BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 2013;12:2666-78. [PMID: 23647205 DOI: 10.1021/pr400011k] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Cao W, Guo Y, Cheng Z, Xu G, Zuo Q, Nie L, Huang Y, Liu S, Zhu Y. Inducible ATP1B1 Upregulates Antiviral Innate Immune Responses by the Ubiquitination of TRAF3 and TRAF6. J Immunol 2021;206:2668-81. [PMID: 34011520 DOI: 10.4049/jimmunol.2001262] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 2016;130:65-75. [PMID: 26361011 DOI: 10.1016/j.jprot.2015.09.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
3 Mekhedov SL, Makarova KS, Koonin EV. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biol Direct 2017;12:13. [PMID: 28545555 DOI: 10.1186/s13062-017-0185-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
4 Meng X, Krumm B, Li Y, Deng J, Xiang Y. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins. Proc Natl Acad Sci U S A 2015;112:14858-63. [PMID: 26578811 DOI: 10.1073/pnas.1515354112] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
5 Yakass MB, Franco D, Quaye O. Suppressors of Cytokine Signaling and Protein Inhibitors of Activated Signal Transducer and Activator of Transcriptions As Therapeutic Targets in Flavivirus Infections. J Interferon Cytokine Res 2020;40:1-18. [PMID: 31436502 DOI: 10.1089/jir.2019.0097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Jiang J, Wang YE, Palazzo AF, Shen Q. Roles of Nucleoporin RanBP2/Nup358 in Acute Necrotizing Encephalopathy Type 1 (ANE1) and Viral Infection. Int J Mol Sci 2022;23:3548. [PMID: 35408907 DOI: 10.3390/ijms23073548] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yang Y, Li L, Liu X, Jiang M, Zhao J, Li X, Zhao C, Yi H, Liu S, Li N. Quantitative Proteomic Analysis of Duck Embryo Fibroblasts Infected With Novel Duck Reovirus. Front Vet Sci 2020;7:577370. [PMID: 33344524 DOI: 10.3389/fvets.2020.577370] [Reference Citation Analysis]
8 Coombs KM, Simon PF, McLeish NJ, Zahedi-Amiri A, Kobasa D. Aptamer Profiling of A549 Cells Infected with Low-Pathogenicity and High-Pathogenicity Influenza Viruses. Viruses 2019;11:E1028. [PMID: 31694171 DOI: 10.3390/v11111028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015;14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
10 Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Science Signaling 2016;9:ra98-ra98. [DOI: 10.1126/scisignal.aaf5132] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
11 Lemos de Matos A, Liu J, McFadden G, Esteves PJ. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family. BMC Evol Biol 2013;13:121. [PMID: 23758988 DOI: 10.1186/1471-2148-13-121] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
12 Kosch R, Delarocque J, Claus P, Becker SC, Jung K. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics 2018;19:530. [PMID: 30001706 DOI: 10.1186/s12864-018-4914-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
13 Xin QL, Deng CL, Chen X, Wang J, Wang SB, Wang W, Deng F, Zhang B, Xiao G, Zhang LK. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection. J Virol 2017;91:e00554-17. [PMID: 28404849 DOI: 10.1128/JVI.00554-17] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhang Y, Wang Z, Chen H, Chen Z, Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis. 2014;24:30-36. [PMID: 24780919 DOI: 10.1016/j.ijid.2014.02.011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
15 Chhabra S, Sharma KB, Kalia M. Human Guanylate-Binding Protein 1 Positively Regulates Japanese Encephalitis Virus Replication in an Interferon Gamma Primed Environment. Front Cell Infect Microbiol 2022;12:832057. [DOI: 10.3389/fcimb.2022.832057] [Reference Citation Analysis]
16 Miao M, Yu F, Wang D, Tong Y, Yang L, Xu J, Qiu Y, Zhou X, Zhao X. Proteomics Profiling of Host Cell Response via Protein Expression and Phosphorylation upon Dengue Virus Infection. Virol Sin 2019;34:549-62. [PMID: 31134586 DOI: 10.1007/s12250-019-00131-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
17 Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2019;143:507-27. [PMID: 30075154 DOI: 10.1016/j.jaci.2018.07.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
18 Glover KKM, Gao A, Zahedi-Amiri A, Coombs KM. Vero Cell Proteomic Changes Induced by Zika Virus Infection. Proteomics 2019;19:e1800309. [PMID: 30578658 DOI: 10.1002/pmic.201800309] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
19 Wang X, Wu Z, Li Y, Yang Y, Xiao C, Liu X, Xiang X, Wei J, Shao D, Liu K, Deng X, Wu J, Qiu Y, Li B, Ma Z. p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. PLoS Pathog 2020;16:e1009035. [PMID: 33108395 DOI: 10.1371/journal.ppat.1009035] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Abraham R, Mudaliar P, Jaleel A, Srikanth J, Sreekumar E. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015;120:126-41. [PMID: 25782748 DOI: 10.1016/j.jprot.2015.03.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
