BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pais TF, Szegő ÉM, Marques O, Miller-Fleming L, Antas P, Guerreiro P, de Oliveira RM, Kasapoglu B, Outeiro TF. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 2013;32:2603-16. [PMID: 24013120 DOI: 10.1038/emboj.2013.200] [Cited by in Crossref: 107] [Cited by in F6Publishing: 106] [Article Influence: 11.9] [Reference Citation Analysis]
Number Citing Articles
1 Kim YY, Hur G, Lee SW, Lee SJ, Lee S, Kim SH, Rho MC. AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcεRI/TGF-β signaling pathway. Pharmacol Res 2020;159:105027. [PMID: 32565308 DOI: 10.1016/j.phrs.2020.105027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
2 Lee AS, Jung YJ, Kim D, Nguyen-thanh T, Kang KP, Lee S, Park SK, Kim W. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochemical and Biophysical Research Communications 2014;450:1363-9. [DOI: 10.1016/j.bbrc.2014.06.135] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
3 Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science 2020;370:eaba7721. [PMID: 33184181 DOI: 10.1126/science.aba7721] [Cited by in Crossref: 82] [Cited by in F6Publishing: 43] [Article Influence: 41.0] [Reference Citation Analysis]
4 Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021;15:746631. [PMID: 34630044 DOI: 10.3389/fncel.2021.746631] [Reference Citation Analysis]
5 Xie XQ, Zhang P, Tian B, Chen XQ. Downregulation of NAD-Dependent Deacetylase SIRT2 Protects Mouse Brain Against Ischemic Stroke. Mol Neurobiol 2017;54:7251-61. [DOI: 10.1007/s12035-016-0173-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
6 Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. J Neurochem 2016;136:581-93. [PMID: 26546505 DOI: 10.1111/jnc.13423] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 9.6] [Reference Citation Analysis]
7 Chen H, Wu D, Ding X, Ying W. SIRT2 is required for lipopolysaccharide-induced activation of BV2 microglia. Neuroreport 2015;26:88-93. [PMID: 25536118 DOI: 10.1097/WNR.0000000000000305] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
8 Zheng M, Du X, Zhao L, Sun H, Chen M, Yang X. Elevated plasma Sirtuin2 level predicts heart failure after acute myocardial infarction. J Thorac Dis 2021;13:50-9. [PMID: 33569184 DOI: 10.21037/jtd-20-2234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gomes P, Fleming Outeiro T, Cavadas C. Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends in Pharmacological Sciences 2015;36:756-68. [DOI: 10.1016/j.tips.2015.08.001] [Cited by in Crossref: 131] [Cited by in F6Publishing: 126] [Article Influence: 18.7] [Reference Citation Analysis]
10 Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun 2015;6:6263. [PMID: 25672491 DOI: 10.1038/ncomms7263] [Cited by in Crossref: 158] [Cited by in F6Publishing: 135] [Article Influence: 22.6] [Reference Citation Analysis]
11 Kitada M, Ogura Y, Monno I, Koya D. Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Front Endocrinol (Lausanne) 2019;10:187. [PMID: 30972029 DOI: 10.3389/fendo.2019.00187] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 21.3] [Reference Citation Analysis]
12 Schiedel M, Rumpf T, Karaman B, Lehotzky A, Gerhardt S, Ovádi J, Sippl W, Einsle O, Jung M. Strukturbasierte Entwicklung einer Affinitätssonde für Sirtuin 2. Angew Chem 2016;128:2293-7. [DOI: 10.1002/ange.201509843] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Xu WN, Yang RZ, Zheng HL, Yu W, Zheng XF, Li B, Jiang SD, Jiang LS. PGC-1α acts as an mediator of Sirtuin2 to protect annulus fibrosus from apoptosis induced by oxidative stress through restraining mitophagy. Int J Biol Macromol 2019;136:1007-17. [PMID: 31238070 DOI: 10.1016/j.ijbiomac.2019.06.163] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
14 Jung HY, Yoo DY, Kim JW, Kim DW, Choi JH, Chung JY, Won MH, Yoon YS, Hwang IK. Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation. Lab Anim Res 2016;32:224-30. [PMID: 28053616 DOI: 10.5625/lar.2016.32.4.224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol 2020;341:577164. [PMID: 32007785 DOI: 10.1016/j.jneuroim.2020.577164] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
