BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH, Zhang Z. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 2017;8:e2583. [PMID: 28151474 DOI: 10.1038/cddis.2016.451] [Cited by in Crossref: 111] [Cited by in F6Publishing: 118] [Article Influence: 22.2] [Reference Citation Analysis]
Number Citing Articles
1 Moghaddas Sani H, Hejazian M, Hosseinian Khatibi SM, Ardalan M, Zununi Vahed S. Long non-coding RNAs: An essential emerging field in kidney pathogenesis. Biomed Pharmacother 2018;99:755-65. [PMID: 29710473 DOI: 10.1016/j.biopha.2018.01.122] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
2 Leung A, Natarajan R. Long Noncoding RNAs in Diabetes and Diabetic Complications. Antioxid Redox Signal 2018;29:1064-73. [PMID: 28934861 DOI: 10.1089/ars.2017.7315] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
3 Li J, Gao F, Wei L, Chen L, Qu N, Zeng L, Luo Y, Huang X, Jiang H. Predict the role of lncRNA in kidney aging based on RNA sequencing. BMC Genomics 2022;23. [DOI: 10.1186/s12864-022-08479-8] [Reference Citation Analysis]
4 Dong Q, Wang Q, Yan X, Wang X, Li Z, Zhang L. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-κB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis. Open Med (Wars) 2021;16:1336-49. [PMID: 34553078 DOI: 10.1515/med-2021-0328] [Reference Citation Analysis]
5 Wang H, An X, Lu Y, Ling W, Peng Y. Quantitative assessment of renal damage in rhesus monkeys with diabetic nephropathy using contrast-enhanced ultrasound. Ann Transl Med 2022;10:308. [PMID: 35434018 DOI: 10.21037/atm-22-946] [Reference Citation Analysis]
6 Ren H, Wang Q. Non-Coding RNA and Diabetic Kidney Disease. DNA Cell Biol 2021;40:553-67. [PMID: 33733861 DOI: 10.1089/dna.2020.5973] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY, Kang CM, Lu JB, Xu BM, Xu YJ, Xiao L, Lu ZF, Bai HL, Hu YW, Wang Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ 2019;26:1670-87. [PMID: 30683918 DOI: 10.1038/s41418-018-0235-z] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
8 Wang YN, Yang CE, Zhang DD, Chen YY, Yu XY, Zhao YY, Miao H. Long non-coding RNAs: A double-edged sword in aging kidney and renal disease. Chem Biol Interact 2021;337:109396. [PMID: 33508306 DOI: 10.1016/j.cbi.2021.109396] [Reference Citation Analysis]
9 Zhou Q, Chen W, Yu XQ. Long non-coding RNAs as novel diagnostic and therapeutic targets in kidney disease. Chronic Dis Transl Med 2019;5:252-7. [PMID: 32055784 DOI: 10.1016/j.cdtm.2019.12.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhao G, Hailati J, Ma X, Bao Z, Bakeyi M, Liu Z. LncRNA Gm4419 Regulates Myocardial Ischemia/Reperfusion Injury Through Targeting the miR-682/TRAF3 Axis. J Cardiovasc Pharmacol 2020;76:305-12. [PMID: 32590403 DOI: 10.1097/FJC.0000000000000867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Shelke V, Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease. Arch Physiol Biochem 2022;:1-12. [PMID: 34986074 DOI: 10.1080/13813455.2021.2023580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2020;11:583528. [PMID: 33574750 DOI: 10.3389/fphar.2020.583528] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Zhang C, Shao S, Zhang Y, Wang L, Liu J, Fang F, Li P, Wang B. LncRNA PCAT1 promotes metastasis of endometrial carcinoma through epigenetical downregulation of E-cadherin associated with methyltransferase EZH2. Life Sci 2020;243:117295. [PMID: 31927050 DOI: 10.1016/j.lfs.2020.117295] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
14 Ren G, Zhu J, Li J, Meng X. Noncoding RNAs in acute kidney injury. J Cell Physiol 2018;234:2266-76. [DOI: 10.1002/jcp.27203] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
15 Xu B, Wang Y, Li X, Mao Y, Deng X. RNA‑sequencing analysis of aberrantly expressed long non‑coding RNAs and mRNAs in a mouse model of ventilator‑induced lung injury. Mol Med Rep 2018;18:882-92. [PMID: 29845294 DOI: 10.3892/mmr.2018.9034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
16 Yu Y, Cao F, Ran Q, Wang F. Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor α. Biochemical and Biophysical Research Communications 2017;491:478-85. [DOI: 10.1016/j.bbrc.2017.07.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
17 Zeng M, Wei X, He YL, Chen JX, Lin WT, Xu WX. EGCG protects against myocardial I/RI by regulating lncRNA Gm4419-mediated epigenetic silencing of the DUSP5/ERK1/2 axis. Toxicol Appl Pharmacol 2021;433:115782. [PMID: 34740634 DOI: 10.1016/j.taap.2021.115782] [Reference Citation Analysis]
