BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X. MicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy. Cell Death Dis 2017;8:e2658. [PMID: 28277542 DOI: 10.1038/cddis.2017.74] [Cited by in Crossref: 55] [Cited by in F6Publishing: 64] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022;:1-17. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Reference Citation Analysis]
2 Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Reference Citation Analysis]
3 Yan R, Zhang Y, Yang Y, Liu L, Liu L, Guo Z, Yu H, Wang Y, Guo B, Rokaya D. Peroxisome Proliferator-Activated Receptor Gene Knockout Promotes Podocyte Injury in Diabetic Mice. BioMed Research International 2022;2022:1-8. [DOI: 10.1155/2022/9018379] [Reference Citation Analysis]
4 Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022;13:948094. [DOI: 10.3389/fphys.2022.948094] [Reference Citation Analysis]
5 Tu C, Wei L, Wang L, Tang Y. Eight Differential miRNAs in DN Identified by Microarray Analysis as Novel Biomarkers. Diabetes Metab Syndr Obes 2022;15:907-20. [PMID: 35359345 DOI: 10.2147/DMSO.S355783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Fang R, Cao X, Zhu Y, Chen Q. Hsa_circ_0037128 aggravates high glucose-induced podocytes injury in diabetic nephropathy through mediating miR-31-5p/KLF9. Autoimmunity 2022;:1-10. [PMID: 35285770 DOI: 10.1080/08916934.2022.2037128] [Reference Citation Analysis]
7 Jiang A, Song A, Zhang C. Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 2022. [PMID: 35201595 DOI: 10.1007/s40620-022-01269-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2021;9:701547. [PMID: 35059392 DOI: 10.3389/fcell.2021.701547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hou Q, Le W, Kan S, Shi J, Lang Y, Liu Z, Chen Z. Nuclear Receptor Interacting Protein-2 Mediates the Stabilization and Activation of β-Catenin During Podocyte Injury. Front Cell Dev Biol 2021;9:781792. [PMID: 35004680 DOI: 10.3389/fcell.2021.781792] [Reference Citation Analysis]
10 Ding Y, Diao Z, Cui H, Yang A, Liu W, Jiang L. Bioinformatics analysis reveals the roles of cytoskeleton protein transgelin in occurrence and development of proteinuria. Transl Pediatr 2021;10:2250-68. [PMID: 34733666 DOI: 10.21037/tp-21-83] [Reference Citation Analysis]
11 Zhang Y, Cai Y, Zhang H, Zhang J, Zeng Y, Fan C, Zou S, Wu C, Fang S, Li P, Lin X, Wang L, Guan M. Brown adipose tissue transplantation ameliorates diabetic nephropathy through the miR-30b pathway by targeting Runx1. Metabolism 2021;125:154916. [PMID: 34666067 DOI: 10.1016/j.metabol.2021.154916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Du P, Chen M, Deng C, Zhu C. microRNA-199a downregulation alleviates hyperuricemic nephropathy via the PPARγ/β-catenin axis. J Recept Signal Transduct Res 2021;:1-9. [PMID: 34431454 DOI: 10.1080/10799893.2021.1967392] [Reference Citation Analysis]
13 Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. Engineered nanoplex mediated targeted miRNA delivery to rescue dying podocytes in diabetic nephropathy. Int J Pharm 2021;605:120842. [PMID: 34216766 DOI: 10.1016/j.ijpharm.2021.120842] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Wang D, Zhao T, Zhao Y, Yin Y, Huang Y, Cheng Z, Wang B, Liu S, Pan M, Sun D, Wang Z, Zhu G. PPARγ Mediates the Anti-Epithelial-Mesenchymal Transition Effects of FGF1ΔHBS in Chronic Kidney Diseases via Inhibition of TGF-β1/SMAD3 Signaling. Front Pharmacol 2021;12:690535. [PMID: 34149434 DOI: 10.3389/fphar.2021.690535] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
15 Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12(5): 524-540 [PMID: 33995842 DOI: 10.4239/wjd.v12.i5.524] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
16 Srivastava SP, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, Dardik A, Fernandez-Hernando C, Goodwin J. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun 2021;12:2368. [PMID: 33888696 DOI: 10.1038/s41467-021-22617-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