16 Singh P, Hanson PS, Morris CM. Sirtuin-2 Protects Neural Cells from Oxidative Stress and Is Elevated in Neurodegeneration. Parkinsons Dis 2017;2017:2643587. [PMID: 28634568 DOI: 10.1155/2017/2643587] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
17 Xu H, Li J, Yu X, Zhang H, Gao H, Wang B, Wang Y. Sirtuin 2 expression levels may predict the progression of sepsis survivors to chronic critical illness. Ann Transl Med 2021;9:150. [PMID: 33569452 DOI: 10.21037/atm-20-7975] [Reference Citation Analysis]
18 Wang X, Ma J, Fu Q, Zhu L, Zhang Z, Zhang F, Lu N, Chen A. Role of hypoxia‑inducible factor‑1α in autophagic cell death in microglial cells induced by hypoxia. Mol Med Rep 2017;15:2097-105. [PMID: 28259912 DOI: 10.3892/mmr.2017.6277] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang L, Li C, Chen W, Song C, Zhang X, Yang F, Wang C, Zhang Y, Qian S, Wang Z, Yang L. Discovery of (5-Phenylfuran-2-yl)methanamine Derivatives as New Human Sirtuin 2 Inhibitors. Molecules 2019;24:E2724. [PMID: 31357491 DOI: 10.3390/molecules24152724] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Satoh A, Imai SI, Guarente L. The brain, sirtuins, and ageing. Nat Rev Neurosci 2017;18:362-74. [PMID: 28515492 DOI: 10.1038/nrn.2017.42] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 14.8] [Reference Citation Analysis]
21 Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 2014;71:3969-85. [PMID: 25008043 DOI: 10.1007/s00018-014-1670-8] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 8.6] [Reference Citation Analysis]
22 Quinti L, Casale M, Moniot S, Pais T, Van kanegan M, Kaltenbach L, Pallos J, Lim R, Naidu S, Runne H, Meisel L, Rauf N, Leyfer D, Maxwell M, Saiah E, Landers J, Luthi-carter R, Abagyan R, Dinkova-kostova A, Steegborn C, Marsh J, Lo D, Thompson L, Kazantsev A. SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models. Cell Chemical Biology 2016;23:849-61. [DOI: 10.1016/j.chembiol.2016.05.015] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
23 Bharadwaj S, Dubey A, Kamboj NK, Sahoo AK, Kang SG, Yadava U. Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Sci Rep 2021;11:10169. [PMID: 33986372 DOI: 10.1038/s41598-021-89627-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhou S, Tang X, Chen HZ. Sirtuins and Insulin Resistance. Front Endocrinol (Lausanne) 2018;9:748. [PMID: 30574122 DOI: 10.3389/fendo.2018.00748] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
25 Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Dziedzicka-Wasylewska M. Stathmin reduction and cytoskeleton rearrangement in rat nucleus accumbens in response to clozapine and risperidone treatment - Comparative proteomic study. Neuroscience 2016;316:63-81. [PMID: 26708747 DOI: 10.1016/j.neuroscience.2015.12.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
26 Swyter S, Schiedel M, Monaldi D, Szunyogh S, Lehotzky A, Rumpf T, Ovádi J, Sippl W, Jung M. New chemical tools for probing activity and inhibition of the NAD+-dependent lysine deacylase sirtuin 2. Philos Trans R Soc Lond B Biol Sci 2018;373:20170083. [PMID: 29685963 DOI: 10.1098/rstb.2017.0083] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
27 Kapellos TS, Iqbal AJ. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediators Inflamm 2016;2016:6591703. [PMID: 27143818 DOI: 10.1155/2016/6591703] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
28 Yu Y, An X, Fan D. Histone Deacetylase Sirtuin 2 Enhances Viability of Trophoblasts Through p65-Mediated MicroRNA-146a/ACKR2 Axis. Reprod Sci 2021;28:1370-81. [PMID: 33409877 DOI: 10.1007/s43032-020-00398-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
30 Mendes KL, Lelis DDF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways. Cytokine & Growth Factor Reviews 2017;38:98-105. [DOI: 10.1016/j.cytogfr.2017.11.001] [Cited by in Crossref: 101] [Cited by in F6Publishing: 97] [Article Influence: 20.2] [Reference Citation Analysis]