18 Wang Q. XIST silencing alleviated inflammation and mesangial cells proliferation in diabetic nephropathy by sponging miR-485. Arch Physiol Biochem 2020;:1-7. [PMID: 32669002 DOI: 10.1080/13813455.2020.1789880] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Fan H, Zhang S, Zhang Y, Liang W, Cao B. FERMT1 promotes gastric cancer progression by activating the NF-κB pathway and predicts poor prognosis. Cancer Biol Ther 2020;21:815-25. [PMID: 32723205 DOI: 10.1080/15384047.2020.1792218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics 2018;12:41. [PMID: 30139387 DOI: 10.1186/s40246-018-0173-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 16.8] [Reference Citation Analysis]
21 Zhao W, Chen L, Zhou H, Deng C, Han Q, Chen Y, Wu Q, Li S. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice. Mol Med Rep 2021;24:741. [PMID: 34435648 DOI: 10.3892/mmr.2021.12381] [Reference Citation Analysis]
22 Wang X, Antony V, Wang Y, Wu G, Liang G. Pattern recognition receptor‐mediated inflammation in diabetic vascular complications. Med Res Rev 2020;40:2466-84. [DOI: 10.1002/med.21711] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Yang H, Zhang Z, Peng R, Zhang L, Liu H, Wang X, Tian Y, Sun Y. RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models. Biosci Rep 2021;41:BSR20203005. [PMID: 33779731 DOI: 10.1042/BSR20203005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Lei M, Liu Z, Guo J. The Emerging Role of Vitamin D and Vitamin D Receptor in Diabetic Nephropathy. Biomed Res Int 2020;2020:4137268. [PMID: 32766307 DOI: 10.1155/2020/4137268] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin Epigenetics 2021;13:87. [PMID: 33883002 DOI: 10.1186/s13148-021-01079-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lin L, Lin H, Wang D, Bao Z, Cai H, Zhang X. Bone marrow mesenchymal stem cells ameliorated kidney fibrosis by attenuating TLR4/NF-κB in diabetic rats. Life Sciences 2020;262:118385. [DOI: 10.1016/j.lfs.2020.118385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Menini S, Iacobini C, Vitale M, Pugliese G. The Inflammasome in Chronic Complications of Diabetes and Related Metabolic Disorders. Cells 2020;9:E1812. [PMID: 32751658 DOI: 10.3390/cells9081812] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
28 Zhao J, He B, Zhang S, Huang W, Li X. Ginsenoside Rg1 alleviates acute liver injury through the induction of autophagy and suppressing NF-κB/NLRP3 inflammasome signaling pathway. Int J Med Sci 2021;18:1382-9. [PMID: 33628094 DOI: 10.7150/ijms.50919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun 2019;10:1495. [PMID: 30940803 DOI: 10.1038/s41467-019-09482-6] [Cited by in Crossref: 98] [Cited by in F6Publishing: 111] [Article Influence: 32.7] [Reference Citation Analysis]
30 Zhang P, Yi L, Qu S, Dai J, Li X, Liu B, Li H, Ai K, Zheng P, Qiu S, Li Y, Wang Y, Xiang X, Chai X, Dong Z, Zhang D. The Biomarker TCONS_00016233 Drives Septic AKI by Targeting the miR-22-3p/AIFM1 Signaling Axis. Mol Ther Nucleic Acids 2020;19:1027-42. [PMID: 32059335 DOI: 10.1016/j.omtn.2019.12.037] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
31 Goyal N, Kesharwani D, Datta M. Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cell Mol Life Sci 2018;75:1827-37. [PMID: 29387902 DOI: 10.1007/s00018-018-2760-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
32 Wen L, Zhang Z, Peng R, Zhang L, Liu H, Peng H, Sun Y. Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes. J Cell Biochem 2019;120:17520-33. [PMID: 31106482 DOI: 10.1002/jcb.29016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li DX, Wang CN, Wang Y, Ye CL, Jiang L, Zhu XY, Liu YJ. NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice. Behav Brain Res 2020;391:112684. [PMID: 32454054 DOI: 10.1016/j.bbr.2020.112684] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
34 Hu M, Ma Q, Liu B, Wang Q, Zhang T, Huang T, Lv Z. Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease. Front Cell Dev Biol 2022;10:845371. [DOI: 10.3389/fcell.2022.845371] [Reference Citation Analysis]
35 Wu K, Peng R, Mu Q, Jiang Y, Chen J, Ming R, Zhao J, Zhang Z, Sun Y. Rack1 regulates pro-inflammatory cytokines by NF-κB in diabetic nephropathy. Open Medicine 2022;17:978-90. [DOI: 10.1515/med-2022-0487] [Reference Citation Analysis]
