BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol 2018;15:182-4. [PMID: 28890542 DOI: 10.1038/cmi.2017.92] [Cited by in Crossref: 118] [Cited by in F6Publishing: 124] [Article Influence: 19.7] [Reference Citation Analysis]
Number Citing Articles
1 Moin AT, Singh G, Ahmed N, Saiara SA, Timofeev VI, Ahsan Faruqui N, Sharika Ahsan S, Tabassum A, Nebir SS, Andalib KMS, Araf Y, Ullah MA, Sarkar B, Islam NN, Zohora US. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J Biomol Struct Dyn 2023;41:833-55. [PMID: 36617426 DOI: 10.1080/07391102.2021.2014969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gul I, Hassan A, Muneeb JM, Akram T, Haq E, Shah RA, Ganai NA, Ahmad SM, Chikan NA, Shabir N. A multiepitope vaccine candidate against infectious bursal disease virus using immunoinformatics-based reverse vaccinology approach. Front Vet Sci 2023;9. [DOI: 10.3389/fvets.2022.1116400] [Reference Citation Analysis]
3 Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. Informatics in Medicine Unlocked 2023. [DOI: 10.1016/j.imu.2023.101169] [Reference Citation Analysis]
4 Shah SZ, Jabbar B, Mirza MU, Waqas M, Aziz S, Halim SA, Ali A, Rafique S, Idrees M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. An Immunoinformatics Approach to Design a Potent Multi-Epitope Vaccine against Asia-1 Genotype of Crimean-Congo Haemorrhagic Fever Virus Using the Structural Glycoproteins as a Target. Vaccines (Basel) 2022;11. [PMID: 36679906 DOI: 10.3390/vaccines11010061] [Reference Citation Analysis]
5 Montenegro Oyola CF, Noguera Rosero BA, García-lópez JP. Análisis in silico de un candidato a vacuna multi-epítopo contra viruela del mono usando vaculonogía reversa. RVACCB 2022. [DOI: 10.47499/revistaaccb.v1i34.265] [Reference Citation Analysis]
6 Buan AKG, Reyes NAL, Pineda RNB, Medina PMB. In silico design and evaluation of a multi-epitope and multi-antigenic African swine fever vaccine. ImmunoInformatics 2022;8:100019. [DOI: 10.1016/j.immuno.2022.100019] [Reference Citation Analysis]
7 Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022;21:1851-71. [PMID: 33435759 DOI: 10.1080/14760584.2021.1874925] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
8 Bhattacharya K, Shamkh IM, Khan MS, Lotfy MM, Nzeyimana JB, Abutayeh RF, Hamdy NM, Hamza D, Chanu NR, Khanal P, Bhattacharjee A, Basalious EB. Multi-Epitope Vaccine Design against Monkeypox Virus via Reverse Vaccinology Method Exploiting Immunoinformatic and Bioinformatic Approaches. Vaccines (Basel) 2022;10. [PMID: 36560421 DOI: 10.3390/vaccines10122010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hermawan A, Damai FI, Martin L, Chrisdianto M, Julianto NM, Pramanda IT, Gustiananda M. Immunoinformatics Analysis of Citrullinated Antigen as Potential Multi-peptide Lung Cancer Vaccine Candidates for Indonesian Population. Int J Pept Res Ther 2022;28:162. [DOI: 10.1007/s10989-022-10467-1] [Reference Citation Analysis]
10 Huang S, Zhang C, Li J, Dai Z, Huang J, Deng F, Wang X, Yue X, Hu X, Li Y, Deng Y, Wang Y, Zhao W, Zhong Z, Wang Y. Designing a multi-epitope vaccine against coxsackievirus B based on immunoinformatics approaches. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.933594] [Reference Citation Analysis]
11 Hafeez S, Achur R, Kiran SK, Thippeswamy NB. Computational prediction of B and T-cell epitopes of Kyasanur Forest Disease virus marker proteins towards the development of precise diagnosis and potent subunit vaccine. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2141882] [Reference Citation Analysis]
12 Yousaf M, Ismail S, Ullah A, Bibi S. Immuno-informatics profiling of monkeypox virus cell surface binding protein for designing a next generation multi-valent peptide-based vaccine. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1035924] [Reference Citation Analysis]
13 Belén LH, Beltrán JF, Pessoa A, Castillo RL, de Oliveira Rangel-yagui C, Farías JG. Helicobacter pylori l-asparaginase: a study of immunogenicity from an in silico approach. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03359-0] [Reference Citation Analysis]
14 Qi W, Qingfeng L, Jing Z, Maolin Z, Zhihui Z, Wangqi D, Shanli Z, Jun C, Pengfei J, Lifang Z. A novel multi-epitope vaccine of HPV16 E5E6E7 oncoprotein delivered by HBc VLPs induced efficient prophylactic and therapeutic antitumor immunity in tumor mice model. Vaccine 2022. [DOI: 10.1016/j.vaccine.2022.10.069] [Reference Citation Analysis]
15 Motamedi Dehbarez F, Mahmoodi S. Production of a Novel Multi-Epitope Peptide Vaccine against Hepatocellular Carcinoma. Iran J Med Sci 2022;47:558-65. [PMID: 36380977 DOI: 10.30476/IJMS.2021.90916.2199] [Reference Citation Analysis]
