BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015;93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Cited by in Crossref: 114] [Cited by in F6Publishing: 109] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Chang T, Chen C, Chen J. CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease. Cardiovasc Diabetol 2022;21. [DOI: 10.1186/s12933-022-01626-1] [Reference Citation Analysis]
2 Aryal P, Devkota SR, Jeevarajah D, Law R, Payne RJ, Bhusal RP, Stone MJ. Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022;:102382. [PMID: 35973511 DOI: 10.1016/j.jbc.2022.102382] [Reference Citation Analysis]
3 Asano T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Identification of the Binding Epitope of an Anti-mouse CCR4 Monoclonal Antibody, C4Mab-1. Monoclon Antib Immunodiagn Immunother 2022. [PMID: 35917564 DOI: 10.1089/mab.2022.0015] [Reference Citation Analysis]
4 Qin N, Zhang Y, Xu L, Liu W, Luo B. Maintenance of Epstein-Barr virus latency through interaction of LMP2A with CXCR4. Arch Virol 2022. [PMID: 35752684 DOI: 10.1007/s00705-022-05511-w] [Reference Citation Analysis]
5 Meng P, Huang J, Ling X, Zhou S, Wei J, Zhu M, Miao J, Shen W, Li J, Ye H, Niu H, Zhang Y, Zhou L. CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis via β-Catenin-Induced Mitochondrial Dysfunction. Front Cell Dev Biol 2022;10:862675. [DOI: 10.3389/fcell.2022.862675] [Reference Citation Analysis]
6 Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines Chattering in Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. Semin Cancer Biol 2022:S1044-579X(22)00077-3. [PMID: 35346801 DOI: 10.1016/j.semcancer.2022.03.021] [Reference Citation Analysis]
7 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022;206:812-22. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Pan Z, Zhu T, Liu Y, Zhang N. Role of the CXCL13/CXCR5 Axis in Autoimmune Diseases. Front Immunol 2022;13:850998. [DOI: 10.3389/fimmu.2022.850998] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bhusal RP, Aryal P, Devkota SR, Pokhrel R, Gunzburg MJ, Foster SR, Lim HD, Payne RJ, Wilce MCJ, Stone MJ. Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022;119:e2122105119. [PMID: 35217625 DOI: 10.1073/pnas.2122105119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022;23:1496. [PMID: 35163420 DOI: 10.3390/ijms23031496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Lattanzi R, Miele R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life 2022;12:172. [DOI: 10.3390/life12020172] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Crijns H, Adyns L, Ganseman E, Cambier S, Vandekerckhove E, Pörtner N, Vanbrabant L, Struyf S, Gerlza T, Kungl A, Proost P. Affinity and Specificity for Binding to Glycosaminoglycans Can Be Tuned by Adapting Peptide Length and Sequence. Int J Mol Sci 2021;23:447. [PMID: 35008874 DOI: 10.3390/ijms23010447] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, Ahmadiankia N, Faridhosseini R, Dastpak M, Shabgah AG, Matin MM. Mesenchymal Stem/Stromal Cells Overexpressing CXCR4R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell Transplant 2021;30:9636897211054498. [PMID: 34807749 DOI: 10.1177/09636897211054498] [Reference Citation Analysis]
15 Decalf J, Tom J, Mai E, Hernandez-Barry H, Noland CL, Vollmar BS, Li A, Li H, Xie D, Zhu L, Payandeh J, Wu C, Comps-Agrar L, Moussion C, Albert ML, Song A. A novel method to produce synthetic murine CXCL10 for efficient screening of functional variants. Bioorg Chem 2021;116:105376. [PMID: 34560560 DOI: 10.1016/j.bioorg.2021.105376] [Reference Citation Analysis]
16 Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021;22:7371. [PMID: 34298991 DOI: 10.3390/ijms22147371] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