36 Xiang H, Zhu F, Xu Z, Xiong J. Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways. Front Cell Dev Biol 2020;8:106. [PMID: 32175320 DOI: 10.3389/fcell.2020.00106] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
37 Zhao JH. Mesangial Cells and Renal Fibrosis. Adv Exp Med Biol 2019;1165:165-94. [PMID: 31399966 DOI: 10.1007/978-981-13-8871-2_9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
38 Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021;22:6027. [PMID: 34199672 DOI: 10.3390/ijms22116027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Su H, Xie J, Wen L, Wang S, Chen S, Li J, Qi C, Zhang Q, He X, Zheng L, Wang L. LncRNA Gas5 regulates Fn1 deposition via Creb5 in renal fibrosis. Epigenomics 2021;13:699-713. [PMID: 33876672 DOI: 10.2217/epi-2020-0449] [Reference Citation Analysis]
40 Bach DH, Lee SK. Long noncoding RNAs in cancer cells. Cancer Lett. 2018;419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Cited by in Crossref: 89] [Cited by in F6Publishing: 94] [Article Influence: 29.7] [Reference Citation Analysis]
41 Chen S, Han B, Geng X, Li P, Lavin MF, Yeo AJ, Li C, Sun J, Peng C, Shao H, Du Z. Microcrystalline silica particles induce inflammatory response via pyroptosis in primary human respiratory epithelial cells. Environ Toxicol 2021. [PMID: 34766707 DOI: 10.1002/tox.23405] [Reference Citation Analysis]
42 Peng W, Huang S, Shen L, Tang Y, Li H, Shi Y. Long noncoding RNA NONHSAG053901 promotes diabetic nephropathy via stimulating Egr-1/TGF-β-mediated renal inflammation. J Cell Physiol 2019;234:18492-503. [PMID: 30927260 DOI: 10.1002/jcp.28485] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
43 Shi S, Song L, Yu H, Feng S, He J, Liu Y, He Y. Knockdown of LncRNA-H19 Ameliorates Kidney Fibrosis in Diabetic Mice by Suppressing miR-29a-Mediated EndMT. Front Pharmacol 2020;11:586895. [PMID: 33324218 DOI: 10.3389/fphar.2020.586895] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Zhang L, Zhou Y, Zhou F, Yu X, Liu J, Liu Y, Zhu Y, Wang W, Chen N. Altered Expression of Long Noncoding and Messenger RNAs in Diabetic Nephropathy following Treatment with Rosiglitazone. Biomed Res Int 2020;2020:1360843. [PMID: 32025515 DOI: 10.1155/2020/1360843] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
45 Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021;12:684236. [PMID: 34054586 DOI: 10.3389/fphys.2021.684236] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Jiang X, Zhang F. Long noncoding RNA: a new contributor and potential therapeutic target in fibrosis. Epigenomics 2017;9:1233-41. [PMID: 28809130 DOI: 10.2217/epi-2017-0020] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 6.2] [Reference Citation Analysis]
47 Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, Kuang H. Role of NLRP3 Inflammasome in Lupus Nephritis and Therapeutic Targeting by Phytochemicals. Front Pharmacol 2021;12:621300. [PMID: 34489689 DOI: 10.3389/fphar.2021.621300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Wen Y, Yu Y, Fu X. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 2017;487:923-9. [PMID: 28476620 DOI: 10.1016/j.bbrc.2017.05.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
49 Ying D, Zhou X, Ruan Y, Wang L, Wu X. LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis. Biochem Cell Biol 2020;98:474-83. [PMID: 32114773 DOI: 10.1139/bcb-2019-0331] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Zhang YL, Wang RB, Li WY, Xia FZ, Liu L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol 2017;10:1812-8. [PMID: 29259897 DOI: 10.18240/ijo.2017.12.04] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
51 Pi P, Yin Q, Xiao L, Luo D. Long non-coding RNA Neat1 triggers renal tubular epithelial cell apoptosis via activating BH3-only protein in membranous nephropathy. Autoimmunity 2021;:1-8. [PMID: 34477041 DOI: 10.1080/08916934.2021.1972289] [Reference Citation Analysis]
52 Paniri A, Akhavan-Niaki H. Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID-19: Role of lncRNAs in cytokine storm modulation. Life Sci 2020;257:118114. [PMID: 32693241 DOI: 10.1016/j.lfs.2020.118114] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
53 Zhao X, Hu H, Sun K, Liang W, Wang Z, Jin X, Wang S. Actoeside mitigated the renal proximal tubule cells damage triggered by high glucose through miR-766/VCAM1/NF-κB signalling pathway. Arch Physiol Biochem 2021;:1-10. [PMID: 34338087 DOI: 10.1080/13813455.2021.1920983] [Reference Citation Analysis]