31 Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. Biology (Basel) 2021;10:194. [PMID: 33806509 DOI: 10.3390/biology10030194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sa de Almeida J, Vargas M, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Miranda-Lourenço C, Sebastião AM, Diógenes MJ, Pais TF. Microglial Sirtuin 2 Shapes Long-Term Potentiation in Hippocampal Slices. Front Neurosci 2020;14:614. [PMID: 32625056 DOI: 10.3389/fnins.2020.00614] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Jiao F, Wang Y, Zhang W, Zhang H, Chen Q, Wang L, Shi C, Gong Z. AGK2 Alleviates Lipopolysaccharide Induced Neuroinflammation through Regulation of Mitogen-Activated Protein Kinase Phosphatase-1. J Neuroimmune Pharmacol 2020;15:196-208. [PMID: 31786712 DOI: 10.1007/s11481-019-09890-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 2014;21:1766-801. [PMID: 24597893 DOI: 10.1089/ars.2013.5745] [Cited by in F6Publishing: 171] [Reference Citation Analysis]
35 Fumagalli M, Lombardi M, Gressens P, Verderio C. How to reprogram microglia toward beneficial functions. Glia 2018;66:2531-49. [PMID: 30195261 DOI: 10.1002/glia.23484] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
36 Tokizane K, Imai SI. NAD+ oscillation and hypothalamic neuronal functions. Fac Rev 2021;10:42. [PMID: 34046646 DOI: 10.12703/r/10-42] [Reference Citation Analysis]
37 Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019;55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
38 Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2019;11:372. [PMID: 31998119 DOI: 10.3389/fnagi.2019.00372] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
39 Zhang Y, Chi D. Overexpression of SIRT2 Alleviates Neuropathic Pain and Neuroinflammation Through Deacetylation of Transcription Factor Nuclear Factor-Kappa B. Inflammation 2018;41:569-78. [DOI: 10.1007/s10753-017-0713-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
40 Jayasena T, Poljak A, Braidy N, Zhong L, Rowlands B, Muenchhoff J, Grant R, Smythe G, Teo C, Raftery M, Sachdev P. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System. Sci Rep 2016;6:35391. [PMID: 27762282 DOI: 10.1038/srep35391] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
41 Giordano R, Petersen KK, Andersen HH, Simonsen O, Arendt-Nielsen L. Serum Inflammatory Markers in Patients With Knee Osteoarthritis: A Proteomic Approach. Clin J Pain 2020;36:229-37. [PMID: 31977377 DOI: 10.1097/AJP.0000000000000804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Preyat N, Leo O. Complex role of nicotinamide adenine dinucleotide in the regulation of programmed cell death pathways. Biochem Pharmacol 2016;101:13-26. [PMID: 26343585 DOI: 10.1016/j.bcp.2015.08.110] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
43 Kara M, Yolbaş S, Şahin C, Koca SS. Changes in sirtuin 2 and sirtuin 3 mRNA expressions in rheumatoid arthritis. Eur J Rheumatol 2017;4:83-6. [PMID: 28638677 DOI: 10.5152/eurjrheum.2017.16056] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
44 Gogoi M, Chandra K, Sarikhani M, Ramani R, Sundaresan NR, Chakravortty D. Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells. PLoS Pathog 2018;14:e1007437. [PMID: 30452468 DOI: 10.1371/journal.ppat.1007437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
45 Echavarría R, Garcia D, Figueroa F, Franco-Acevedo A, Palomino J, Portilla-Debuen E, Goldaraz-Monraz MP, Moreno-Carranza B, Melo Z. Anesthetic preconditioning increases sirtuin 2 gene expression in a renal ischemia reperfusion injury model. Minerva Urol Nefrol 2020;72:243-9. [PMID: 31726818 DOI: 10.23736/S0393-2249.19.03361-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
46 Romeo-Guitart D, Leiva-Rodríguez T, Espinosa-Alcantud M, Sima N, Vaquero A, Domínguez-Martín H, Ruano D, Casas C. SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death Dis 2018;9:531. [PMID: 29748539 DOI: 10.1038/s41419-018-0553-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