17 Lai WY, Mueller A. Latest update on chemokine receptors as therapeutic targets. Biochem Soc Trans 2021;49:1385-95. [PMID: 34060588 DOI: 10.1042/BST20201114] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Ye J, Wang H, Cui L, Chu S, Chen N. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Res Bull 2021;174:268-80. [PMID: 34077795 DOI: 10.1016/j.brainresbull.2021.05.024] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Saednia S, Emami S, Molavipordanjani S, Abedi SM, Amiri FT, Hosseinimehr SJ. Synthesis and Biological Evaluation of 99mTc-Labeled Phenylpiperazine Derivatives as Selective Serotonin-7 Receptor Ligands for Brain Tumor Imaging. Mol Pharm 2021;18:2360-74. [PMID: 34027660 DOI: 10.1021/acs.molpharmaceut.1c00172] [Reference Citation Analysis]
20 Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. PLoS Comput Biol 2021;17:e1008593. [PMID: 34014914 DOI: 10.1371/journal.pcbi.1008593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 El-Zohairy MA, Zlotos DP, Berger MR, Adwan HH, Mandour YM. Discovery of Novel CCR5 Ligands as Anticolorectal Cancer Agents by Sequential Virtual Screening. ACS Omega 2021;6:10921-35. [PMID: 34056245 DOI: 10.1021/acsomega.1c00681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Shanthamurthy CD, Leviatan Ben-Arye S, Kumar NV, Yehuda S, Amon R, Woods RJ, Padler-Karavani V, Kikkeri R. Heparan Sulfate Mimetics Differentially Affect Homologous Chemokines and Attenuate Cancer Development. J Med Chem 2021;64:3367-80. [PMID: 33683903 DOI: 10.1021/acs.jmedchem.0c01800] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wang L, Li H, Lin J, He R, Chen M, Zhang Y, Liao Z, Zhang C. CCR2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice. Stem Cell Res Ther 2021;12:12. [PMID: 33413615 DOI: 10.1186/s13287-020-02065-z] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
24 Shi Y, Riese DJ 2nd, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020;11:574667. [PMID: 33363463 DOI: 10.3389/fphar.2020.574667] [Cited by in Crossref: 9] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
25 Gangele K, Gulati K, Joshi N, Kumar D, Poluri KM. Molecular insights into the differential structure-dynamics-stability features of interleukin-8 orthologs: Implications to functional specificity. Int J Biol Macromol 2020;164:3221-34. [PMID: 32853623 DOI: 10.1016/j.ijbiomac.2020.08.176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Fan M, Wu J, Li X, Jiang Y, Wang X, Bie M, Weng Y, Chen S, Chen B, An L, Zhang M, Huang G, Zhu M, Shi Q. CX3 CL1 promotes tumour cell by inducing tyrosine phosphorylation of cortactin in lung cancer. J Cell Mol Med 2021;25:132-46. [PMID: 33191645 DOI: 10.1111/jcmm.15887] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
27 Alhussien MN, Panda BSK, Kamboj A, Dang AK. Peripartum changes in the activity and expression of neutrophils may predispose to the postpartum occurrence of metritis in dairy cows. Res Vet Sci 2021;135:456-68. [PMID: 33229058 DOI: 10.1016/j.rvsc.2020.11.003] [Reference Citation Analysis]
28 Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021;109:969-89. [PMID: 33104270 DOI: 10.1002/JLB.2BT1018-715RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
29 Harms M, Gilg A, Ständker L, Beer AJ, Mayer B, Rasche V, Gruber CW, Münch J. Microtiter plate-based antibody-competition assay to determine binding affinities and plasma/blood stability of CXCR4 ligands. Sci Rep 2020;10:16036. [PMID: 32994431 DOI: 10.1038/s41598-020-73012-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
30 Scurci I, Akondi KB, Pinheiro I, Paolini-Bertrand M, Borgeat A, Cerini F, Hartley O. CCR5 tyrosine sulfation heterogeneity generates cell surface receptor subpopulations with different ligand binding properties. Biochim Biophys Acta Gen Subj 2021;1865:129753. [PMID: 32991968 DOI: 10.1016/j.bbagen.2020.129753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020;87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