16 González-López C, Chen WH, Alfaro-Chacón A, Villanueva-Lizama LE, Rosado-Vallado M, Ramirez-Sierra MJ, Teh-Poot CF, Pollet J, Asojo O, Jones KM, Hotez PJ, Elena Bottazzi M, Cruz-Chan JV. A novel multi-epitope recombinant protein elicits an antigen-specific CD8+ T cells response in Trypanosoma cruzi-infected mice. Vaccine 2022;40:6445-9. [PMID: 36184402 DOI: 10.1016/j.vaccine.2022.09.068] [Reference Citation Analysis]
17 Moin AT, Patil RB, Tabassum T, Araf Y, Ullah MA, Snigdha HJ, Alam T, Alvey SA, Rudra B, Mina SA, Akter Y, Zhai J, Zheng C. Immunoinformatics Approach to Design Novel Subunit Vaccine against the Epstein-Barr Virus. Microbiol Spectr 2022;10:e0115122. [PMID: 36094198 DOI: 10.1128/spectrum.01151-22] [Reference Citation Analysis]
18 Khalid K, Hussain T, Jamil Z, Alrokayan KS, Ahmad B, Waheed Y. Vaccinomics-Aided Development of a Next-Generation Chimeric Vaccine against an Emerging Threat: Mycoplasma genitalium. Vaccines (Basel) 2022;10:1720. [PMID: 36298585 DOI: 10.3390/vaccines10101720] [Reference Citation Analysis]
19 Aziz S, Almajhdi FN, Waqas M, Ullah I, Salim MA, Khan NA, Ali A. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front Immunol 2022;13:1004804. [DOI: 10.3389/fimmu.2022.1004804] [Reference Citation Analysis]
20 Danazumi AU, Iliyasu Gital S, Idris S, Bs Dibba L, Balogun EO, Górna MW. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput Struct Biotechnol J 2022;20:5574-85. [PMID: 36284708 DOI: 10.1016/j.csbj.2022.10.002] [Reference Citation Analysis]
21 Samad A, Meghla NS, Nain Z, Karpiński TM, Rahman MS. Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunol Immunother 2022;71:2535-2548. [DOI: 10.1007/s00262-022-03181-w] [Reference Citation Analysis]
22 Ullah A, Shahid FA, Haq MU, Tahir Ul Qamar M, Irfan M, Shaker B, Ahmad S, Alrumaihi F, Allemailem KS, Almatroudi A. An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. J Biomol Struct Dyn 2022;:1-14. [PMID: 36129135 DOI: 10.1080/07391102.2022.2125441] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Akter S, Shahab M, Sarkar MMH, Hayat C, Banu TA, Goswami B, Jahan I, Osman E, Uzzaman MS, Habib MA, Shaikh AA, Khan MS. Immunoinformatics approach to epitope-based vaccine design against the SARS-CoV-2 in Bangladeshi patients. J Genet Eng Biotechnol 2022;20:136. [PMID: 36125645 DOI: 10.1186/s43141-022-00410-8] [Reference Citation Analysis]
24 Soto LF, Romaní AC, Jiménez-avalos G, Silva Y, Ordinola-ramirez CM, Lopez Lapa RM, Requena D. Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens. Front Immunol 2022;13:942907. [DOI: 10.3389/fimmu.2022.942907] [Reference Citation Analysis]
25 Aiman S, Alhamhoom Y, Ali F, Rahman N, Rastrelli L, Khan A, Farooq QUA, Ahmed A, Khan A, Li C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques- a bioinformatics and immunoinformatics approach. Front Immunol 2022;13:985450. [DOI: 10.3389/fimmu.2022.985450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Dar HA, Almajhdi FN, Aziz S, Waheed Y. Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Vaccines 2022;10:1381. [DOI: 10.3390/vaccines10091381] [Reference Citation Analysis]
27 Kossack C, Fuentes N, Maisey K. In silico prediction of B and T cell epitopes of infectious salmon anemia virus proteins and molecular modeling of T cell epitopes to salmon major histocompatibility complex (MHC) class I. Fish Shellfish Immunol 2022;128:335-47. [PMID: 35963560 DOI: 10.1016/j.fsi.2022.08.002] [Reference Citation Analysis]
28 Aziz S, Waqas M, Halim SA, Ali A, Iqbal A, Iqbal M, Khan A, Al-harrasi A. Exploring whole proteome to contrive multi-epitope-based vaccine for NeoCoV: An immunoinformtics and in-silico approach. Front Immunol 2022;13:956776. [DOI: 10.3389/fimmu.2022.956776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Baral P, Pavadai E, Zhou Z, Xu Y, Tison CK, Pokhrel R, Gerstman BS, Chapagain PP. Immunoinformatic screening of Marburgvirus epitopes and computational investigations of epitope-allele complexes. Int Immunopharmacol 2022;111:109109. [PMID: 35926269 DOI: 10.1016/j.intimp.2022.109109] [Reference Citation Analysis]
30 Pitaloka DAE, Izzati A, Amirah S, Syakuran LA. Multi Epitope-Based Vaccine Design for Protection Against Mycobacterium tuberculosis and SARS-CoV-2 Coinfection. AABC 2022;Volume 15:43-57. [DOI: 10.2147/aabc.s366431] [Reference Citation Analysis]
31 Ghafouri F, Ahangari Cohan R, Samimi H, Hosseini Rad S M A, Naderi M, Noorbakhsh F, Haghpanah V. Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study. JMIR Bioinform Biotech 2022;3:e36100. [DOI: 10.2196/36100] [Reference Citation Analysis]