21 Luo R, Huan C, Gao Q, Pan H, Chen P, Liu X, Gao S. AlphaB-crystallin promotes porcine circovirus type 2 replication in a cell proliferation-dependent manner. Virus Res 2021;301:198435. [PMID: 33961899 DOI: 10.1016/j.virusres.2021.198435] [Reference Citation Analysis]
22 He W, Kuang Y, Xing X, Simpson RJ, Huang H, Yang T, Chen J, Yang L, Liu E, He W, Gu J. Proteomic Comparison of 3D and 2D Glioma Models Reveals Increased HLA-E Expression in 3D Models is Associated with Resistance to NK Cell-Mediated Cytotoxicity. J Proteome Res 2014;13:2272-81. [DOI: 10.1021/pr500064m] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
23 Zhou MT, Qin Y, Li M, Chen C, Chen X, Shu HB, Guo L. Quantitative Proteomics Reveals the Roles of Peroxisome-associated Proteins in Antiviral Innate Immune Responses. Mol Cell Proteomics 2015;14:2535-49. [PMID: 26124285 DOI: 10.1074/mcp.M115.048413] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
24 Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020;15:e0232585. [PMID: 32374750 DOI: 10.1371/journal.pone.0232585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chai F, Li H, Wang W, Zhu X, Li Y, Wang S, Guo L, Zhang L, Xiao G. Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2015;1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
26 Peinado RDS, Eberle RJ, Pacca CC, Arni RK, Coronado MA. Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022;307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Reference Citation Analysis]
27 Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L, Chen X, Wang Y, Tang H. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep 2015;5:8421. [PMID: 25672227 DOI: 10.1038/srep08421] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 10.4] [Reference Citation Analysis]
28 Li HY, Zhang LK, Zhu XJ, Shang J, Chen X, Zhu Y, Guo L. Analysis of EV71 infection progression using triple-SILAC-based proteomics approach. Proteomics 2015;15:3629-43. [PMID: 26306425 DOI: 10.1002/pmic.201500180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
29 Russell AJ, Gray PE, Ziegler JB, Kim YJ, Smith S, Sewell WA, Goodnow CC. SAMD9L autoinflammatory or ataxia pancytopenia disease mutations activate cell-autonomous translational repression. Proc Natl Acad Sci U S A 2021;118:e2110190118. [PMID: 34417303 DOI: 10.1073/pnas.2110190118] [Reference Citation Analysis]
30 Wang Q, Zhai YY, Dai JH, Li KY, Deng Q, Han ZG. SAMD9L inactivation promotes cell proliferation via facilitating G1-S transition in hepatitis B virus-associated hepatocellular carcinoma. Int J Biol Sci 2014;10:807-16. [PMID: 25076857 DOI: 10.7150/ijbs.9143] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
31 Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol. [DOI: 10.1007/s00705-022-05481-z] [Reference Citation Analysis]
32 Reid CR, Hobman TC. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites. Virology 2017;500:169-77. [PMID: 27821284 DOI: 10.1016/j.virol.2016.10.025] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
33 An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res 2014;13:5376-90. [PMID: 25357264 DOI: 10.1021/pr500173p] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
34 Cui X, Qian P, Rao T, Wei Y, Zhao F, Zhang H, Chen H, Li X. Cellular Interleukin Enhancer-Binding Factor 2, ILF2, Inhibits Japanese Encephalitis Virus Replication In Vitro. Viruses 2019;11:E559. [PMID: 31212927 DOI: 10.3390/v11060559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
35 Zeng HL, Rao X, Zhang LK, Zhao X, Zhang WP, Wang J, Xu F, Guo L. Quantitative proteomics reveals olfactory input-dependent alterations in the mouse olfactory bulb proteome. J Proteomics 2014;109:125-42. [PMID: 24998433 DOI: 10.1016/j.jprot.2014.06.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
36 Clarke P, Leser JS, Bowen RA, Tyler KL. Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. mBio 2014;5:e00902-14. [PMID: 24618253 DOI: 10.1128/mBio.00902-14] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
37 Reid CR, Airo AM, Hobman TC. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes. Viruses 2015;7:4385-413. [PMID: 26287230 DOI: 10.3390/v7082825] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
38 Lowrey AJ, Cramblet W, Bentz GL. Viral manipulation of the cellular sumoylation machinery. Cell Commun Signal 2017;15:27. [PMID: 28705221 DOI: 10.1186/s12964-017-0183-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
39 Wang S, Liu H, Zu X, Liu Y, Chen L, Zhu X, Zhang L, Zhou Z, Xiao G, Wang W. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology 2016;498:116-27. [DOI: 10.1016/j.virol.2016.08.013] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