47 Szegő ÉM, Outeiro TF, Kazantsev AG. Sirtuins in Brain and Neurodegenerative Disease. Introductory Review on Sirtuins in Biology, Aging, and Disease. Elsevier; 2018. pp. 175-95. [DOI: 10.1016/b978-0-12-813499-3.00013-7] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
48 Wang D, Shi J, Lv S, Xu W, Li J, Ge W, Xiao C, Geng D, Liu Y. Artesunate Attenuates Lipopolysaccharide-Stimulated Proinflammatory Responses by Suppressing TLR4, MyD88 Expression, and NF-κB Activation in Microglial Cells. Inflammation 2015;38:1925-32. [DOI: 10.1007/s10753-015-0172-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
49 Cardoso F, Castro F, Moreira-Teixeira L, Sousa J, Torrado E, Silvestre R, Castro AG, Saraiva M, Pais TF. Myeloid Sirtuin 2 Expression Does Not Impact Long-Term Mycobacterium tuberculosis Control. PLoS One 2015;10:e0131904. [PMID: 26135889 DOI: 10.1371/journal.pone.0131904] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
50 Lo Sasso G, Menzies KJ, Mottis A, Piersigilli A, Perino A, Yamamoto H, Schoonjans K, Auwerx J. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS One 2014;9:e103573. [PMID: 25072851 DOI: 10.1371/journal.pone.0103573] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 7.9] [Reference Citation Analysis]
51 Poljsak B. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way. Rejuvenation Res 2018;21:210-24. [PMID: 28756747 DOI: 10.1089/rej.2017.1975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
52 Sun S, Han X, Li X, Song Q, Lu M, Jia M, Ding J, Hu G. MicroRNA-212-5p Prevents Dopaminergic Neuron Death by Inhibiting SIRT2 in MPTP-Induced Mouse Model of Parkinson's Disease. Front Mol Neurosci 2018;11:381. [PMID: 30364275 DOI: 10.3389/fnmol.2018.00381] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
53 Lin J, Sun B, Jiang C, Hong H, Zheng Y. Sirt2 suppresses inflammatory responses in collagen-induced arthritis. Biochemical and Biophysical Research Communications 2013;441:897-903. [DOI: 10.1016/j.bbrc.2013.10.153] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 5.2] [Reference Citation Analysis]
54 Foolad F, Khodagholi F, Javan M. Sirtuins in Multiple Sclerosis: The crossroad of neurodegeneration, autoimmunity and metabolism. Mult Scler Relat Disord. 2019;34:47-58. [PMID: 31228716 DOI: 10.1016/j.msard.2019.06.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
55 Satoh A, Imai S. Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 2014;5:4211. [PMID: 24967620 DOI: 10.1038/ncomms5211] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
56 Gámez-García A, Vazquez BN. Nuclear Sirtuins and the Aging of the Immune System. Genes (Basel) 2021;12:1856. [PMID: 34946805 DOI: 10.3390/genes12121856] [Reference Citation Analysis]
57 Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2020;28:345-62. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
58 Schiedel M, Rumpf T, Karaman B, Lehotzky A, Gerhardt S, Ovádi J, Sippl W, Einsle O, Jung M. Structure-Based Development of an Affinity Probe for Sirtuin 2. Angew Chem Int Ed 2016;55:2252-6. [DOI: 10.1002/anie.201509843] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
59 Katare PB, Nizami HL, Paramesha B, Dinda AK, Banerjee SK. Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation. Sci Rep 2020;10:19232. [PMID: 33159115 DOI: 10.1038/s41598-020-75301-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
60 Neo SH, Tang BL. Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. Sirtuins in Health and Disease. Elsevier; 2018. pp. 105-45. [DOI: 10.1016/bs.pmbts.2017.11.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
61 Ciarlo E, Heinonen T, Théroude C, Herderschee J, Mombelli M, Lugrin J, Pfefferlé M, Tyrrell B, Lensch S, Acha-Orbea H, Le Roy D, Auwerx J, Roger T. Sirtuin 2 Deficiency Increases Bacterial Phagocytosis by Macrophages and Protects from Chronic Staphylococcal Infection. Front Immunol 2017;8:1037. [PMID: 28894448 DOI: 10.3389/fimmu.2017.01037] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
62 Harrison IF, Smith AD, Dexter DT. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci Lett 2018;666:48-57. [PMID: 29273397 DOI: 10.1016/j.neulet.2017.12.037] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