17 Xu M, Yi M, Li N. MicroRNA-17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling. Environ Toxicol 2021;36:1402-11. [PMID: 33835671 DOI: 10.1002/tox.23136] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Zhou J, Zhang S, Sun X, Lou Y, Bao J, Yu J. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis. J Pharmacol Sci 2021;146:10-20. [PMID: 33858650 DOI: 10.1016/j.jphs.2021.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Chen J, Xu Q, Zhang W, Zhen Y, Cheng F, Hua G, Lan J, Tu C. MiR-203-3p inhibits the oxidative stress, inflammatory responses and apoptosis of mice podocytes induced by high glucose through regulating Sema3A expression. Open Life Sci 2020;15:939-50. [PMID: 33817280 DOI: 10.1515/biol-2020-0088] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Zeng Y, Feng Z, Liao Y, Yang M, Bai Y, He Z. Diminution of microRNA-98 alleviates renal fibrosis in diabetic nephropathy by elevating Nedd4L and inactivating TGF-β/Smad2/3 pathway. Cell Cycle 2020;19:3406-18. [PMID: 33315506 DOI: 10.1080/15384101.2020.1838780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
21 Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2021;78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
22 Agrawal S, He JC, Tharaux PL. Nuclear receptors in podocyte biology and glomerular disease. Nat Rev Nephrol 2021;17:185-204. [PMID: 32943753 DOI: 10.1038/s41581-020-00339-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
23 Fan H, Zhang W. Overexpression of Linc 4930556M19Rik Suppresses High Glucose-Triggered Podocyte Apoptosis, Fibrosis and Inflammation via the miR-27a-3p/Metalloproteinase 3 (TIMP3) Axis in Diabetic Nephropathy. Med Sci Monit 2020;26:e925361. [PMID: 32896839 DOI: 10.12659/MSM.925361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ishii H, Kaneko S, Yanai K, Aomatsu A, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Podocyte Injury in Diabetic Nephropathy. Front Genet 2020;11:993. [PMID: 33193581 DOI: 10.3389/fgene.2020.00993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
25 Dai Y, Gao M, Li L, Mao Z, Xu L, Yin L, Qi Y, Peng J. MicroRNA-874-3p Aggravates Doxorubicin-Induced Renal Podocyte Injury via Targeting Methionine Sulfoxide Reductase B3. Oxid Med Cell Longev 2020;2020:9481841. [PMID: 32908641 DOI: 10.1155/2020/9481841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
26 Li F, Dai B, Ni X. Long non-coding RNA cancer susceptibility candidate 2 (CASC2) alleviates the high glucose-induced injury of CIHP-1 cells via regulating miR-9-5p/PPARγ axis in diabetes nephropathy. Diabetol Metab Syndr 2020;12:68. [PMID: 32774472 DOI: 10.1186/s13098-020-00574-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid Redox Signal 2019;31:521-38. [PMID: 31084358 DOI: 10.1089/ars.2018.7634] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
28 Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, Yan Y, Qin G. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol 2021;236:1454-68. [PMID: 32691413 DOI: 10.1002/jcp.29951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 0.5] [Reference Citation Analysis]
29 Guo J, Han J, Liu J, Wang S. MicroRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. Braz J Med Biol Res 2020;53:e9360. [PMID: 32696822 DOI: 10.1590/1414-431x20209360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
30 Jing F, Zhao J, Jing X, Lei G. Long noncoding RNA Airn protects podocytes from diabetic nephropathy lesions via binding to Igf2bp2 and facilitating translation of Igf2 and Lamb2. Cell Biol Int 2020;44:1860-9. [PMID: 32437062 DOI: 10.1002/cbin.11392] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
31 Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. Mol Pharm 2021;18:641-66. [PMID: 32453574 DOI: 10.1021/acs.molpharmaceut.0c00094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Jash K, Gondaliya P, Sunkaria A, Kalia K. MicroRNA-29b Modulates β-Secretase Activity in SH-SY5Y Cell Line and Diabetic Mouse Brain. Cell Mol Neurobiol 2020;40:1367-81. [PMID: 32198621 DOI: 10.1007/s10571-020-00823-4] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
33 Loganathan TS, Sulaiman SA, Abdul Murad NA, Shah SA, Abdul Gafor AH, Jamal R, Abdullah N. Interactions Among Non-Coding RNAs in Diabetic Nephropathy. Front Pharmacol 2020;11:191. [PMID: 32194418 DOI: 10.3389/fphar.2020.00191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