54 Lin J, Jiang Z, Liu C, Zhou D, Song J, Liao Y, Chen J. Emerging Roles of Long Non-Coding RNAs in Renal Fibrosis. Life (Basel) 2020;10:E131. [PMID: 32752143 DOI: 10.3390/life10080131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wang S, Yi P, Wang N, Song M, Li W, Zheng Y. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro. PLoS One 2021;16:e0252761. [PMID: 34097717 DOI: 10.1371/journal.pone.0252761] [Reference Citation Analysis]
56 Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan L, Yang W, Yuan Y, Xie Y, Yang S, Luo S, Jiang W, Zhang J, Pan Z, Lu Y. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. Journal of Molecular and Cellular Cardiology 2019;133:188-98. [DOI: 10.1016/j.yjmcc.2019.06.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
57 Menon MP, Hua KF. The Long Non-coding RNAs: Paramount Regulators of the NLRP3 Inflammasome. Front Immunol 2020;11:569524. [PMID: 33101288 DOI: 10.3389/fimmu.2020.569524] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
58 Yang M, Luo S, Jiang N, Wang X, Han Y, Zhao H, Xiong X, Liu Y, Zhao C, Zhu X, Sun L. DsbA-L Ameliorates Renal Injury Through the AMPK/NLRP3 Inflammasome Signaling Pathway in Diabetic Nephropathy. Front Physiol 2021;12:659751. [PMID: 33995126 DOI: 10.3389/fphys.2021.659751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Xu L, Natarajan R, Chen Z. Epigenetic Risk Profile of Diabetic Kidney Disease in High-Risk Populations. Curr Diab Rep 2019;19:9. [PMID: 30730019 DOI: 10.1007/s11892-019-1129-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
60 Chi K, Geng X, Liu C, Zhang Y, Cui J, Cai G, Chen X, Wang F, Hong Q. LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia. J Cell Mol Med 2021;25:8504-21. [PMID: 34296520 DOI: 10.1111/jcmm.16812] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Li Y, Xu K, Xu K, Chen S, Cao Y, Zhan H. Roles of Identified Long Noncoding RNA in Diabetic Nephropathy. J Diabetes Res 2019;2019:5383010. [PMID: 30891461 DOI: 10.1155/2019/5383010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
62 Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021;12:649587. [PMID: 34025445 DOI: 10.3389/fphys.2021.649587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Zhu Y, Lu Y, Yuan L, Ling W, Jiang X, Chen S, Hu B. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021;311:151515. [PMID: 34146956 DOI: 10.1016/j.ijmm.2021.151515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020;2020:8872639. [PMID: 33457426 DOI: 10.1155/2020/8872639] [Reference Citation Analysis]
65 Gao K, Zheng P, Yang T, Zhang X, Zhao Z. Tangshenping granule inhibits pyroptosis in a rat model of streptozotocin-induced diabetic nephropathy via the NLRP3/caspase-1/GSDMD pathway. Journal of Traditional Chinese Medical Sciences 2021;8:317-26. [DOI: 10.1016/j.jtcms.2021.10.004] [Reference Citation Analysis]
66 Van der Hauwaert C, Glowacki F, Pottier N, Cauffiez C. Non-Coding RNAs as New Therapeutic Targets in the Context of Renal Fibrosis. Int J Mol Sci 2019;20:E1977. [PMID: 31018516 DOI: 10.3390/ijms20081977] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
67 Shang J, Wang S, Jiang Y, Duan Y, Cheng G, Liu D, Xiao J, Zhao Z. Identification of key lncRNAs contributing to diabetic nephropathy by gene co-expression network analysis. Sci Rep 2019;9:3328. [PMID: 30824724 DOI: 10.1038/s41598-019-39298-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
68 Chen D, Xiong XQ, Zang YH, Tong Y, Zhou B, Chen Q, Li YH, Gao XY, Kang YM, Zhu GQ. BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death Dis 2017;8:e3156. [PMID: 29072703 DOI: 10.1038/cddis.2017.567] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
69 He D, Zheng J, Hu J, Chen J, Wei X. Long non-coding RNAs and pyroptosis. Clin Chim Acta 2020;504:201-8. [PMID: 31794769 DOI: 10.1016/j.cca.2019.11.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
70 Luo D, Liu F, Zhang J, Shao Q, Tao W, Xiao R, Dai W, Qian K. Functional crosstalk between Long non-coding RNAs and the NLRP3 inflammasome in the regulation of diseases. Mol Immunol 2021;131:191-200. [PMID: 33446392 DOI: 10.1016/j.molimm.2020.12.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
71 Biswas S, Chakrabarti S. Increased Extracellular Matrix Protein Production in Chronic Diabetic Complications: Implications of Non-Coding RNAs. Noncoding RNA 2019;5:E30. [PMID: 30909482 DOI: 10.3390/ncrna5010030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