32 Soltan MA, Abdulsahib WK, Amer M, Refaat AM, Bagalagel AA, Diri RM, Albogami S, Fayad E, Eid RA, Sharaf SMA, Elhady SS, Darwish KM, Eldeen MA. Mining of Marburg Virus Proteome for Designing an Epitope-Based Vaccine. Front Immunol 2022;13:907481. [DOI: 10.3389/fimmu.2022.907481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Khalid K, Saeed U, Aljuaid M, Ali MI, Anjum A, Waheed Y. Immunoinformatic Approach to Contrive a Next Generation Multi-Epitope Vaccine Against Achromobacter xylosoxidans Infections. Front Med 2022;9. [DOI: 10.3389/fmed.2022.902611] [Reference Citation Analysis]
34 Khan K, Khan SA, Jalal K, Ul-haq Z, Uddin R. Immunoinformatic approach for the construction of multi-epitopes vaccine against omicron COVID-19 variant. Virology 2022;572:28-43. [DOI: 10.1016/j.virol.2022.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Rahman MM, Puspo JA, Adib AA, Hossain ME, Alam MM, Sultana S, Islam A, Klena JD, Montgomery JM, Satter SM, Shirin T, Rahman MZ. An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus. Int J Pept Res Ther 2022;28:123. [PMID: 35761851 DOI: 10.1007/s10989-022-10431-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Almansour NM. Immunoinformatics- and Bioinformatics-Assisted Computational Designing of a Novel Multiepitopes Vaccine Against Cancer-Causing Merkel Cell Polyomavirus. Front Microbiol 2022;13:929669. [DOI: 10.3389/fmicb.2022.929669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li M, Zhu Y, Niu C, Xie X, Haimiti G, Guo W, Yu M, Chen Z, Ding J, Zhang F. Design of a multi-epitope vaccine candidate against Brucella melitensis. Sci Rep 2022;12:10146. [PMID: 35710873 DOI: 10.1038/s41598-022-14427-z] [Reference Citation Analysis]
38 Aslam S, Ashfaq UA, Zia T, Aslam N, Alrumaihi F, Shahid F, Noor F, Qasim M. Proteome based mapping and reverse vaccinology techniques to contrive multi-epitope based subunit vaccine (MEBSV) against Streptococcus pyogenes. Infection, Genetics and Evolution 2022;100:105259. [DOI: 10.1016/j.meegid.2022.105259] [Reference Citation Analysis]
39 Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS Cent Sci . [DOI: 10.1021/acscentsci.2c00227] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virology. [DOI: 10.2217/fvl-2021-0105] [Reference Citation Analysis]
41 Pandya N, Kumar A. A multi-epitope vaccine candidate developed from unique immunogenic epitopes against Cryptosporidium hominis by utilizing an immunoinformatics-driven approach. J Biomol Struct Dyn 2022;:1-18. [PMID: 35510602 DOI: 10.1080/07391102.2022.2070284] [Reference Citation Analysis]
42 Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022;:113264. [PMID: 35341759 DOI: 10.1016/j.jim.2022.113264] [Reference Citation Analysis]
43 Ezzemani W, Windisch MP, Altawalah H, Guessous F, Saile R, Benjelloun S, Kettani A, Ezzikouri S. Design of a multi-epitope Zika virus vaccine candidate - an in-silico study. J Biomol Struct Dyn 2022;:1-10. [PMID: 35318896 DOI: 10.1080/07391102.2022.2055648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, Tiu GC, Wellington-Oguri R, Fujii K, Sharma E, Watkins AM, Nicol JJ, Romano J, Tunguz B, Diaz F, Cai H, Guo P, Wu J, Meng F, Shi S, Participants E, Dormitzer PR, Solórzano A, Barna M, Das R. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun 2022;13:1536. [PMID: 35318324 DOI: 10.1038/s41467-022-28776-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
45 Kumar S, Shuaib M, Prajapati KS, Singh AK, Choudhary P, Singh S, Gupta S. A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach. 3 Biotech 2022;12:72. [PMID: 35223358 DOI: 10.1007/s13205-022-03140-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Heidary F, Tourani M, Hejazi-Amiri F, Khatami SH, Jamali N, Taheri-Anganeh M. Design of a new multi-epitope peptide vaccine for non-small cell Lung cancer via vaccinology methods: an in silico study. Mol Biol Res Commun 2022;11:55-66. [PMID: 35463817 DOI: 10.22099/mbrc.2022.42468.1697] [Reference Citation Analysis]
47 Shaker B, Ahmad S, Shen J, Kim HW, Na D. Computational Design of a Multi-Epitope Vaccine Against Porphyromonas gingivalis. Front Immunol 2022;13:806825. [DOI: 10.3389/fimmu.2022.806825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Moin AT, Ullah MA, Patil RB, Faruqui NA, Sarkar B, Araf Y, Das S, Kapil Uddin KM, Hossain MS, Miah MF, Moni MA, Chowdhury DUS, Islam S. Exploring different virulent proteins of human respiratory syncytial virus for designing a novel epitope-based polyvalent vaccine: Immunoinformatics and molecular dynamics approaches.. [DOI: 10.1101/2022.02.02.478791] [Reference Citation Analysis]
49 Forouharmehr A, Banan A, Mousavi SM, Jaydari A. Development of a Novel Multi-Epitope Vaccine Candidate against Streptococcus Iniae Infection in Fish: An Immunoinformatics Study. Arch Razi Inst 2022;77:45-56. [PMID: 35891737 DOI: 10.22092/ARI.2021.353377.1601] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