34 Ma Y, Shi M, Wang Y, Liu J. PPARγ and Its Agonists in Chronic Kidney Disease. Int J Nephrol 2020;2020:2917474. [PMID: 32158560 DOI: 10.1155/2020/2917474] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
35 Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes (Basel) 2020;11:E211. [PMID: 32085655 DOI: 10.3390/genes11020211] [Cited by in Crossref: 24] [Cited by in F6Publishing: 32] [Article Influence: 12.0] [Reference Citation Analysis]
36 Yang L, Pan Y, Wu Y, Lin S, Dai B, Chen H, Wan J. Excessive arachidonic acid induced actin bunching remodeling and podocyte injury via a PKA-c-Abl dependent pathway. Exp Cell Res 2020;388:111808. [PMID: 31891685 DOI: 10.1016/j.yexcr.2019.111808] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
37 Chen X, Wang W, Li R, Yu J, Gao L. Association between polymorphisms in microRNAs and susceptibility to diabetes mellitus: A meta-analysis. Medicine (Baltimore) 2019;98:e17519. [PMID: 31689753 DOI: 10.1097/MD.0000000000017519] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Che X, Deng X, Xie K, Wang Q, Yan J, Shao X, Ni Z, Ying L. Long noncoding RNA MEG3 suppresses podocyte injury in diabetic nephropathy by inactivating Wnt/β-catenin signaling. PeerJ 2019;7:e8016. [PMID: 31799068 DOI: 10.7717/peerj.8016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
39 Zhu Y, Xu J, Liang W, Li J, Feng L, Zheng P, Ji T, Bai S. miR-98-5p Alleviated Epithelial-to-Mesenchymal Transition and Renal Fibrosis via Targeting Hmga2 in Diabetic Nephropathy. Int J Endocrinol 2019;2019:4946181. [PMID: 31885559 DOI: 10.1155/2019/4946181] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
40 Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: An In vitro- In vivo Assessment. Sci Rep 2019;9:16047. [PMID: 31690769 DOI: 10.1038/s41598-019-52390-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
41 Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J Cell Physiol 2020;235:3362-71. [PMID: 31549412 DOI: 10.1002/jcp.29224] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
42 Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019;9:893. [PMID: 31572683 DOI: 10.3389/fonc.2019.00893] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
43 Yang F, Cui Z, Deng H, Wang Y, Chen Y, Li H, Yuan L. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Medicine (Baltimore) 2019;98:e16225. [PMID: 31277135 DOI: 10.1097/MD.0000000000016225] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
44 Li Y, Li Q, Wang C, Lou Z, Li Q. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-γ. Exp Ther Med 2019;18:1331-7. [PMID: 31363374 DOI: 10.3892/etm.2019.7698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
45 Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X, Liu L. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res. 2019;144:151-157. [PMID: 30935943 DOI: 10.1016/j.phrs.2019.03.022] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
46 Yu S, Zhao H, Yang W, Amat R, Peng J, Li Y, Deng K, Mao X, Jiao Y. The Alcohol Extract of Coreopsis tinctoria Nutt Ameliorates Diabetes and Diabetic Nephropathy in db/db Mice through miR-192/miR-200b and PTEN/AKT and ZEB2/ECM Pathways. Biomed Res Int 2019;2019:5280514. [PMID: 31032350 DOI: 10.1155/2019/5280514] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
47 Wang T, Zhu H, Yang S, Fei X. Let‑7a‑5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 2019;19:4229-37. [PMID: 30896854 DOI: 10.3892/mmr.2019.10057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
48 Wang J, Shen L, Hong H, Li J, Wang H, Li X. Atrasentan alleviates high glucose-induced podocyte injury by the microRNA-21/forkhead box O1 axis. Eur J Pharmacol 2019;852:142-50. [PMID: 30876973 DOI: 10.1016/j.ejphar.2019.03.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
49 Zha F, Bai L, Tang B, Li J, Wang Y, Zheng P, Ji T, Bai S. MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. J Cell Biochem 2019;120:12574-81. [PMID: 30834596 DOI: 10.1002/jcb.28524] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