72 Shen Y, Chen W, Han L, Bian Q, Fan J, Cao Z, Jin X, Ding T, Xian Z, Guo Z, Zhang W, Ju D, Mei X. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm Sin B 2021;11:127-42. [PMID: 33532185 DOI: 10.1016/j.apsb.2020.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
73 Ji E, Kim C, Kim W, Lee EK. Role of long non-coding RNAs in metabolic control. Biochim Biophys Acta Gene Regul Mech 2020;1863:194348. [PMID: 30594638 DOI: 10.1016/j.bbagrm.2018.12.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
74 Liu W, Liang L, Zhang Q, Li Y, Yan S, Tang T, Ren Y, Mo J, Liu F, Chen X, Lan T. Effects of andrographolide on renal tubulointersticial injury and fibrosis. Evidence of its mechanism of action. Phytomedicine 2021;91:153650. [PMID: 34332282 DOI: 10.1016/j.phymed.2021.153650] [Reference Citation Analysis]
75 Zhang X, Zhang X, Jia Q, Li H, Ma R, Yang G, Yin F, Jiang N, Yin D. LncRNA CALML3-AS1 suppresses papillary thyroid cancer progression via sponging miR-20a-5p/RBM38 axis. BMC Cancer 2022;22:344. [PMID: 35351042 DOI: 10.1186/s12885-022-09360-3] [Reference Citation Analysis]
76 Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020;692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
77 Ge Y, Wang J, Wu D, Zhou Y, Qiu S, Chen J, Zhu X, Xiang X, Li H, Zhang D. lncRNA NR_038323 Suppresses Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-324-3p/DUSP1 Axis. Mol Ther Nucleic Acids 2019;17:741-53. [PMID: 31430717 DOI: 10.1016/j.omtn.2019.07.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
78 Lv J, Wu Y, Mai Y, Bu S. Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. J Diabetes Res 2020;2020:3960857. [PMID: 32656264 DOI: 10.1155/2020/3960857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
79 Jiang S, Zhang H, Li X, Yi B, Huang L, Hu Z, Li A, Du J, Li Y, Zhang W. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J Steroid Biochem Mol Biol 2021;206:105789. [PMID: 33259938 DOI: 10.1016/j.jsbmb.2020.105789] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
80 Lian H, Cheng Y, Wu X. Malignant fibrous histiocytoma amplified sequence 1 alleviates inflammation and renal fibrosis in diabetic nephropathy by inhibiting TLR4. Biosci Rep 2019;39:BSR20190617. [PMID: 31696221 DOI: 10.1042/BSR20190617] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Yuan W, Ji J, Shu Y, Chen J, Liu S, Wu L, Zhou Z, Liu Z, Tang Q, Zhang X, Shu X. Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer. J Mol Med 2019;97:89-102. [DOI: 10.1007/s00109-018-1716-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
82 Loganathan TS, Sulaiman SA, Abdul Murad NA, Shah SA, Abdul Gafor AH, Jamal R, Abdullah N. Interactions Among Non-Coding RNAs in Diabetic Nephropathy. Front Pharmacol 2020;11:191. [PMID: 32194418 DOI: 10.3389/fphar.2020.00191] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
83 Chen W, Peng R, Sun Y, Liu H, Zhang L, Peng H, Zhang Z. The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathy via the miR‐449a/b/Trim11/Mek signaling pathway. FASEB j 2019;33:11492-506. [DOI: 10.1096/fj.201900522r] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
84 Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019;52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 20.0] [Reference Citation Analysis]
85 Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021;9:1823. [PMID: 34944639 DOI: 10.3390/biomedicines9121823] [Reference Citation Analysis]
86 Xia W, He Y, Gan Y, Zhang B, Dai G, Ru F, Jiang Z, Chen Z, Chen X. Long Non-coding RNA: An Emerging Contributor and Potential Therapeutic Target in Renal Fibrosis. Front Genet 2021;12:682904. [PMID: 34386039 DOI: 10.3389/fgene.2021.682904] [Reference Citation Analysis]
87 He X, Ou C, Xiao Y, Han Q, Li H, Zhou S. LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget 2017;8:71325-41. [PMID: 29050364 DOI: 10.18632/oncotarget.19921] [Cited by in Crossref: 46] [Cited by in F6Publishing: 51] [Article Influence: 9.2] [Reference Citation Analysis]
88 Wang T, Gao Y, Yue R, Wang X, Shi Y, Xu J, Wu B, Li Y. Ginsenoside Rg1 Alleviates Podocyte Injury Induced by Hyperlipidemia via Targeting the mTOR/NF-κB/NLRP3 Axis. Evid Based Complement Alternat Med 2020;2020:2735714. [PMID: 33133213 DOI: 10.1155/2020/2735714] [Reference Citation Analysis]