50 Wei N, Wang Q, Lin Z, Xu L, Zhang Z, Wang Y, Yang Z, Li L, Zhao T, Wang L, Lou H, Han M, Ma M, Jiang Y, Lu J, Zhu S, Cui L, Li S. Systematic profiling of antigen bias in humoral response against SARS-CoV-2. Virus Research 2022. [DOI: 10.1016/j.virusres.2022.198711] [Reference Citation Analysis]
51 Zafar S, Ajab H, Mughal Z, Ahmed zai J, Baig S, Baig A, Habib Z, Jamil F, Ibrahim M, Kanwal S, Asif Rasheed M. Prediction and evaluation of multi epitope based sub-unit vaccine against Salmonella typhimurium. Saudi Journal of Biological Sciences 2022;29:1092-9. [DOI: 10.1016/j.sjbs.2021.09.061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022;12:53. [PMID: 34997041 DOI: 10.1038/s41598-021-03990-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, Khan SA, Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. Environ Sci Pollut Res Int 2022;29:60035-53. [PMID: 35414157 DOI: 10.1007/s11356-022-19979-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Humayun F, Cai Y, Khan A, Farhan SA, Khan F, Rana UI, Qamar AB, Fawad N, Shamas S, Dongqing-Wei. Structure-guided design of multi-epitopes vaccine against variants of concern (VOCs) of SARS-CoV-2 and validation through In silico cloning and immune simulations. Comput Biol Med 2021;140:105122. [PMID: 34896886 DOI: 10.1016/j.compbiomed.2021.105122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Olatunde SK, Oladipo EK, Owolabi JB. Designing a novel in-silico multi-epitope vaccine against penicillin-binding protein 2A in Staphylococcus aureus. Informatics in Medicine Unlocked 2022;33:101080. [DOI: 10.1016/j.imu.2022.101080] [Reference Citation Analysis]
56 Bhakta S, Choudhury S, Paul J, Bhattacharya A. Vaccine Development Through Reverse Vaccinology Using Artificial Intelligence and Machine Learning Approach. COVID-19: Tackling Global Pandemics through Scientific and Social Tools 2022. [DOI: 10.1016/b978-0-323-85844-1.00006-4] [Reference Citation Analysis]
57 Ghafouri F, Ahangari Cohan R, Samimi H, Hosseini Rad S M A, Naderi M, Noorbakhsh F, Haghpanah V. Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study (Preprint).. [DOI: 10.2196/preprints.36100] [Reference Citation Analysis]
58 Carneiro FA, Cortines JDR, Essus VA, da Silva IBN. Vaccine engineering & structural vaccinology. System Vaccinology 2022. [DOI: 10.1016/b978-0-323-85941-7.00005-x] [Reference Citation Analysis]
59 Vilela Rodrigues TC, Jaiswal AK, Lemes MR, da Silva MV, Sales-Campos H, Alcântara LCJ, Tosta SFO, Kato RB, Alzahrani KJ, Barh D, Azevedo VAC, Tiwari S, Soares SC. An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Comput Biol Med 2021;142:105194. [PMID: 35007945 DOI: 10.1016/j.compbiomed.2021.105194] [Reference Citation Analysis]
60 Fatima I, Ahmad S, Abbasi SW, Ashfaq UA, Shahid F, Tahir Ul Qamar M, Rehman A, Allemailem KS. Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Comput Biol Med 2021;141:105151. [PMID: 34942394 DOI: 10.1016/j.compbiomed.2021.105151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
61 Joshi A, Ray NM, Singh J, Upadhyay AK, Kaushik V. T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. Netw Model Anal Health Inform Bioinform 2022;11:2. [PMID: 34900515 DOI: 10.1007/s13721-021-00339-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
62 Deb D, Basak S, Kar T, Narsaria U, Castiglione F, Paul A, Pandey A, Srivastava AP. Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus. J Cell Biochem 2021. [PMID: 34729821 DOI: 10.1002/jcb.30170] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Tariq MH, Bhatti R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, Khurshid M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS One 2021;16:e0258443. [PMID: 34705829 DOI: 10.1371/journal.pone.0258443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Yuan X, Bibl D, Khan K, Sun L. Predicting Multi-Epitope Vaccine Candidates Using Natural Language Processing and Deep Learning. 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) 2021. [DOI: 10.1109/bibe52308.2021.9635304] [Reference Citation Analysis]
65 Ullah A, Ahmad S, Ismail S, Afsheen Z, Khurram M, Tahir Ul Qamar M, AlSuhaymi N, Alsugoor MH, Allemailem KS. Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. Int J Environ Res Public Health 2021;18:10961. [PMID: 34682706 DOI: 10.3390/ijerph182010961] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
66 Naz S, Ahmad S, Abbasi SW, Ismail S, Waseem S, Tahir Ul Qamar M, Almatroudi A, Ali Z. Identification of immunodominant epitopes in allelic variants VK210 and VK247 of Plasmodium Vivax Circumsporozoite immunogen. Infect Genet Evol 2021;96:105120. [PMID: 34655808 DOI: 10.1016/j.meegid.2021.105120] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