63 Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2018;38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 12.0] [Reference Citation Analysis]
64 Volmar C, Wahlestedt C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics 2015;1:20-7. [DOI: 10.1016/j.nepig.2014.10.002] [Cited by in Crossref: 84] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
65 Schiedel M, Daub H, Itzen A, Jung M. Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. Chembiochem 2020;21:1161-6. [PMID: 31692222 DOI: 10.1002/cbic.201900527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Krey L, Lühder F, Kusch K, Czech-Zechmeister B, Könnecke B, Fleming Outeiro T, Trendelenburg G. Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice. J Cereb Blood Flow Metab 2015;35:2080-8. [PMID: 26219598 DOI: 10.1038/jcbfm.2015.178] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
67 Diaz-Perdigon T, Belloch FB, Ricobaraza A, Elboray EE, Suzuki T, Tordera RM, Puerta E. Early sirtuin 2 inhibition prevents age-related cognitive decline in a senescence-accelerated mouse model. Neuropsychopharmacology 2020;45:347-57. [PMID: 31471557 DOI: 10.1038/s41386-019-0503-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
68 Schiedel M, Rumpf T, Karaman B, Lehotzky A, Oláh J, Gerhardt S, Ovádi J, Sippl W, Einsle O, Jung M. Aminothiazoles as Potent and Selective Sirt2 Inhibitors: A Structure–Activity Relationship Study. J Med Chem 2016;59:1599-612. [DOI: 10.1021/acs.jmedchem.5b01517] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
69 Tang XL, Wang X, Fang G, Zhao YL, Yan J, Zhou Z, Sun R, Luo AL, Li SY. Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice. J Nutr Biochem 2021;90:108579. [PMID: 33388350 DOI: 10.1016/j.jnutbio.2020.108579] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
70 Jung YJ, Lee AS, Nguyen-Thanh T, Kim D, Kang KP, Lee S, Park SK, Kim W. SIRT2 Regulates LPS-Induced Renal Tubular CXCL2 and CCL2 Expression. J Am Soc Nephrol 2015;26:1549-60. [PMID: 25349202 DOI: 10.1681/ASN.2014030226] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
71 Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021;22:3107. [PMID: 33803627 DOI: 10.3390/ijms22063107] [Reference Citation Analysis]
72 Guest J, Guillemin GJ, Heng B, Grant R. Lycopene Pretreatment Ameliorates Acute Ethanol Induced NAD(+) Depletion in Human Astroglial Cells. Oxid Med Cell Longev 2015;2015:741612. [PMID: 26075038 DOI: 10.1155/2015/741612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
73 Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, Oláh J, Ovádi J, Sippl W, Jung M. Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). J Med Chem 2018;61:482-91. [DOI: 10.1021/acs.jmedchem.6b01872] [Cited by in Crossref: 121] [Cited by in F6Publishing: 117] [Article Influence: 24.2] [Reference Citation Analysis]
74 Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Le TM, Shiraishi Y, Ozaki N, Yamamoto Y, Sugawara A, Okamoto H, Higashida H, Kitao Y, Hori O. Deletion of CD38 Suppresses Glial Activation and Neuroinflammation in a Mouse Model of Demyelination. Front Cell Neurosci 2019;13:258. [PMID: 31244614 DOI: 10.3389/fncel.2019.00258] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
75 Guerreiro PS, Coelho JE, Sousa-Lima I, Macedo P, Lopes LV, Outeiro TF, Pais TF. Mutant A53T α-Synuclein Improves Rotarod Performance Before Motor Deficits and Affects Metabolic Pathways. Neuromolecular Med 2017;19:113-21. [PMID: 27535567 DOI: 10.1007/s12017-016-8435-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
76 Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2021;40:101843. [PMID: 33385630 DOI: 10.1016/j.redox.2020.101843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
77 Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018;28:643-61. [PMID: 28891317 DOI: 10.1089/ars.2017.7290] [Cited by in Crossref: 162] [Cited by in F6Publishing: 163] [Article Influence: 32.4] [Reference Citation Analysis]