32 Zou Y, Liang J, Li D, Fang J, Wang L, Wang J, Zhang J, Guo Q, Yan X, Tang H. Application of the chemokine-chemokine receptor axis increases the tumor-targeted migration ability of cytokine-induced killer cells in patients with colorectal cancer. Oncol Lett 2020;20:123-34. [PMID: 32565940 DOI: 10.3892/ol.2020.11539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Grigolato F, Egholm C, Impellizzieri D, Arosio P, Boyman O. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis. Allergy 2020;75:1382-93. [PMID: 31971608 DOI: 10.1111/all.14195] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
34 Chen B, Frangogiannis NG. Chemokines in Myocardial Infarction. J Cardiovasc Transl Res 2021;14:35-52. [PMID: 32415537 DOI: 10.1007/s12265-020-10006-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
35 Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020;11:483. [PMID: 32296423 DOI: 10.3389/fimmu.2020.00483] [Cited by in Crossref: 22] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
36 Rehman A, Baloch NU, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020;211:107529. [PMID: 32197794 DOI: 10.1016/j.pharmthera.2020.107529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
37 Mehta AY, Heimburg-Molinaro J, Cummings RD, Goth CK. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr Opin Struct Biol 2020;62:102-11. [PMID: 31927217 DOI: 10.1016/j.sbi.2019.12.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
38 Alhussien MN, Dang AK. Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: a review. Immunol Res 2019;67:21-38. [PMID: 30644032 DOI: 10.1007/s12026-019-9064-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
39 Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019;2:429-41. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Reference Citation Analysis]
40 Grande MA, Belstrøm D, Damgaard C, Holmstrup P, Könönen E, Gursoy M, Gursoy UK. Salivary concentrations of macrophage activation-related chemokines are influenced by non-surgical periodontal treatment: a 12-week follow-up study. J Oral Microbiol 2020;12:1694383. [PMID: 31893018 DOI: 10.1080/20002297.2019.1694383] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
41 Floranović MP, Veličković LJ. Effect of CXCL12 and Its Receptors on Unpredictable Renal Cell Carcinoma. Clin Genitourin Cancer 2020;18:e337-42. [PMID: 31882334 DOI: 10.1016/j.clgc.2019.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
42 Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S. A C-terminal CXCL8 peptide based on chemokine-glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 2019;157:173-84. [PMID: 31013364 DOI: 10.1111/imm.13063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
43 Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2020;45:108-22. [PMID: 31679840 DOI: 10.1016/j.tibs.2019.10.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
44 Scurci I, Martins E, Hartley O. CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2018;109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
45 Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019;20:E5287. [PMID: 31653015 DOI: 10.3390/ijms20215287] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
46 Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer's disease. Mol Cell Neurosci 2019;101:103414. [PMID: 31655116 DOI: 10.1016/j.mcn.2019.103414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
47 Guo F, Long L, Wang J, Wang Y, Liu Y, Wang L, Luo F. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy. Oncol Lett 2019;18:5699-708. [PMID: 31788042 DOI: 10.3892/ol.2019.10957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
48 Fox JC, Thomas MA, Dishman AF, Larsen O, Nakayama T, Yoshie O, Rosenkilde MM, Volkman BF. Structure-function guided modeling of chemokine-GPCR specificity for the chemokine XCL1 and its receptor XCR1. Sci Signal 2019;12:eaat4128. [PMID: 31481523 DOI: 10.1126/scisignal.aat4128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
49 Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019;56:139-60. [PMID: 27561663 DOI: 10.1007/s12016-016-8578-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