89 Zhu X, Shi J, Li H. Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways. Biomedicine & Pharmacotherapy 2018;106:976-82. [DOI: 10.1016/j.biopha.2018.07.045] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
90 Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Journal of Functional Foods 2020;64:103702. [DOI: 10.1016/j.jff.2019.103702] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
91 Li X, Zhu Q, Wang Q, Zhang Q, Zheng Y, Wang L, Jin Q. Protection of Sacubitril/Valsartan against Pathological Cardiac Remodeling by Inhibiting the NLRP3 Inflammasome after Relief of Pressure Overload in Mice. Cardiovasc Drugs Ther 2020;34:629-40. [PMID: 32444995 DOI: 10.1007/s10557-020-06995-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
92 Liu Y, Hao Y, Chen Y, Yin S, Zhang M, Kong L, Wang T. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats: Sarsasapogenin prevents progression of diabetic nephropathy. Phytotherapy Research 2018;32:1574-82. [DOI: 10.1002/ptr.6088] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
93 Han L, Zou Y, Yu C. Targeting CC chemokine ligand (CCL) 20 by miR-143-5p alleviate lead poisoning-induced renal fibrosis by regulating interstitial fibroblasts excessive proliferation and dysfunction. Bioengineered 2022;13:11156-68. [PMID: 35485286 DOI: 10.1080/21655979.2022.2062106] [Reference Citation Analysis]
94 Bai L, Li J, Li H, Song J, Zhou Y, Lu R, Liu B, Pang Y, Zhang P, Chen J, Liu X, Wu J, Liang C, Zhou J. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochemical Pharmacology 2019;169:113619. [DOI: 10.1016/j.bcp.2019.08.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
95 Liu B, Lu R, Li H, Zhou Y, Zhang P, Bai L, Chen D, Chen J, Li J, Yu P, Wu J, Liang C, Song J, Liu X, Zhou J. Zhen-wu-tang ameliorates membranous nephropathy rats through inhibiting NF-κB pathway and NLRP3 inflammasome. Phytomedicine 2019;59:152913. [PMID: 30991182 DOI: 10.1016/j.phymed.2019.152913] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
96 Yaribeygi H, Katsiki N, Butler AE, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discovery Today 2019;24:256-62. [DOI: 10.1016/j.drudis.2018.08.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 15.3] [Reference Citation Analysis]
97 Luo D, Dai W, Feng X, Ding C, Shao Q, Xiao R, Zhao N, Peng W, Yang Y, Cui Y, Liu F, Qian K. Suppression of lncRNA NLRP3 inhibits NLRP3-triggered inflammatory responses in early acute lung injury. Cell Death Dis 2021;12:898. [PMID: 34599154 DOI: 10.1038/s41419-021-04180-y] [Reference Citation Analysis]
98 Jing J, Song L, Zuo D, Li W, Sun Y, Ma X, Ren J. Transcriptome expression profiles associated with diabetic nephropathy development. Mol Cell Biochem 2022. [PMID: 35357607 DOI: 10.1007/s11010-022-04420-5] [Reference Citation Analysis]
99 Zou XS, Xie L, Wang WY, Zhao GY, Tian XY, Chen MH. Pomelo peel oil alleviates cerebral NLRP3 inflammasome activation in a cardiopulmonary resuscitation rat model. Exp Ther Med 2021;21:233. [PMID: 33603841 DOI: 10.3892/etm.2021.9664] [Reference Citation Analysis]
100 Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med 2019;44:363-74. [PMID: 31198979 DOI: 10.3892/ijmm.2019.4238] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
101 Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2021;9:792401. [PMID: 35087834 DOI: 10.3389/fcell.2021.792401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
102 Liu W, Chen X, Wang Y, Chen Y, Chen S, Gong W, Chen T, Sun L, Zheng C, Yin B, Li S, Luo C, Huang Q, Xiao J, Xu Z, Peng F, Long H. Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice. Pharmacological Research 2019;150:104506. [DOI: 10.1016/j.phrs.2019.104506] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
103 Guo J, Liu Z, Gong R. Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond). 2019;133:1321-1339. [PMID: 31221822 DOI: 10.1042/cs20190372] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
104 Zhao W, Zhou L, Novák P, Shi X, Lin CB, Zhu X, Yin K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J Diabetes Res 2022;2022:2193768. [PMID: 35719709 DOI: 10.1155/2022/2193768] [Reference Citation Analysis]
105 Cheng L, Cheng J, Peng W, Jiang X, Huang S. Long non-coding RNA Dlx6os1 serves as a potential treatment target for diabetic nephropathy via regulation of apoptosis and inflammation. Exp Ther Med 2020;20:3791-7. [PMID: 32855728 DOI: 10.3892/etm.2020.9112] [Reference Citation Analysis]