67 Nordin ML, Mohamad Norpi AS, Ng PY, Yusoff K, Abu N, Lim KP, Azmi F. HER2/neu-Based Peptide Vaccination-Pulsed with B-Cell Epitope Induced Efficient Prophylactic and Therapeutic Antitumor Activities in TUBO Breast Cancer Mice Model. Cancers (Basel) 2021;13:4958. [PMID: 34638441 DOI: 10.3390/cancers13194958] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Aldakheel FM, Abrar A, Munir S, Aslam S, Allemailem KS, Khurshid M, Ashfaq UA. Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against Clostridium perfringens. Vaccines (Basel) 2021;9:1079. [PMID: 34696187 DOI: 10.3390/vaccines9101079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
69 Antonarelli G, Corti C, Tarantino P, Ascione L, Cortes J, Romero P, Mittendorf EA, Disis ML, Curigliano G. Therapeutic cancer vaccines revamping: technology advancements and pitfalls. Ann Oncol 2021:S0923-7534(21)04457-4. [PMID: 34500046 DOI: 10.1016/j.annonc.2021.08.2153] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
70 Khan A, Khan S, Ahmad S, Anwar Z, Hussain Z, Safdar M, Rizwan M, Waseem M, Hussain A, Akhlaq M, Khan T, Ali SS, Wei DQ. HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microb Pathog 2021;160:105161. [PMID: 34461244 DOI: 10.1016/j.micpath.2021.105161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Chand Y, Singh S. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Microb Pathog 2021;159:105150. [PMID: 34425197 DOI: 10.1016/j.micpath.2021.105150] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
72 Farhang-Sardroodi S, Korosec CS, Gholami S, Craig M, Moyles IR, Ghaemi MS, Ooi HK, Heffernan JM. Analysis of Host Immunological Response of Adenovirus-Based COVID-19 Vaccines. Vaccines (Basel) 2021;9:861. [PMID: 34451985 DOI: 10.3390/vaccines9080861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
73 Saba AA, Adiba M, Saha P, Hosen MI, Chakraborty S, Nabi AHMN. An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest. Comput Biol Med 2021;136:104703. [PMID: 34352457 DOI: 10.1016/j.compbiomed.2021.104703] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
74 Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021;158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Reference Citation Analysis]
75 Farhang-sardroodi S, Korosec C, Gholami S, Craig M, Moyles IR, Ghaemi MS, Ooi HK, Heffernan JM. Analysis of host immunological response of adenovirus-based COVID-19 vaccines.. [DOI: 10.1101/2021.06.24.21259460] [Reference Citation Analysis]
76 Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A, Islam MN, Akter A, Mondal SI. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS One 2021;16:e0253393. [PMID: 34138958 DOI: 10.1371/journal.pone.0253393] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
77 Tahir Ul Qamar M, Ismail S, Ahmad S, Mirza MU, Abbasi SW, Ashfaq UA, Chen LL. Development of a Novel Multi-Epitope Vaccine Against Crimean-Congo Hemorrhagic Fever Virus: An Integrated Reverse Vaccinology, Vaccine Informatics and Biophysics Approach. Front Immunol 2021;12:669812. [PMID: 34220816 DOI: 10.3389/fimmu.2021.669812] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
78 Ghafoor D, Kousar A, Ahmed W, Khan S, Ullah Z, Ullah N, Khan S, Ahmed S, Khan Z, Riaz R. Computational vaccinology guided design of multi-epitopes subunit vaccine designing against Hantaan virus and its validation through immune simulations. Infect Genet Evol 2021;93:104950. [PMID: 34089911 DOI: 10.1016/j.meegid.2021.104950] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Azim KF, Lasker T, Akter R, Hia MM, Bhuiyan OF, Hasan M, Hossain MN. Combination of highly antigenic nucleoproteins to inaugurate a cross-reactive next generation vaccine candidate against Arenaviridae family. Heliyon 2021;7:e07022. [PMID: 34041391 DOI: 10.1016/j.heliyon.2021.e07022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Sharma SK, Srivastava S, Kumar A, Srivastava V. Anticipation of Antigenic Sites for the Goal of Vaccine Designing Against Nipah Virus: An Immunoinformatics Inquisitive Quest. Int J Pept Res Ther 2021;:1-13. [PMID: 33994898 DOI: 10.1007/s10989-021-10219-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021;9:477. [PMID: 34066901 DOI: 10.3390/vaccines9050477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Haynes WA, Kamath K, Waitz R, Daugherty PS, Shon JC. Protein-Based Immunome Wide Association Studies (PIWAS) for the Discovery of Significant Disease-Associated Antigens. Front Immunol 2021;12:625311. [PMID: 33986742 DOI: 10.3389/fimmu.2021.625311] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