50 Jakobs BD, Spannagel L, Purvanov V, Uetz-von Allmen E, Matti C, Legler DF. Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. Int J Mol Sci 2019;20:E2597. [PMID: 31137829 DOI: 10.3390/ijms20102597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
51 Goldblatt J, Lawrenson RA, Muir L, Dattani S, Hoffland A, Tsuchiya T, Kanegasaki S, Sriskandan S, Pease JE. A Requirement for Neutrophil Glycosaminoglycans in Chemokine:Receptor Interactions Is Revealed by the Streptococcal Protease SpyCEP. J Immunol 2019;202:3246-55. [PMID: 31010851 DOI: 10.4049/jimmunol.1801688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
52 Eisenmesser EZ, Gottschlich A, Redzic JS, Paukovich N, Nix JC, Azam T, Zhang L, Zhao R, Kieft JS, The E, Meng X, Dinarello CA. Interleukin-37 monomer is the active form for reducing innate immunity. Proc Natl Acad Sci U S A 2019;116:5514-22. [PMID: 30819901 DOI: 10.1073/pnas.1819672116] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
53 Redondo-Muñoz J, García-Pardo A, Teixidó J. Molecular Players in Hematologic Tumor Cell Trafficking. Front Immunol 2019;10:156. [PMID: 30787933 DOI: 10.3389/fimmu.2019.00156] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
54 Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019;286:1815-37. [PMID: 30637950 DOI: 10.1111/febs.14748] [Cited by in Crossref: 31] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
55 Bae H, Lim W, Bazer FW, Whang KY, Song G. Mitigation of ER-stress and inflammation by chemokine (C-C motif) ligand 21 during early pregnancy. Dev Comp Immunol 2019;94:73-84. [PMID: 30711450 DOI: 10.1016/j.dci.2019.01.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
56 Stebegg M, Kumar SD, Silva-Cayetano A, Fonseca VR, Linterman MA, Graca L. Regulation of the Germinal Center Response. Front Immunol 2018;9:2469. [PMID: 30410492 DOI: 10.3389/fimmu.2018.02469] [Cited by in Crossref: 71] [Cited by in F6Publishing: 108] [Article Influence: 17.8] [Reference Citation Analysis]
57 Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018;19:E3217. [PMID: 30340330 DOI: 10.3390/ijms19103217] [Cited by in Crossref: 89] [Cited by in F6Publishing: 121] [Article Influence: 22.3] [Reference Citation Analysis]
58 Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018;293:19092-100. [PMID: 30305389 DOI: 10.1074/jbc.RA118.004370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Lattanzi R, Maftei D, Negri L, Fusco I, Miele R. PK2β ligand, a splice variant of prokineticin 2, is able to modulate and drive signaling through PKR1 receptor. Neuropeptides 2018;71:32-42. [DOI: 10.1016/j.npep.2018.06.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
60 Nerviani A, Pitzalis C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 2018;104:333-41. [PMID: 29947426 DOI: 10.1002/JLB.3MR0218-062R] [Cited by in Crossref: 16] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
61 Alkhouri N, Poordad F, Lawitz E. Management of nonalcoholic fatty liver disease: Lessons learned from type 2 diabetes. Hepatol Commun. 2018;2:778-785. [PMID: 30027137 DOI: 10.1002/hep4.1195] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
62 Bruce KE, Rued BE, Tsui HT, Winkler ME. The Opp (AmiACDEF) Oligopeptide Transporter Mediates Resistance of Serotype 2 Streptococcus pneumoniae D39 to Killing by Chemokine CXCL10 and Other Antimicrobial Peptides. J Bacteriol 2018;200:e00745-17. [PMID: 29581408 DOI: 10.1128/JB.00745-17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
63 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 228] [Cited by in F6Publishing: 345] [Article Influence: 57.0] [Reference Citation Analysis]
64 Abayev M, Rodrigues JPGLM, Srivastava G, Arshava B, Jaremko Ł, Jaremko M, Naider F, Levitt M, Anglister J. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J 2018;285:1988-2003. [PMID: 29619777 DOI: 10.1111/febs.14460] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