106 Zhu S, Liu Y, Wang X, Wang J, Xi G. lncRNA SNHG10 Promotes the Proliferation and Invasion of Osteosarcoma via Wnt/β-Catenin Signaling. Mol Ther Nucleic Acids 2020;22:957-70. [PMID: 33251045 DOI: 10.1016/j.omtn.2020.10.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
107 Deng X, Guo J, Sun Z, Liu L, Zhao T, Li J, Tang G, Zhang H, Wang W, Cao S, Zhu D, Tao T, Cao G, Baryshnikov PI, Chen C, Zhao Z, Chen L, Zhang H. Brucella-Induced Downregulation of lncRNA Gm28309 Triggers Macrophages Inflammatory Response Through the miR-3068-5p/NF-κB Pathway. Front Immunol 2020;11:581517. [PMID: 33414782 DOI: 10.3389/fimmu.2020.581517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 Sun HJ, Ren XS, Xiong XQ, Chen YZ, Zhao MX, Wang JJ, Zhou YB, Han Y, Chen Q, Li YH, Kang YM, Zhu GQ. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis 2017;8:e3074. [PMID: 28981106 DOI: 10.1038/cddis.2017.470] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 15.8] [Reference Citation Analysis]
109 Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Front Physiol 2018;9:114. [PMID: 29515457 DOI: 10.3389/fphys.2018.00114] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 19.5] [Reference Citation Analysis]
110 Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021;22:e13203. [PMID: 33443301 DOI: 10.1111/obr.13203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
111 Qiao Q, Wang F, Gu Y. LncRNA Gm4419 promotes the development of cardiac diseases in type 2 diabetic patients with diabetic nephropathy. Int J Diabetes Dev Ctries 2019;39:369-73. [DOI: 10.1007/s13410-018-0690-6] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
112 Qin B, Cao X. LncRNA PVT1 Regulates High Glucose-Induced Viability, Oxidative Stress, Fibrosis, and Inflammation in Diabetic Nephropathy via miR-325-3p/Snail1 Axis. Diabetes Metab Syndr Obes 2021;14:1741-50. [PMID: 33907435 DOI: 10.2147/DMSO.S303151] [Reference Citation Analysis]
113 Che X, Deng X, Xie K, Wang Q, Yan J, Shao X, Ni Z, Ying L. Long noncoding RNA MEG3 suppresses podocyte injury in diabetic nephropathy by inactivating Wnt/β-catenin signaling. PeerJ 2019;7:e8016. [PMID: 31799068 DOI: 10.7717/peerj.8016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
114 Bai X, Geng J, Li X, Wan J, Liu J, Zhou Z, Liu X. Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy. Antioxidants & Redox Signaling 2018;29:355-76. [DOI: 10.1089/ars.2017.7278] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 13.3] [Reference Citation Analysis]
115 Sun X, Gan H, Xia Y. Changes of serum advanced glycation end products (AGEs), matrix metalloprotein-2 (MMP-2), and urinary microalbuminuria (mALB) in diabetic nephropathy and their predictive value for heart failure. Transl Androl Urol 2021;10:1279-85. [PMID: 33850762 DOI: 10.21037/tau-21-35] [Reference Citation Analysis]
116 Zhang P, Sun Y, Peng R, Chen W, Fu X, Zhang L, Peng H, Zhang Z. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3. Cell Death Dis. 2019;10:526. [PMID: 31285427 DOI: 10.1038/s41419-019-1765-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
117 Wang J, Li C, Ding W, Peng G, Xiao G, Chen R, Cheng Q. Research Progress on the Inflammatory Effects of Long Non-coding RNA in Traumatic Brain Injury. Front Mol Neurosci 2022;15:835012. [DOI: 10.3389/fnmol.2022.835012] [Reference Citation Analysis]
118 Deng B, Hu Y, Sheng X, Zeng H, Huo Y. miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression. Exp Ther Med 2020;20:1514-20. [PMID: 32765674 DOI: 10.3892/etm.2020.8864] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
119 Mohany M, Alanazi AZ, Alqahtani F, Belali OM, Ahmed MM, Al-Rejaie SS. LCZ696 mitigates diabetic-induced nephropathy through inhibiting oxidative stress, NF-κB mediated inflammation and glomerulosclerosis in rats. PeerJ 2020;8:e9196. [PMID: 32596035 DOI: 10.7717/peerj.9196] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
120 Xu J, Deng Y, Wang Y, Sun X, Chen S, Fu G. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif 2020;53:e12738. [PMID: 31957155 DOI: 10.1111/cpr.12738] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
121 Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022. [PMID: 35365780 DOI: 10.1038/s41401-022-00886-7] [Reference Citation Analysis]
122 Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y, Liu J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 2019;709:1-7. [DOI: 10.1016/j.gene.2019.05.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