83 Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, Ali MA, Laura FK, Halim MA. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Inform Med Unlocked 2021;24:100578. [PMID: 33898733 DOI: 10.1016/j.imu.2021.100578] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
84 Tahir Ul Qamar M, Ahmad S, Fatima I, Ahmad F, Shahid F, Naz A, Abbasi SW, Khan A, Mirza MU, Ashfaq UA, Chen LL. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput Biol Med 2021;132:104389. [PMID: 33866250 DOI: 10.1016/j.compbiomed.2021.104389] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
85 Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, Tiu GC, Wellington-Oguri R, Fujii K, Sharma E, Watkins AM, Nicol JJ, Romano J, Tunguz B, Participants E, Barna M, Das R. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. bioRxiv 2021:2021. [PMID: 33821271 DOI: 10.1101/2021.03.29.437587] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
86 Sangewar N, Waghela SD, Yao J, Sang H, Bray J, Mwangi W. Novel Potent IFN-γ-Inducing CD8+ T Cell Epitopes Conserved among Diverse Bovine Viral Diarrhea Virus Strains. J Immunol 2021;206:1709-18. [PMID: 33762324 DOI: 10.4049/jimmunol.2001424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
87 Ahmad S, Shahid F, Tahir Ul Qamar M, Rehman HU, Abbasi SW, Sajjad W, Ismail S, Alrumaihi F, Allemailem KS, Almatroudi A, Ullah Saeed HF. Immuno-Informatics Analysis of Pakistan-Based HCV Subtype-3a for Chimeric Polypeptide Vaccine Design. Vaccines (Basel) 2021;9:293. [PMID: 33801143 DOI: 10.3390/vaccines9030293] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
88 Sanches RCO, Tiwari S, Ferreira LCG, Oliveira FM, Lopes MD, Passos MJF, Maia EHB, Taranto AG, Kato R, Azevedo VAC, Lopes DO. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma mansoni Using Transmembrane Proteins as a Target. Front Immunol 2021;12:621706. [PMID: 33737928 DOI: 10.3389/fimmu.2021.621706] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
89 Abdullah M, Kadivella M, Sharma R, Faisal SM, Azam S. Designing of multiepitope-based vaccine against Leptospirosis using Immuno-Informatics approaches.. [DOI: 10.1101/2021.02.22.431920] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
90 Ahmad S, Waheed Y, Ismail S, Abbasi SW, Najmi MH. A computational study to disclose potential drugs and vaccine ensemble for COVID-19 conundrum. J Mol Liq 2021;324:114734. [PMID: 33199930 DOI: 10.1016/j.molliq.2020.114734] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
91 Khan S, Shaker B, Ahmad S, Abbasi SW, Arshad M, Haleem A, Ismail S, Zaib A, Sajjad W. Towards a novel peptide vaccine for Middle East respiratory syndrome coronavirus and its possible use against pandemic COVID-19. J Mol Liq 2021;324:114706. [PMID: 33173250 DOI: 10.1016/j.molliq.2020.114706] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep 2021;11:3238. [PMID: 33547334 DOI: 10.1038/s41598-021-81749-9] [Cited by in Crossref: 50] [Cited by in F6Publishing: 61] [Article Influence: 25.0] [Reference Citation Analysis]
93 Tsai SJ, Amerman A, Jewell CM. Altering Antigen Charge to Control Self-Assembly and Processing of Immune Signals During Cancer Vaccination. Front Immunol 2020;11:613830. [PMID: 33488621 DOI: 10.3389/fimmu.2020.613830] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
94 Khan F, Kumar A. Vaccine Design and Immunoinformatics. Advances in Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_8] [Reference Citation Analysis]
95 Alom MW, Shehab MN, Sujon KM, Akter F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. Informatics in Medicine Unlocked 2021;25:100644. [DOI: 10.1016/j.imu.2021.100644] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Abdulla F, Nain Z, Hossain MM, Syed SB, Ahmed Khan MS, Adhikari UK. A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb Pathog 2021;150:104705. [PMID: 33352214 DOI: 10.1016/j.micpath.2020.104705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
97 Bellini C, Horváti K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020;9:E2673. [PMID: 33333744 DOI: 10.3390/cells9122673] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
98 Rashidian E, Forouharmehr A, Jaydari A. Introduction of a Novel Poly-Epitope Vaccine Against Mycobacterium tuberculosis Infection; an Immunoinformatics Approach. Int J Infect 2020;8. [DOI: 10.5812/iji.110423] [Reference Citation Analysis]
99 Naz S, Ahmad S, Walton S, Abbasi SW. Multi-epitope based vaccine design against Sarcoptes scabiei paramyosin using immunoinformatics approach. Journal of Molecular Liquids 2020;319:114105. [DOI: 10.1016/j.molliq.2020.114105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