65 Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong YK, Bennett KL, Kain R, Detmar M, Sixt M, Jackson DG, Kerjaschki D. Lymphatic exosomes promote dendritic cell migration along guidance cues. J Cell Biol 2018;217:2205-21. [PMID: 29650776 DOI: 10.1083/jcb.201612051] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
66 Porras G, Ayuso MS, González-Manchón C. Leukocyte-endothelial cell interaction is enhanced in podocalyxin-deficient mice. Int J Biochem Cell Biol 2018;99:72-9. [PMID: 29604348 DOI: 10.1016/j.biocel.2018.03.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
67 Bird EV, Iannitti T, Christmas CR, Obara I, Andreev VI, King AE, Boissonade FM. A Novel Role for Lymphotactin (XCL1) Signaling in the Nervous System: XCL1 Acts via its Receptor XCR1 to Increase Trigeminal Neuronal Excitability. Neuroscience 2018;379:334-49. [PMID: 29588250 DOI: 10.1016/j.neuroscience.2018.03.030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 McNaughton EF, Eustace AD, King S, Sessions RB, Kay A, Farris M, Broadbridge R, Kehoe O, Kungl AJ, Middleton J. Novel Anti-Inflammatory Peptides Based on Chemokine-Glycosaminoglycan Interactions Reduce Leukocyte Migration and Disease Severity in a Model of Rheumatoid Arthritis. J Immunol 2018;200:3201-17. [PMID: 29572348 DOI: 10.4049/jimmunol.1701187] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
69 Fedechkin SO, George NL, Wolff JT, Kauvar LM, DuBois RM. Structures of respiratory syncytial virus G antigen bound to broadly neutralizing antibodies. Sci Immunol 2018;3:eaar3534. [PMID: 29523582 DOI: 10.1126/sciimmunol.aar3534] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
70 Eaton JRO, Alenazi Y, Singh K, Davies G, Geis-Asteggiante L, Kessler B, Robinson CV, Kawamura A, Bhattacharya S. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins. J Biol Chem 2018;293:6134-46. [PMID: 29487134 DOI: 10.1074/jbc.RA117.000487] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
71 Crawford MA, Margulieux KR, Singh A, Nakamoto RK, Hughes MA. Mechanistic insights and therapeutic opportunities of antimicrobial chemokines. Semin Cell Dev Biol 2019;88:119-28. [PMID: 29432954 DOI: 10.1016/j.semcdb.2018.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
72 Chen YC, Li KM, Zarivach R, Sun YJ, Sue SC. Human CCL5 trimer: expression, purification and initial crystallographic studies. Acta Crystallogr F Struct Biol Commun 2018;74:82-5. [PMID: 29400316 DOI: 10.1107/S2053230X17018544] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
73 Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla-Movilla S. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol 2018;95:121-31. [PMID: 29288743 DOI: 10.1016/j.biocel.2017.12.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 45] [Article Influence: 6.8] [Reference Citation Analysis]
74 Lim W, Bae H, Bazer FW, Song G. C-C motif chemokine ligand 23 abolishes ER stress- and LPS-induced reduction in proliferation of bovine endometrial epithelial cells. J Cell Physiol 2018;233:3529-39. [DOI: 10.1002/jcp.26210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
75 Lee SJ, Kang SE, Kang EH, Choi BY, Masek-Hammerman K, Syed J, Zhan Y, Neff-Phillips K, Park JK, Lee EY, Lee EB, Song YW. CXCL10/CXCR3 axis is associated with disease activity and the development of mucocutaneous lesions in patients with Behçet's disease. Sci Rep 2017;7:14720. [PMID: 29116188 DOI: 10.1038/s41598-017-15189-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
76 Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017;18:E2088. [PMID: 28974038 DOI: 10.3390/ijms18102088] [Cited by in Crossref: 68] [Cited by in F6Publishing: 88] [Article Influence: 13.6] [Reference Citation Analysis]
77 Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB, Volkman BF. Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. Int J Mol Sci 2017;18:E1894. [PMID: 28869519 DOI: 10.3390/ijms18091894] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
78 Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017;46:175-98. [PMID: 28532213 DOI: 10.1146/annurev-biophys-051013-022942] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