123 Raut SK, Khullar M. The Big Entity of New RNA World: Long Non-Coding RNAs in Microvascular Complications of Diabetes. Front Endocrinol (Lausanne) 2018;9:300. [PMID: 29915562 DOI: 10.3389/fendo.2018.00300] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
124 Zhou LJ, Yang DW, Ou LN, Guo XR, Wu BL. Circulating Expression Level of LncRNA Malat1 in Diabetic Kidney Disease Patients and Its Clinical Significance. J Diabetes Res 2020;2020:4729019. [PMID: 32832561 DOI: 10.1155/2020/4729019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
125 Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021;13:1457. [PMID: 34452323 DOI: 10.3390/v13081457] [Reference Citation Analysis]
126 Leti F, DiStefano JK. Long Noncoding RNAs as Diagnostic and Therapeutic Targets in Type 2 Diabetes and Related Complications. Genes (Basel) 2017;8:E207. [PMID: 28829354 DOI: 10.3390/genes8080207] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
127 Li Q, Ge C, Tan J, Sun Y, Kuang Q, Dai X, Zhong S, Yi C, Hu LF, Lou DS, Xu M. Juglanin protects against high fat diet-induced renal injury by suppressing inflammation and dyslipidemia via regulating NF-κB/HDAC3 signaling. Int Immunopharmacol 2021;95:107340. [PMID: 33667999 DOI: 10.1016/j.intimp.2020.107340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Chen H, Guo Y, Cheng X. Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 2021;476:4517-28. [PMID: 34532814 DOI: 10.1007/s11010-021-04250-x] [Reference Citation Analysis]
129 Sun J, Zhang S, Shi B, Zheng D, Shi J. Transcriptome Identified lncRNAs Associated with Renal Fibrosis in UUO Rat Model. Front Physiol 2017;8:658. [PMID: 28912732 DOI: 10.3389/fphys.2017.00658] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
130 Ignarski M, Islam R, Müller RU. Long Non-Coding RNAs in Kidney Disease. Int J Mol Sci 2019;20:E3276. [PMID: 31277300 DOI: 10.3390/ijms20133276] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
131 Zhang Z, Dai F, Luo F, Wu W, Zhang S, Zhou R, Xu J, Zhou Q, Song L. Diaphanous related formin 3 knockdown suppresses cell proliferation and metastasis of osteosarcoma cells. Discov Onc 2021;12. [DOI: 10.1007/s12672-021-00415-8] [Reference Citation Analysis]
132 Leung A, Amaram V, Natarajan R. Linking diabetic vascular complications with LncRNAs. Vascul Pharmacol 2019;114:139-44. [PMID: 29398367 DOI: 10.1016/j.vph.2018.01.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
133 Cao Z, Huang D, Tang C, Lu Y, Huang S, Peng C, Hu X. Pyroptosis in diabetes and diabetic nephropathy. Clinica Chimica Acta 2022;531:188-96. [DOI: 10.1016/j.cca.2022.04.011] [Reference Citation Analysis]
134 Huang L, Hu X. Molecular Mechanisms and Functions of lncRNAs in the Inflammatory Reaction of Diabetes Mellitus. Int J Endocrinol 2021;2021:2550399. [PMID: 34712322 DOI: 10.1155/2021/2550399] [Reference Citation Analysis]
135 Wang WJ, Jiang X, Gao CC, Chen ZW. Salusin-α mitigates diabetic nephropathy via inhibition of the Akt/mTORC1/p70S6K signaling pathway in diabetic rats. Drug Chem Toxicol 2019;:1-8. [PMID: 31665937 DOI: 10.1080/01480545.2019.1683572] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
136 Liu D, Wang Q, He W, Ge L, Huang K. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicology and Environmental Safety 2022;231:113209. [DOI: 10.1016/j.ecoenv.2022.113209] [Reference Citation Analysis]
137 Liu C, Xu Y, Wu X, Zou Q. Clinical Significance Of Linc00342 Expression In The Peripheral Blood Lymphocytes Of Patients With Chronic Kidney Disease. Int J Nephrol Renovasc Dis 2019;12:251-6. [PMID: 31849511 DOI: 10.2147/IJNRD.S209832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
138 Majumder S, Hadden MJ, Thieme K, Batchu SN, Niveditha D, Chowdhury S, Yerra VG, Advani SL, Bowskill BB, Liu Y, Vakili H, Alghamdi TA, White KE, Geldenhuys L, Siddiqi FS, Advani A. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease. Diabetologia 2019;62:2129-42. [PMID: 31399844 DOI: 10.1007/s00125-019-4967-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
139 Lv H, Liu Y, Zhang B, Zheng Y, Ji H, Li S. The improvement effect of gastrodin on LPS/GalN-induced fulminant hepatitis via inhibiting inflammation and apoptosis and restoring autophagy. Int Immunopharmacol 2020;85:106627. [PMID: 32473572 DOI: 10.1016/j.intimp.2020.106627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]