100 Rahmat Ullah S, Majid M, Rashid MI, Mehmood K, Andleeb S. Immunoinformatics Driven Prediction of Multiepitopic Vaccine Against Klebsiella pneumoniae and Mycobacterium tuberculosis Coinfection and Its Validation via In Silico Expression. Int J Pept Res Ther 2020;:1-13. [PMID: 33281529 DOI: 10.1007/s10989-020-10144-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
101 Kumar N, Sood D, Chandra R. Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework. ACS Pharmacol Transl Sci 2020;3:1318-29. [PMID: 33344905 DOI: 10.1021/acsptsci.0c00139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
102 Oladipo EK, Ajayi AF, Ariyo OE, Onile SO, Jimah EM, Ezediuno LO, Adebayo OI, Adebayo ET, Odeyemi AN, Oyeleke MO, Oyewole MP, Oguntomi AS, Akindiya OE, Olamoyegun BO, Aremu VO, Arowosaye AO, Aboderin DO, Bello HB, Senbadejo TY, Awoyelu EH, Oladipo AA, Oladipo BB, Ajayi LO, Majolagbe ON, Oyawoye OM, Oloke JK. Exploration of surface glycoprotein to design multi-epitope vaccine for the prevention of Covid-19. Inform Med Unlocked 2020;21:100438. [PMID: 33043110 DOI: 10.1016/j.imu.2020.100438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
103 Rehman HM, Mirza MU, Ahmad MA, Saleem M, Froeyen M, Ahmad S, Gul R, Alghamdi HA, Aslam MS, Sajjad M, Bhinder MA. A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS-COV-2 by Comprehensive Immunoinformatic and Molecular Modelling Approach. Biology (Basel) 2020;9:E296. [PMID: 32962156 DOI: 10.3390/biology9090296] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
104 Tahir Ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Fareed MM, Zohaib A, Chen LL. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty 2020;9:132. [PMID: 32938504 DOI: 10.1186/s40249-020-00752-w] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 12.7] [Reference Citation Analysis]
105 Bhuiyan MA, Quayum ST, Ahammad F, Alam R, Samad A, Nain Z. Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Res 2020;9:999. [DOI: 10.12688/f1000research.24975.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
106 Sarkar B, Ullah MA, Araf Y, Das S, Hosen MJ. Blueprint of epitope-based multivalent and multipathogenic vaccines: targeted against the dengue and zika viruses. J Biomol Struct Dyn 2020;:1-21. [PMID: 32772811 DOI: 10.1080/07391102.2020.1804456] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
107 Sarkar B, Ullah MA, Araf Y, Das S, Rahman MH, Moin AT. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. Journal of Biomolecular Structure and Dynamics 2021;39:6585-605. [DOI: 10.1080/07391102.2020.1803969] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
108 Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Phys Rep 2020;869:1-51. [PMID: 32834430 DOI: 10.1016/j.physrep.2020.07.005] [Cited by in Crossref: 110] [Cited by in F6Publishing: 82] [Article Influence: 36.7] [Reference Citation Analysis]
109 Jaydari A, Nazifi N, Forouharmehr A. Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Hum Immunol 2020;81:596-605. [PMID: 32718721 DOI: 10.1016/j.humimm.2020.05.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
110 Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020;10:10895. [PMID: 32616763 DOI: 10.1038/s41598-020-67749-1] [Cited by in Crossref: 119] [Cited by in F6Publishing: 134] [Article Influence: 39.7] [Reference Citation Analysis]
111 Khalid H, Ashfaq UA. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. J Biomed Inform 2020;108:103498. [PMID: 32621883 DOI: 10.1016/j.jbi.2020.103498] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
112 Chen-Fei L, Chou-Min C, Jiun-Yan L. Feasibility of vaccination against Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. Fish Shellfish Immunol 2020;104:431-8. [PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
113 Ismail S, Ahmad S, Azam SS. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. J Mol Liq 2020;314:113612. [PMID: 32834259 DOI: 10.1016/j.molliq.2020.113612] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
114 Tahir Ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020;8:E288. [PMID: 32521680 DOI: 10.3390/vaccines8020288] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
115 Ahmad S, Navid A, Farid R, Abbas G, Ahmad F, Zaman N, Parvaiz N, Azam SS. Design of a Novel Multi Epitope-Based Vaccine for Pandemic Coronavirus Disease (COVID-19) by Vaccinomics and Probable Prevention Strategy against Avenging Zoonotics. Eur J Pharm Sci 2020;151:105387. [PMID: 32454128 DOI: 10.1016/j.ejps.2020.105387] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