78 Roh E, Kim MS. Hypothalamic NAD+-Sirtuin Axis: Function and Regulation. Biomolecules 2020;10:E396. [PMID: 32143417 DOI: 10.3390/biom10030396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
79 Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2020;11:585821. [PMID: 33597872 DOI: 10.3389/fphar.2020.585821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
80 Zhou Y, Cui H, Yu X, Peng T, Wang G, Wen X, Sun Y, Liu S, Zhang S, Hu L, Wang L. Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors. Molecules 2017;22:E1348. [PMID: 28805748 DOI: 10.3390/molecules22081348] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
81 Xu Y, Cai R, Zhao Z, Zhou L, Zhou Q, Hassan S, Huang S, Zhang M, Xu G, Zou X. Thiomyristoyl ameliorates colitis by blocking the differentiation of Th17 cells and inhibiting SIRT2-induced metabolic reprogramming. Int Immunopharmacol 2021;90:107212. [PMID: 33310666 DOI: 10.1016/j.intimp.2020.107212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
82 Bhaskar A, Kumar S, Khan MZ, Singh A, Dwivedi VP, Nandicoori VK. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. Elife 2020;9:e55415. [PMID: 32697192 DOI: 10.7554/eLife.55415] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
83 Zhao X, Du W, Zhang M, Atiq ZO, Xia F. Sirt2-associated transcriptome modifications in cisplatin-induced neuronal injury. BMC Genomics 2020;21:192. [PMID: 32122297 DOI: 10.1186/s12864-020-6584-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V, Outeiro TF, Gomes P. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics 2017;26:4105-17. [DOI: 10.1093/hmg/ddx298] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
85 Hao L, Park J, Jang H, Bae EJ, Park B. Inhibiting Protein Kinase Activity of Pyruvate Kinase M2 by SIRT2 Deacetylase Attenuates Psoriasis. Journal of Investigative Dermatology 2021;141:355-363.e6. [DOI: 10.1016/j.jid.2020.06.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
86 Yao LN, Zhang TF, Lin WQ, Jiang N, Cao HF, Li H, Qian JH. Value of serum and follicular fluid sirtuin (SIRT)1 and SIRT2 protein levels in predicting the outcome of assisted reproduction. Ann Transl Med 2021;9:343. [PMID: 33708970 DOI: 10.21037/atm-21-63] [Reference Citation Analysis]
87 Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will Sirtuins Be Promising Therapeutic Targets for TBI and Associated Neurodegenerative Diseases? Front Neurosci 2020;14:791. [PMID: 32848564 DOI: 10.3389/fnins.2020.00791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
88 Zou ZQ, Chen JJ, Feng HF, Cheng YF, Wang HT, Zhou ZZ, Guo HB, Zheng W, Xu JP. Novel Phosphodiesterase 4 Inhibitor FCPR03 Alleviates Lipopolysaccharide-Induced Neuroinflammation by Regulation of the cAMP/PKA/CREB Signaling Pathway and NF-κB Inhibition. J Pharmacol Exp Ther 2017;362:67-77. [PMID: 28450469 DOI: 10.1124/jpet.116.239608] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
89 Heinonen T, Ciarlo E, Rigoni E, Regina J, Le Roy D, Roger T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front Immunol 2019;10:2713. [PMID: 31849939 DOI: 10.3389/fimmu.2019.02713] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
90 Bahl S, Seto E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2021;78:427-45. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Wang B, Zhang Y, Cao W, Wei X, Chen J, Ying W. SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice. Neurochem Res 2016;41:2490-500. [DOI: 10.1007/s11064-016-1981-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
92 Schiedel M, Lehotzky A, Szunyogh S, Oláh J, Hammelmann S, Wössner N, Robaa D, Einsle O, Sippl W, Ovádi J, Jung M. HaloTag-Targeted Sirtuin-Rearranging Ligand (SirReal) for the Development of Proteolysis-Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)*. Chembiochem 2020;21:3371-6. [PMID: 32672888 DOI: 10.1002/cbic.202000351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
93 Wu Z, Zhang Y, Zhang Y, Zhao P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell Mol Neurobiol 2020;40:437-46. [PMID: 31713761 DOI: 10.1007/s10571-019-00746-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
