. Elife 2017;6:e23130. [PMID: 28510528 DOI: 10.7554/eLife.23130] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 6.6] [Reference Citation Analysis]
43 Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto KH, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep 2018;24:2231-2247.e7. [PMID: 30157420 DOI: 10.1016/j.celrep.2018.07.082] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
44 Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, Miyamishi K, Zweifel LS, Luo L, Uchida N, Dulac C. Functional circuit architecture underlying parental behaviour. Nature 2018;556:326-31. [PMID: 29643503 DOI: 10.1038/s41586-018-0027-0] [Cited by in Crossref: 146] [Cited by in F6Publishing: 121] [Article Influence: 36.5] [Reference Citation Analysis]
45 Akeju O, Brown EN. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr Opin Neurobiol 2017;44:178-85. [PMID: 28544930 DOI: 10.1016/j.conb.2017.04.011] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 14.2] [Reference Citation Analysis]
46 Akeju O, Hobbs LE, Gao L, Burns SM, Pavone KJ, Plummer GS, Walsh EC, Houle TT, Kim SE, Bianchi MT, Ellenbogen JM, Brown EN. Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study. Clin Neurophysiol 2018;129:69-78. [PMID: 29154132 DOI: 10.1016/j.clinph.2017.10.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
47 Ode KL, Katsumata T, Tone D, Ueda HR. Fast and slow Ca2+-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr Opin Neurobiol 2017;44:212-21. [PMID: 28575719 DOI: 10.1016/j.conb.2017.05.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
48 Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020;10:20190092. [PMID: 32382403 DOI: 10.1098/rsfs.2019.0092] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
49 Harding EC, Franks NP, Wisden W. The Temperature Dependence of Sleep. Front Neurosci 2019;13:336. [PMID: 31105512 DOI: 10.3389/fnins.2019.00336] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
50 Gutierrez Herrera C, Girard F, Bilella A, Gent TC, Roccaro-Waldmeyer DM, Adamantidis A, Celio MR. Neurons in the Nucleus papilio contribute to the control of eye movements during REM sleep. Nat Commun 2019;10:5225. [PMID: 31745081 DOI: 10.1038/s41467-019-13217-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
51 Zhang Q, Haselden WD, Charpak S, Drew PJ. Could respiration-driven blood oxygen changes modulate neural activity? Pflugers Arch 2022. [PMID: 35761104 DOI: 10.1007/s00424-022-02721-8] [Reference Citation Analysis]
52 Kohl J, Dulac C. Neural control of parental behaviors. Curr Opin Neurobiol 2018;49:116-22. [PMID: 29482085 DOI: 10.1016/j.conb.2018.02.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
53 Zhang Y, Li H, Zhang X, Wang S, Wang D, Wang J, Tong T, Zhang Z, Yang Q, Dong H. Estrogen Receptor-A in Medial Preoptic Area Contributes to Sex Difference of Mice in Response to Sevoflurane Anesthesia. Neurosci Bull 2022. [PMID: 35175557 DOI: 10.1007/s12264-022-00825-w] [Reference Citation Analysis]
54 Figarella K. Neuropathogenesis caused by Trypanosoma brucei, still an enigma to be unveiled. Microb Cell 2021;8:73-6. [PMID: 33816592 DOI: 10.15698/mic2021.04.745] [Reference Citation Analysis]
55 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
56 Dubowy C, Sehgal A. Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics 2017;205:1373-97. [PMID: 28360128 DOI: 10.1534/genetics.115.185157] [Cited by in Crossref: 168] [Cited by in F6Publishing: 134] [Article Influence: 33.6] [Reference Citation Analysis]
57 Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. Elife 2020;9:e54491. [PMID: 33337320 DOI: 10.7554/eLife.54491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Tsunematsu T, Patel AA, Onken A, Sakata S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. Elife 2020;9:e52244. [PMID: 31934862 DOI: 10.7554/eLife.52244] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
59 Song B, Li Y, Teng X, Li X, Yang Y, Zhu J. The Effect Of Intraoperative Use Of Dexmedetomidine During The Daytime Operation Vs The Nighttime Operation On Postoperative Sleep Quality And Pain Under General Anesthesia. Nat Sci Sleep 2019;11:207-15. [PMID: 31686933 DOI: 10.2147/NSS.S225041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