79 Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017;10:E70. [PMID: 28792472 DOI: 10.3390/ph10030070] [Cited by in Crossref: 57] [Cited by in F6Publishing: 67] [Article Influence: 11.4] [Reference Citation Analysis]
80 Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017;18:E1692. [PMID: 28771176 DOI: 10.3390/ijms18081692] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
81 Singh K, Davies G, Alenazi Y, Eaton JRO, Kawamura A, Bhattacharya S. Yeast surface display identifies a family of evasins from ticks with novel polyvalent CC chemokine-binding activities. Sci Rep 2017;7:4267. [PMID: 28655871 DOI: 10.1038/s41598-017-04378-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
82 Troupiotis-Tsaïlaki A, Zachmann J, González-Gil I, Gonzalez A, Ortega-Gutiérrez S, López-Rodríguez ML, Pardo L, Govaerts C. Ligand chain length drives activation of lipid G protein-coupled receptors. Sci Rep 2017;7:2020. [PMID: 28515494 DOI: 10.1038/s41598-017-02104-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
83 Sparre-ulrich A, Gabe M, Gasbjerg L, Christiansen C, Svendsen B, Hartmann B, Holst J, Rosenkilde M. GIP(3–30)NH2 is a potent competitive antagonist of the GIP receptor and effectively inhibits GIP-mediated insulin, glucagon, and somatostatin release. Biochemical Pharmacology 2017;131:78-88. [DOI: 10.1016/j.bcp.2017.02.012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
84 Pontejo SM, Murphy PM. Two glycosaminoglycan-binding domains of the mouse cytomegalovirus-encoded chemokine MCK-2 are critical for oligomerization of the full-length protein. J Biol Chem 2017;292:9613-26. [PMID: 28432120 DOI: 10.1074/jbc.M117.785121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
85 Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017;60:4735-79. [PMID: 28165741 DOI: 10.1021/acs.jmedchem.6b01309] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 11.4] [Reference Citation Analysis]
86 Peres A, Lima D, Dorneles G, Teixeira B, Vianna P, Chies J, Stocchero C. Expression of CCr5 on immune cells after eccentric or concentric isokinetic exercise. IES 2017;25:73-8. [DOI: 10.3233/ies-160647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
87 Targher G, Byrne CD. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat Rev Nephrol. 2017;13:297-310. [PMID: 28218263 DOI: 10.1038/nrneph.2017.16] [Cited by in Crossref: 115] [Cited by in F6Publishing: 142] [Article Influence: 23.0] [Reference Citation Analysis]
88 Braga TT, Correa-Costa M, Silva RC, Cruz MC, Hiyane MI, da Silva JS, Perez KR, Cuccovia IM, Camara NOS. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology 2018;26:403-11. [PMID: 28168553 DOI: 10.1007/s10787-017-0317-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
89 Karlshøj S, Amarandi RM, Larsen O, Daugvilaite V, Steen A, Brvar M, Pui A, Frimurer TM, Ulven T, Rosenkilde MM. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). J Biol Chem 2016;291:26860-74. [PMID: 27834679 DOI: 10.1074/jbc.M116.740183] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
90 Howell DW, Duran CL, Tsai S, Bondos SE, Bayless KJ. Functionalization of Ultrabithorax Materials with Vascular Endothelial Growth Factor Enhances Angiogenic Activity. Biomacromolecules 2016;17:3558-69. [DOI: 10.1021/acs.biomac.6b01068] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
91 Berg C, Spiess K, Lüttichau HR, Rosenkilde MM. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5. Pharmacol Res Perspect 2016;4:e00262. [PMID: 28097000 DOI: 10.1002/prp2.262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
92 Roy I, Getschman AE, Volkman BF, Dwinell MB. Exploiting agonist biased signaling of chemokines to target cancer. Mol Carcinog 2017;56:804-13. [PMID: 27648825 DOI: 10.1002/mc.22571] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