94 Luo W, Luo Y, Yang J. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of nimesulide. Sci Rep 2020;10:11052. [PMID: 32632112 DOI: 10.1038/s41598-020-66420-z] [Reference Citation Analysis]
95 Trendelenburg G. Molecular regulation of cell fate in cerebral ischemia: role of the inflammasome and connected pathways. J Cereb Blood Flow Metab 2014;34:1857-67. [PMID: 25227604 DOI: 10.1038/jcbfm.2014.159] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
96 Zhou Z, Qi J, Kim JW, You MJ, Lim CW, Kim B. AK-1, a Sirt2 inhibitor, alleviates carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Toxicol Mech Methods 2020;30:324-35. [PMID: 32063085 DOI: 10.1080/15376516.2020.1729915] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson's disease. Biomed Res Int 2014;2014:308654. [PMID: 25050341 DOI: 10.1155/2014/308654] [Cited by in Crossref: 73] [Cited by in F6Publishing: 79] [Article Influence: 9.1] [Reference Citation Analysis]
98 Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, Tavares L, Pais TF, Pinto P, Ventura MR, Filipe A, McDougall GJ, Stewart D, Kim KS, Palmela I, Brites D, Brito MA, Brito C, Santos CN. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017;7:11456. [PMID: 28904352 DOI: 10.1038/s41598-017-11512-6] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 15.2] [Reference Citation Analysis]
99 Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018;30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
100 Li Y, Dai D, Lu Q, Fei M, Li M, Wu X. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis. Biochemical and Biophysical Research Communications 2013;441:661-7. [DOI: 10.1016/j.bbrc.2013.10.077] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
101 Song J, Kim J. Role of Sirtuins in Linking Metabolic Syndrome with Depression. Front Cell Neurosci 2016;10:86. [PMID: 27065808 DOI: 10.3389/fncel.2016.00086] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
102 Zhang W, Liu D, Ren J, Zhou P, Han X. Overexpression of Sirtuin2 prevents high glucose-induced vascular endothelial cell injury by regulating the p53 and NF-κB signaling pathways. Biotechnol Lett 2018;40:271-8. [PMID: 29189925 DOI: 10.1007/s10529-017-2487-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
103 Romeo-Guitart D, Leiva-Rodríguez T, Casas C. SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics 2020;17:1197-211. [PMID: 32323205 DOI: 10.1007/s13311-020-00860-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
104 Imai SI. The NAD World 2.0: the importance of the inter-tissue communication mediated by NAMPT/NAD+/SIRT1 in mammalian aging and longevity control. NPJ Syst Biol Appl 2016;2:16018. [PMID: 28725474 DOI: 10.1038/npjsba.2016.18] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
105 Szegő ÉM, Gerhardt E, Outeiro TF. Sirtuin 2 enhances dopaminergic differentiation via the AKT/GSK-3β/β-catenin pathway. Neurobiology of Aging 2017;56:7-16. [DOI: 10.1016/j.neurobiolaging.2017.04.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
106 Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Nguyen DT, Heer CD, O'Meally D, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Hori O. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD. J Neurochem 2021;158:311-27. [PMID: 33871064 DOI: 10.1111/jnc.15367] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Sooreshjani MA, Gursoy UK, Aryal UK, Sintim HO. Proteomic analysis of RAW macrophages treated with cGAMP or c-di-GMP reveals differentially activated cellular pathways. RSC Adv 2018;8:36840-51. [DOI: 10.1039/c8ra04603d] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
108 Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Chem Rec 2018;18:1681-700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
109 Tomaselli D, Mautone N, Mai A, Rotili D. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). European Journal of Medicinal Chemistry 2020;207:112750. [DOI: 10.1016/j.ejmech.2020.112750] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]