116 Ghafouri F, Cohan RA, Noorbakhsh F, Samimi H, Haghpanah V. An in-silico approach to develop of a multi-epitope vaccine candidate against SARS-CoV-2 envelope (E) protein. Res Sq 2020:rs. [PMID: 32702713 DOI: 10.21203/rs.3.rs-30374/v1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
117 Baral P, Pavadai E, Gerstman BS, Chapagain PP. In-silico identification of the vaccine candidate epitopes against the Lassa virus hemorrhagic fever. Sci Rep 2020;10:7667. [PMID: 32376973 DOI: 10.1038/s41598-020-63640-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
118 Ismail S, Ahmad S, Azam SS. Immuno-informatics Characterization SARS-CoV-2 Spike Glycoprotein for Prioritization of Epitope based Multivalent Peptide Vaccine.. [DOI: 10.1101/2020.04.05.026005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Nain Z, Karim MM, Sen MK, Adhikari UK. Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans—An integrated vaccinomics approach. Molecular Immunology 2020;120:146-63. [DOI: 10.1016/j.molimm.2020.02.009] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
120 Chauhan V, Singh MP. Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. European Journal of Pharmaceutical Sciences 2020;147:105279. [DOI: 10.1016/j.ejps.2020.105279] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
121 Ismail S, Ahmad S, Azam SS. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. European Journal of Pharmaceutical Sciences 2020;146:105258. [DOI: 10.1016/j.ejps.2020.105258] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
122 Haynes WA, Kamath K, Daugherty PS, Shon JC. Protein-based Immunome Wide Association Studies (PIWAS) for the discovery of significant disease-associated antigens.. [DOI: 10.1101/2020.03.18.997759] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
123 Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020;11:283. [PMID: 32153587 DOI: 10.3389/fimmu.2020.00283] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
124 Shahid F, Ashfaq UA, Javaid A, Khalid H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infect Genet Evol 2020;80:104199. [PMID: 31962160 DOI: 10.1016/j.meegid.2020.104199] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
125 Pumchan A, Krobthong S, Roytrakul S, Sawatdichaikul O, Kondo H, Hirono I, Areechon N, Unajak S. Novel Chimeric Multiepitope Vaccine for Streptococcosis Disease in Nile Tilapia (Oreochromis niloticus Linn.). Sci Rep 2020;10:603. [PMID: 31953479 DOI: 10.1038/s41598-019-57283-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
126 Tosta SFO, Passos MS, Kato R, Salgado Á, Xavier J, Jaiswal AK, Soares SC, Azevedo V, Giovanetti M, Tiwari S, Alcantara LCJ. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J Biomol Struct Dyn 2021;39:219-35. [PMID: 31854239 DOI: 10.1080/07391102.2019.1707120] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
127 Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. Int J Pept Res Ther 2020;:1-19. [PMID: 32421065 DOI: 10.1007/s10989-019-10003-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
128 Majid M, Andleeb S. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep 2019;9:19780. [PMID: 31874963 DOI: 10.1038/s41598-019-55613-w] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
129 Abdulla F, Nain Z, Hossain MM, Sayed SB, Khan MSA, Adhikari UK. Computational Approach for Screening the Whole Proteome of Hantavirus and Designing a Multi-Epitope Subunit Vaccine.. [DOI: 10.1101/832980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
130 Sajjad R, Ahmad S, Azam SS. In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope peptide vaccine for Acinetobacter nosocomialis. J Mol Graph Model 2020;94:107477. [PMID: 31654980 DOI: 10.1016/j.jmgm.2019.107477] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
131 Nain Z, Karim MM, Sen MK, Adhikari UK. Structural Basis and Designing of Peptide Vaccine using PE-PGRS Family Protein of Mycobacterium ulcerans – An Integrated Vaccinomics Approach.. [DOI: 10.1101/795146] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
132 Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 2019;9:4409. [PMID: 30867498 DOI: 10.1038/s41598-019-40833-x] [Cited by in Crossref: 160] [Cited by in F6Publishing: 175] [Article Influence: 40.0] [Reference Citation Analysis]
133 Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep 2019;9:2517. [PMID: 30792446 DOI: 10.1038/s41598-019-39299-8] [Cited by in Crossref: 72] [Cited by in F6Publishing: 78] [Article Influence: 18.0] [Reference Citation Analysis]
134 Ikram A, Zaheer T, Awan FM, Obaid A, Naz A, Hanif R, Paracha RZ, Ali A, Naveed AK, Janjua HA. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci Rep 2018;8:16107. [PMID: 30382118 DOI: 10.1038/s41598-018-34254-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 11.4] [Reference Citation Analysis]