60 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Kashiwagi M, Kanuka M, Tatsuzawa C, Suzuki H, Morita M, Tanaka K, Kawano T, Shin JW, Suzuki H, Itohara S, Yanagisawa M, Hayashi Y. Widely Distributed Neurotensinergic Neurons in the Brainstem Regulate NREM Sleep in Mice. Current Biology 2020;30:1002-1010.e4. [DOI: 10.1016/j.cub.2020.01.047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
62 Peever J, Fuller PM. The Biology of REM Sleep. Current Biology 2017;27:R1237-48. [DOI: 10.1016/j.cub.2017.10.026] [Cited by in Crossref: 103] [Cited by in F6Publishing: 87] [Article Influence: 20.6] [Reference Citation Analysis]
63 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
64 Konietzka J, Fritz M, Spiri S, McWhirter R, Leha A, Palumbos S, Costa WS, Oranth A, Gottschalk A, Miller DM 3rd, Hajnal A, Bringmann H. Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 2020;30:1-16.e13. [PMID: 31839447 DOI: 10.1016/j.cub.2019.10.048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
65 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
66 Kim JH, Ahn JH, Min CY, Yoo DM, Choi HG. Association between sleep quality and subjective cognitive decline: evidence from a community health survey. Sleep Med 2021;83:123-31. [PMID: 33993029 DOI: 10.1016/j.sleep.2021.04.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep 2021;44:zsab017. [PMID: 33493349 DOI: 10.1093/sleep/zsab017] [Reference Citation Analysis]
68 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Lee M, Song CB, Shin GH, Lee SW. Possible Effect of Binaural Beat Combined With Autonomous Sensory Meridian Response for Inducing Sleep. Front Hum Neurosci 2019;13:425. [PMID: 31849629 DOI: 10.3389/fnhum.2019.00425] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
70 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
71 Goldstein N, Levine BJ, Loy KA, Duke WL, Meyerson OS, Jamnik AA, Carter ME. Hypothalamic Neurons that Regulate Feeding Can Influence Sleep/Wake States Based on Homeostatic Need. Curr Biol 2018;28:3736-3747.e3. [PMID: 30471995 DOI: 10.1016/j.cub.2018.09.055] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
72 Luo M, Song B, Zhu J. Sleep Disturbances After General Anesthesia: Current Perspectives. Front Neurol 2020;11:629. [PMID: 32733363 DOI: 10.3389/fneur.2020.00629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017;44:110-5. [PMID: 28445807 DOI: 10.1016/j.conb.2017.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
74 Pavone KJ, Su L, Gao L, Eromo E, Vazquez R, Rhee J, Hobbs LE, Ibala R, Demircioglu G, Purdon PL, Brown EN, Akeju O. Lack of Responsiveness during the Onset and Offset of Sevoflurane Anesthesia Is Associated with Decreased Awake-Alpha Oscillation Power. Front Syst Neurosci 2017;11:38. [PMID: 28611601 DOI: 10.3389/fnsys.2017.00038] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
75 Komiya H, Miyoshi C, Iwasaki K, Hotta-Hirashima N, Ikkyu A, Kanno S, Honda T, Gosho M, Hamada H, Satoh T, Fukamizu A, Funato H, Yanagisawa M. Sleep/Wake Behaviors in Mice During Pregnancy and Pregnancy-Associated Hypertensive Mice. Sleep 2018;41. [PMID: 29309677 DOI: 10.1093/sleep/zsx209] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Fursenko DV, Bazhenova EY, Khotskin NV, Sorokin IE, Kulikova EA, Kulikov AV. Effect of Photoperiod and Lethal Yellow Mutation on Depression-Like Behavior and Expression of Proinflammatory Cytokines in the Hypothalamus in Mice. Bull Exp Biol Med 2019;167:100-3. [PMID: 31177455 DOI: 10.1007/s10517-019-04470-8] [Reference Citation Analysis]
77 Zhang GW, Shen L, Zhong W, Xiong Y, Zhang LI, Tao HW. Transforming Sensory Cues into Aversive Emotion via Septal-Habenular Pathway. Neuron 2018;99:1016-1028.e5. [PMID: 30122379 DOI: 10.1016/j.neuron.2018.07.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
78 Fifel K, Videnovic A. Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiol Dis 2020;144:105029. [PMID: 32736083 DOI: 10.1016/j.nbd.2020.105029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
79 Ni JD, Gurav AS, Liu W, Ogunmowo TH, Hackbart H, Elsheikh A, Verdegaal AA, Montell C. Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs. Elife 2019;8:e40487. [PMID: 30719975 DOI: 10.7554/eLife.40487] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 8.3] [Reference Citation Analysis]
80 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