50 Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol Res 2019;141:574-85. [PMID: 30695734 DOI: 10.1016/j.phrs.2019.01.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
51 Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W. microRNAs in chronic kidney disease. Clin Chim Acta 2019;491:59-65. [PMID: 30639583 DOI: 10.1016/j.cca.2019.01.008] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
52 Li Y, Huang D, Zheng L, Cao H, Gao Y, Yang Y, Fan Z. Retracted Article: Long non-coding RNA TUG1 alleviates high glucose induced podocyte inflammation, fibrosis and apoptosis in diabetic nephropathy via targeting the miR-27a-3p/E2F3 axis. RSC Adv 2019;9:37620-9. [DOI: 10.1039/c9ra06136c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
53 Zheng Z, Hu H, Tong Y, Hu Z, Cao S, Shan C, Lin W, Yin Y, Li Z. MiR-27b regulates podocyte survival through targeting adenosine receptor 2B in podocytes from non-human primate. Cell Death Dis 2018;9:1133. [PMID: 30429458 DOI: 10.1038/s41419-018-1178-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
54 Xian Y, Dong L, Jia Y, Lin Y, Jiao W, Wang Y. miR-370 promotes high glucose-induced podocyte injuries by inhibiting angiotensin II type 1 receptor-associated protein: miR-370 targets to AGTRAP in high glucose-induced podocyte injury. Cell Biol Int 2018;42:1545-55. [DOI: 10.1002/cbin.11048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
55 Yao T, Zha D, Gao P, Shui H, Wu X. MiR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4. J Cell Physiol 2018;234:871-9. [PMID: 30171701 DOI: 10.1002/jcp.26908] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
56 Song J, Zhang H, Sun Y, Guo R, Zhong D, Xu R, Song M. Omentin-1 protects renal function of mice with type 2 diabetic nephropathy via regulating miR-27a-Nrf2/Keap1 axis. Biomed Pharmacother 2018;107:440-6. [PMID: 30103116 DOI: 10.1016/j.biopha.2018.08.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
57 Bai X, Geng J, Li X, Wan J, Liu J, Zhou Z, Liu X. Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy. Antioxidants & Redox Signaling 2018;29:355-76. [DOI: 10.1089/ars.2017.7278] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
58 Sun J, Zhao F, Zhang W, Lv J, Lv J, Yin A. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. J Cell Mol Med 2018;22:4840-55. [PMID: 30024097 DOI: 10.1111/jcmm.13747] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
59 Li X, Xu L, Hou X, Geng J, Tian J, Liu X, Bai X. Advanced Oxidation Protein Products Aggravate Tubulointerstitial Fibrosis Through Protein Kinase C-Dependent Mitochondrial Injury in Early Diabetic Nephropathy. Antioxid Redox Signal 2019;30:1162-85. [PMID: 29482336 DOI: 10.1089/ars.2017.7208] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
60 Bai X, Li X, Tian J, Xu L, Wan J, Liu Y. A new model of diabetic nephropathy in C57BL/6 mice challenged with advanced oxidation protein products. Free Radical Biology and Medicine 2018;118:71-84. [DOI: 10.1016/j.freeradbiomed.2018.02.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
61 Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol 2018;2018:6890501. [PMID: 29707000 DOI: 10.1155/2018/6890501] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
62 Zhang H, Yan XL, Guo XX, Shi MJ, Lu YY, Zhou QM, Chen QL, Hu YY, Xu LM, Huang S, Su SB. MiR-27a as a predictor for the activation of hepatic stellate cells and hepatitis B virus-induced liver cirrhosis. Oncotarget. 2018;9:1075-1090. [PMID: 29416678 DOI: 10.18632/oncotarget.23262] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
63 Jiang Y, Wang W, Liu ZY, Xie Y, Qian Y, Cai XN. Overexpression of miR-130a-3p/301a-3p attenuates high glucose-induced MPC5 podocyte dysfunction through suppression of TNF-α signaling. Exp Ther Med 2018;15:1021-8. [PMID: 29434693 DOI: 10.3892/etm.2017.5465] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
64 Li H, Zhu X, Zhang J, Shi J. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway. Biomed Pharmacother 2017;96:471-9. [PMID: 29031207 DOI: 10.1016/j.biopha.2017.10.019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]