93 Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci U S A 2016;113:9928-33. [PMID: 27543332 DOI: 10.1073/pnas.1601278113] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 10.8] [Reference Citation Analysis]
94 González-motos V, Kropp KA, Viejo-borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine & Growth Factor Reviews 2016;30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
95 Margulieux KR, Fox JW, Nakamoto RK, Hughes MA. CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis. mBio 2016;7:e00334-16. [PMID: 27165799 DOI: 10.1128/mBio.00334-16] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
96 Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
97 Liang WG, Triandafillou CG, Huang TY, Zulueta MM, Banerjee S, Dinner AR, Hung SC, Tang WJ. Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci U S A 2016;113:5000-5. [PMID: 27091995 DOI: 10.1073/pnas.1523981113] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
98 Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov. 2016;15:249-274. [PMID: 26794269 DOI: 10.1038/nrd.2015.3] [Cited by in Crossref: 229] [Cited by in F6Publishing: 256] [Article Influence: 38.2] [Reference Citation Analysis]
99 Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol 2016;99:869-82. [PMID: 26729814 DOI: 10.1189/jlb.2MR0815-380R] [Cited by in Crossref: 88] [Cited by in F6Publishing: 101] [Article Influence: 14.7] [Reference Citation Analysis]
100 Lubman OY, Fremont DH. Parallel Evolution of Chemokine Binding by Structurally Related Herpesvirus Decoy Receptors. Structure 2016;24:57-69. [PMID: 26671708 DOI: 10.1016/j.str.2015.10.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
101 Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2016;570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
102 Veldkamp CT, Koplinski CA, Jensen DR, Peterson FC, Smits KM, Smith BL, Johnson SK, Lettieri C, Buchholz WG, Solheim JC, Volkman BF. Production of Recombinant Chemokines and Validation of Refolding. Methods Enzymol 2016;570:539-65. [PMID: 26921961 DOI: 10.1016/bs.mie.2015.09.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
103 Herring CA, Singer CM, Ermakova EA, Khairutdinov BI, Zuev YF, Jacobs DJ, Nesmelova IV. Dynamics and thermodynamic properties of CXCL7 chemokine. Proteins 2015;83:1987-2007. [PMID: 26297927 DOI: 10.1002/prot.24913] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
104 Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H. Conformational states of the full-length glucagon receptor. Nat Commun 2015;6:7859. [PMID: 26227798 DOI: 10.1038/ncomms8859] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 12.4] [Reference Citation Analysis]
105 Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, Handel TM. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem 2015;290:22385-97. [PMID: 26216880 DOI: 10.1074/jbc.M115.675108] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
106 Veldkamp CT, Kiermaier E, Gabel-Eissens SJ, Gillitzer ML, Lippner DR, DiSilvio FA, Mueller CJ, Wantuch PL, Chaffee GR, Famiglietti MW, Zgoba DM, Bailey AA, Bah Y, Engebretson SJ, Graupner DR, Lackner ER, LaRosa VD, Medeiros T, Olson ML, Phillips AJ, Pyles H, Richard AM, Schoeller SJ, Touzeau B, Williams LG, Sixt M, Peterson FC. Solution Structure of CCL19 and Identification of Overlapping CCR7 and PSGL-1 Binding Sites. Biochemistry 2015;54:4163-6. [PMID: 26115234 DOI: 10.1021/acs.biochem.5b00560] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
107 Pomin VH, Mulloy B. Current structural biology of the heparin interactome. Curr Opin Struct Biol 2015;34:17-25. [PMID: 26038285 DOI: 10.1016/j.sbi.2015.05.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
108 Groom JR. Chemokines in cellular positioning and human disease. Immunol Cell Biol 2015;93:328-9. [DOI: 10.1038/icb.2015.27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
109 Zsila F. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine. Phys Chem Chem Phys 2015;17:24560-5. [DOI: 10.1039/c5cp03153b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]