81 Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The Neurophysiology of Sleep in Parkinson's Disease. Mov Disord 2021;36:1526-42. [PMID: 33826171 DOI: 10.1002/mds.28562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Girard F, von Siebenthal M, Davis FP, Celio MR. Gene expression analysis in the mouse brainstem identifies Cart and Nesfatin as neuropeptides coexpressed in the Calbindin-positive neurons of the Nucleus papilio. Sleep 2020;43:zsaa085. [PMID: 32343818 DOI: 10.1093/sleep/zsaa085] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Current Opinion in Neurobiology 2021;69:1-10. [DOI: 10.1016/j.conb.2020.11.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
85 Cuvellier JC. Pediatric vs. Adult Prodrome and Postdrome: A Window on Migraine Pathophysiology? Front Neurol 2019;10:199. [PMID: 30930831 DOI: 10.3389/fneur.2019.00199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
86 Flavell SW, Gogolla N, Lovett-barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022. [DOI: 10.1016/j.neuron.2022.04.030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Chen P, Hong W. Neural Circuit Mechanisms of Social Behavior. Neuron 2018;98:16-30. [PMID: 29621486 DOI: 10.1016/j.neuron.2018.02.026] [Cited by in Crossref: 130] [Cited by in F6Publishing: 109] [Article Influence: 43.3] [Reference Citation Analysis]
88 Carter ME. Neuroethology: Regulation of pre-sleep behaviors. Current Biology 2022;32:R160-2. [DOI: 10.1016/j.cub.2022.01.009] [Reference Citation Analysis]
89 Moon C, Melah KE, Rivera-Rivera LA, Bratzke LC. Multimodal brain imaging investigation of self-reported sleep quality and daytime sleepiness in older adults with heart failure. Int J Neurosci 2018;128:1044-51. [PMID: 29745279 DOI: 10.1080/00207454.2018.1475374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
90 Lok R, Woelders T, Gordijn MCM, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light During Wakefulness Improves Sleep Quality in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (III). J Biol Rhythms 2022;:7487304221096910. [PMID: 35730553 DOI: 10.1177/07487304221096910] [Reference Citation Analysis]
91 Feng S, Huang H, Wang N, Wei Y, Liu Y, Qin D. Sleep Disorders in Children With Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front Behav Neurosci 2021;15:673372. [PMID: 34093147 DOI: 10.3389/fnbeh.2021.673372] [Reference Citation Analysis]
92 Barbero-Castillo A, Mateos-Aparicio P, Dalla Porta L, Camassa A, Perez-Mendez L, Sanchez-Vives MV. Impact of GABAA and GABAB Inhibition on Cortical Dynamics and Perturbational Complexity during Synchronous and Desynchronized States. J Neurosci 2021;41:5029-44. [PMID: 33906901 DOI: 10.1523/JNEUROSCI.1837-20.2021] [Reference Citation Analysis]
93 De Pablo-Fernández E, Warner TT. Hypothalamic α-synuclein and its relation to autonomic symptoms and neuroendocrine abnormalities in Parkinson disease. Handb Clin Neurol 2021;182:223-33. [PMID: 34266594 DOI: 10.1016/B978-0-12-819973-2.00015-0] [Reference Citation Analysis]
94 Chen Z, Wilson MA. Deciphering Neural Codes of Memory during Sleep. Trends Neurosci 2017;40:260-75. [PMID: 28390699 DOI: 10.1016/j.tins.2017.03.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
95 Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018;28:392-400.e3. [PMID: 29358069 DOI: 10.1016/j.cub.2017.12.049] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
96 Cheng Z, Yang W, Li B, Cui R. KLF4 Exerts Sedative Effects in Pentobarbital-Treated Mice. J Mol Neurosci 2021;71:596-606. [PMID: 32789565 DOI: 10.1007/s12031-020-01680-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat Commun 2018;9:354. [PMID: 29367602 DOI: 10.1038/s41467-017-02765-w] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 15.3] [Reference Citation Analysis]
98 Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 2017;37:9574-92. [PMID: 28874450 DOI: 10.1523/JNEUROSCI.0580-17.2017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
99 Turner KL, Gheres KW, Proctor EA, Drew PJ. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. Elife 2020;9:e62071. [PMID: 33118932 DOI: 10.7554/eLife.62071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
100 Ahmad Z, Moustafa YW, Stiller JW, Pavlovich MA, Raheja UK, Gragnoli C, Snitker S, Nazem S, Dagdag A, Fang B, Fuchs D, Lowry CA, Postolache TT. Sleep onset insomnia, daytime sleepiness and sleep duration in relationship to Toxoplasma gondii IgG seropositivity and serointensity. Pteridines 2017;28:195-204. [PMID: 29657364 DOI: 10.1515/pterid-2017-0010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
101 Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2019;42:zsy253. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
102 Chen J, Cho KE, Skwarzynska D, Clancy S, Conley NJ, Clinton SM, Li X, Lin L, Zhu JJ. The Property-Based Practical Applications and Solutions of Genetically Encoded Acetylcholine and Monoamine Sensors. J Neurosci 2021;41:2318-28. [PMID: 33627325 DOI: 10.1523/JNEUROSCI.1062-19.2020] [Reference Citation Analysis]
103 Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2020;52:3507-30. [DOI: 10.1111/ejn.14485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
104 Wang Y, Xu L, Liu MZ, Hu DD, Fang F, Xu DJ, Zhang R, Hua XX, Li JB, Zhang L, Huang LN, Mu D. Norepinephrine modulates wakefulness via α1 adrenoceptors in paraventricular thalamic nucleus. iScience 2021;24:103015. [PMID: 34522858 DOI: 10.1016/j.isci.2021.103015] [Reference Citation Analysis]
105 Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019;29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
106 Mollayeva T, D'Souza A, Mollayeva S. Sleep and Psychiatric Disorders in Persons With Mild Traumatic Brain Injury. Curr Psychiatry Rep 2017;19:47. [PMID: 28653116 DOI: 10.1007/s11920-017-0800-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
107 Liu K, Kim J, Kim DW, Zhang YS, Bao H, Denaxa M, Lim SA, Kim E, Liu C, Wickersham IR, Pachnis V, Hattar S, Song J, Brown SP, Blackshaw S. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 2017;548:582-7. [PMID: 28847002 DOI: 10.1038/nature23663] [Cited by in Crossref: 85] [Cited by in F6Publishing: 66] [Article Influence: 17.0] [Reference Citation Analysis]
108 Maywood ES, Chesham JE, Winsky-Sommerer R, Smyllie NJ, Hastings MH. Circadian Chimeric Mice Reveal an Interplay Between the Suprachiasmatic Nucleus and Local Brain Clocks in the Control of Sleep and Memory. Front Neurosci 2021;15:639281. [PMID: 33679317 DOI: 10.3389/fnins.2021.639281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Bringmann H. Sleep-Active Neurons: Conserved Motors of Sleep. Genetics 2018;208:1279-89. [PMID: 29618588 DOI: 10.1534/genetics.117.300521] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
110 Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019;20:746-62. [DOI: 10.1038/s41583-019-0223-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
111 Donlea JM, Pimentel D, Talbot CB, Kempf A, Omoto JJ, Hartenstein V, Miesenböck G. Recurrent Circuitry for Balancing Sleep Need and Sleep. Neuron 2018;97:378-389.e4. [PMID: 29307711 DOI: 10.1016/j.neuron.2017.12.016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 62] [Article Influence: 21.8] [Reference Citation Analysis]
112 Okun M, Steinmetz NA, Lak A, Dervinis M, Harris KD. Distinct Structure of Cortical Population Activity on Fast and Infraslow Timescales. Cereb Cortex 2019;29:2196-210. [PMID: 30796825 DOI: 10.1093/cercor/bhz023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
113 Churgin MA, Szuperak M, Davis KC, Raizen DM, Fang-Yen C, Kayser MS. Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster. Nat Protoc 2019;14:1455-88. [PMID: 30953041 DOI: 10.1038/s41596-019-0146-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Chen ZK, Yuan XS, Dong H, Wu YF, Chen GH, He M, Qu WM, Huang ZL. Whole-Brain Neural Connectivity to Lateral Pontine Tegmentum GABAergic Neurons in Mice. Front Neurosci 2019;13:375. [PMID: 31068780 DOI: 10.3389/fnins.2019.00375] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
115 Iwasaki K, Komiya H, Kakizaki M, Miyoshi C, Abe M, Sakimura K, Funato H, Yanagisawa M. Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci 2018;12:535. [PMID: 30131671 DOI: 10.3389/fnins.2018.00535] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
116 Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2021. [PMID: 34908236 DOI: 10.1111/febs.16320] [Reference Citation Analysis]
117 Chennaoui M, Arnal PJ, Drogou C, Leger D, Sauvet F, Gomez-Merino D. Leukocyte Expression of Type 1 and Type 2 Purinergic Receptors and Pro-Inflammatory Cytokines during Total Sleep Deprivation and/or Sleep Extension in Healthy Subjects. Front Neurosci 2017;11:240. [PMID: 28512397 DOI: 10.3389/fnins.2017.00240] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
118 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
119 Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Curr Biol 2018;28:2263-2273.e4. [PMID: 30017485 DOI: 10.1016/j.cub.2018.05.054] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 11.8] [Reference Citation Analysis]
120 Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism 2020;11:19. [PMID: 32164788 DOI: 10.1186/s13229-020-00324-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
121 Miyoshi C, Kim SJ, Ezaki T, Ikkyu A, Hotta-Hirashima N, Kanno S, Kakizaki M, Yamada M, Wakana S, Yanagisawa M, Funato H. Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc Natl Acad Sci U S A 2019;116:16062-7. [PMID: 31337678 DOI: 10.1073/pnas.1906774116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
122 Liu L, Deng H, Tang X, Lu Y, Zhou J, Wang X, Zhao Y, Huang B, Shi Y. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc Natl Acad Sci U S A 2021;118:e2105838118. [PMID: 34330835 DOI: 10.1073/pnas.2105838118] [Reference Citation Analysis]
123 Hanley N, Paulissen J, Eastwood BJ, Gilmour G, Loomis S, Wafford KA, McCarthy A. Pharmacological Modulation of Sleep Homeostasis in Rat: Novel Effects of an mGluR2/3 Antagonist. Sleep 2019;42:zsz123. [PMID: 31106825 DOI: 10.1093/sleep/zsz123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Pavkovic IM, Kothare SV. Migraine and Sleep in Children: A Bidirectional Relationship. Pediatric Neurology 2020;109:20-7. [DOI: 10.1016/j.pediatrneurol.2019.12.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
125 Schneider L. Neurobiology and Neuroprotective Benefits of Sleep. Continuum (Minneap Minn) 2020;26:848-70. [PMID: 32756225 DOI: 10.1212/CON.0000000000000878] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
126 Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 2020;369:eabb0556. [DOI: 10.1126/science.abb0556] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
127 Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021:S1097-2765(21)00933-3. [PMID: 34798058 DOI: 10.1016/j.molcel.2021.10.026] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
128 Barlow IL, Rihel J. Zebrafish sleep: from geneZZZ to neuronZZZ. Curr Opin Neurobiol 2017;44:65-71. [PMID: 28391130 DOI: 10.1016/j.conb.2017.02.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
129 Li M, Cui J, Xu B, Wei Y, Fu C, Lv X, Xiong L, Qin D. Sleep Disturbances and Depression Are Co-morbid Conditions: Insights From Animal Models, Especially Non-human Primate Model. Front Psychiatry 2022;12:827541. [DOI: 10.3389/fpsyt.2021.827541] [Reference Citation Analysis]
130 Harding EC, Ba W, Zahir R, Yu X, Yustos R, Hsieh B, Lignos L, Vyssotski AL, Merkle FT, Constandinou TG, Franks NP, Wisden W. Nitric Oxide Synthase Neurons in the Preoptic Hypothalamus Are NREM and REM Sleep-Active and Lower Body Temperature. Front Neurosci 2021;15:709825. [PMID: 34720852 DOI: 10.3389/fnins.2021.709825] [Reference Citation Analysis]
131 Norimoto H, Fenk LA, Li H, Tosches MA, Gallego-flores T, Hain D, Reiter S, Kobayashi R, Macias A, Arends A, Klinkmann M, Laurent G. A claustrum in reptiles and its role in slow-wave sleep. Nature 2020;578:413-8. [DOI: 10.1038/s41586-020-1993-6] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 16.5] [Reference Citation Analysis]
132 Romagnoli S, Villa G, Fontanarosa L, Tofani L, Pinelli F, De Gaudio AR, Ricci Z. Sleep duration and architecture in non-intubated intensive care unit patients: an observational study. Sleep Medicine 2020;70:79-87. [DOI: 10.1016/j.sleep.2019.11.1265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
133 Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019;20:e46807. [PMID: 30804011 DOI: 10.15252/embr.201846807] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
134 Hutka P, Krivosova M, Muchova Z, Tonhajzerova I, Hamrakova A, Mlyncekova Z, Mokry J, Ondrejka I. Association of Sleep Architecture and Physiology with Depressive Disorder and Antidepressants Treatment. Int J Mol Sci 2021;22:1333. [PMID: 33572767 DOI: 10.3390/ijms22031333] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
135 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
136 Equihua-Benítez AC, Equihua-Benítez JA, Guzmán-Vásquez K, Prospero-García O, Drucker-Colín R. Orexin cell transplant reduces behavioral arrest severity in narcoleptic mice. Brain Res 2020;1745:146951. [PMID: 32531224 DOI: 10.1016/j.brainres.2020.146951] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
138 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
139 Thompson JA, Tekriwal A, Felsen G, Ozturk M, Telkes I, Wu J, Ince NF, Abosch A. Sleep patterns in Parkinson's disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg Psychiatry 2018;89:95-104. [PMID: 28866626 DOI: 10.1136/jnnp-2017-316115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
140 Lin L, Gupta S, Zheng WS, Si K, Zhu JJ. Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Mol Psychiatry 2021;26:443-55. [PMID: 33277628 DOI: 10.1038/s41380-020-00960-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
141 Kent BA, Feldman HH, Nygaard HB. Sleep and its regulation: An emerging pathogenic and treatment frontier in Alzheimer's disease. Prog Neurobiol 2021;197:101902. [PMID: 32877742 DOI: 10.1016/j.pneurobio.2020.101902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
142 Chen KS, Xu M, Zhang Z, Chang WC, Gaj T, Schaffer DV, Dan Y. A Hypothalamic Switch for REM and Non-REM Sleep. Neuron 2018;97:1168-1176.e4. [PMID: 29478915 DOI: 10.1016/j.neuron.2018.02.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 14.3] [Reference Citation Analysis]
143 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
144 Bergel A, Deffieux T, Demené C, Tanter M, Cohen I. Local hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. Nat Commun 2018;9:5364. [PMID: 30560939 DOI: 10.1038/s41467-018-07752-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
145 Huang Y, Li Y, Leng Z. Melatonin inhibits GABAergic neurons in the hypothalamus consistent with a reduction in wakefulness. NeuroReport 2020;31:92-8. [DOI: 10.1097/wnr.0000000000001374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
146 Lee DA, Liu J, Hong Y, Lane JM, Hill AJ, Hou SL, Wang H, Oikonomou G, Pham U, Engle J, Saxena R, Prober DA. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci Adv 2019;5:eaax4249. [PMID: 31763451 DOI: 10.1126/sciadv.aax4249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
147 Radulovic J, Jovasevic V, Meyer MA. Neurobiological mechanisms of state-dependent learning. Curr Opin Neurobiol 2017;45:92-8. [PMID: 28558266 DOI: 10.1016/j.conb.2017.05.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
148 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
149 Liu Y, Li Y, Yang B, Yu M, Zhang X, Bi L, Xu H. Glutamatergic Neurons of the Paraventricular Nucleus are Critical for the Control of Wakefulness. Neuroscience 2020;446:137-44. [PMID: 32860935 DOI: 10.1016/j.neuroscience.2020.08.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
150 Jiang J, Wang GY, Luo W, Xie H, Guan JS. Mammillary body regulates state-dependent fear by alternating cortical oscillations. Sci Rep 2018;8:13471. [PMID: 30194318 DOI: 10.1038/s41598-018-31622-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
151 Shi G, Xing L, Wu D, Bhattacharyya BJ, Jones CR, McMahon T, Chong SYC, Chen JA, Coppola G, Geschwind D, Krystal A, Ptáček LJ, Fu YH. A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors. Neuron 2019;103:1044-1055.e7. [PMID: 31473062 DOI: 10.1016/j.neuron.2019.07.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
152 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
153 Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018;9:56. [PMID: 29479335 DOI: 10.3389/fneur.2018.00056] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
154 Durkin JM, Aton SJ. How Sleep Shapes Thalamocortical Circuit Function in the Visual System. Annu Rev Vis Sci 2019;5:295-315. [PMID: 31283451 DOI: 10.1146/annurev-vision-091718-014715] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021;41:5440-52. [PMID: 34006590 DOI: 10.1523/JNEUROSCI.2912-20.2021] [Reference Citation Analysis]
156 Meng Q, Tan X, Jiang C, Xiong Y, Yan B, Zhang J. Tracking Eye Movements During Sleep in Mice. Front Neurosci 2021;15:616760. [PMID: 33716648 DOI: 10.3389/fnins.2021.616760] [Reference Citation Analysis]
157 Sinner MP, Masurat F, Ewbank JJ, Pujol N, Bringmann H. Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Curr Biol 2021;31:564-577.e12. [PMID: 33259791 DOI: 10.1016/j.cub.2020.10.076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]