40 Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, Liu G, Luo J, Yin H. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016;16:1499-514. [PMID: 26989863 DOI: 10.1002/pmic.201500275] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
41 Chiu HC, Hannemann H, Heesom KJ, Matthews DA, Davidson AD. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One 2014;9:e93305. [PMID: 24671231 DOI: 10.1371/journal.pone.0093305] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
42 Zhang LK, Lin T, Zhu SL, Xianyu LZ, Lu SY. Global quantitative proteomic analysis of human glioma cells profiled host protein expression in response to enterovirus type 71 infection. Proteomics 2015;15:3784-96. [PMID: 26350028 DOI: 10.1002/pmic.201500134] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
43 van Tol S, Atkins C, Bharaj P, Johnson KN, Hage A, Freiberg AN, Rajsbaum R. VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection. J Virol 2020;94:e01454-19. [PMID: 31694946 DOI: 10.1128/JVI.01454-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
44 Hao F, Xie X, Liu M, Mao L, Li W, Na W. Transcriptome and Proteomic Analysis Reveals Up-Regulation of Innate Immunity-Related Genes Expression in Caprine Herpesvirus 1 Infected Madin Darby Bovine Kidney Cells. Viruses 2021;13:1293. [PMID: 34372499 DOI: 10.3390/v13071293] [Reference Citation Analysis]
45 Sharma KB, Chhabra S, Aggarwal S, Tripathi A, Banerjee A, Yadav AK, Vrati S, Kalia M. Proteomic landscape of Japanese encephalitis virus-infected fibroblasts. J Gen Virol 2021;102. [PMID: 34546869 DOI: 10.1099/jgv.0.001657] [Reference Citation Analysis]
46 Civra A, Colzani M, Cagno V, Francese R, Leoni V, Aldini G, Lembo D, Poli G. Modulation of cell proteome by 25-hydroxycholesterol and 27-hydroxycholesterol: A link between cholesterol metabolism and antiviral defense. Free Radic Biol Med 2020;149:30-6. [PMID: 31525455 DOI: 10.1016/j.freeradbiomed.2019.08.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
47 Sellers SA, Hagan RS, Hayden FG, Fischer WA 2nd. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017;11:372-93. [PMID: 28745014 DOI: 10.1111/irv.12470] [Cited by in Crossref: 117] [Cited by in F6Publishing: 118] [Article Influence: 29.3] [Reference Citation Analysis]
48 Zhang G, Li J, Sun Q, Zhang K, Xu W, Zhang Y, Wu G. Pathological Features of Echovirus-11-Associated Brain Damage in Mice Based on RNA-Seq Analysis. Viruses 2021;13:2477. [PMID: 34960747 DOI: 10.3390/v13122477] [Reference Citation Analysis]
49 Liu H, Huang CX, He Q, Li D, Luo MH, Zhao F, Lu W. Proteomics analysis of HSV-1-induced alterations in mouse brain microvascular endothelial cells. J Neurovirol 2019;25:525-39. [PMID: 31144288 DOI: 10.1007/s13365-019-00752-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
50 Fan Y, Li X, Zhang L, Zong Z, Wang F, Huang J, Zeng L, Zhang C, Yan H, Zhang L, Zhou F. SUMOylation in Viral Replication and Antiviral Defense. Adv Sci (Weinh) 2022;9:e2104126. [PMID: 35060688 DOI: 10.1002/advs.202104126] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Zhu SL, Chen X, Wang LJ, Wan WW, Xin QL, Wang W, Xiao G, Zhang LK. Global quantitative proteomic analysis profiles host protein expression in response to Sendai virus infection. Proteomics 2017;17. [PMID: 28067018 DOI: 10.1002/pmic.201600239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
52 Nagamachi A, Kanai A, Nakamura M, Okuda H, Yokoyama A, Shinriki S, Matsui H, Inaba T. Multiorgan failure with abnormal receptor metabolism in mice mimicking Samd9/9L syndromes. J Clin Invest 2021;131:140147. [PMID: 33373325 DOI: 10.1172/JCI140147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Inaba T, Nagamachi A. Revertant somatic mosaicism as a cause of cancer. Cancer Sci 2021;112:1383-9. [PMID: 33583097 DOI: 10.1111/cas.14852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Sengupta N, Ghosh S, Vasaikar SV, Gomes J, Basu A. Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection. PLoS One 2014;9:e90211. [PMID: 24599148 DOI: 10.1371/journal.pone.0090211] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
55 Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021;:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Reference Citation Analysis]
56 Kuo RL, Lin YH, Wang RY, Hsu CW, Chiu YT, Huang HI, Kao LT, Yu JS, Shih SR, Wu CC. Proteomics analysis of EV71-infected cells reveals the involvement of host protein NEDD4L in EV71 replication. J Proteome Res 2015;14:1818-30. [PMID: 25785312 DOI: 10.1021/pr501199h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
57 Monette A, Mouland AJ. Nucleoporins in Retroviral Replication. Retrovirus-Cell Interactions. Elsevier; 2018. pp. 113-62. [DOI: 10.1016/b978-0-12-811185-7.00003-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
58 Chen Z, Ye J, Ashraf U, Li Y, Wei S, Wan S, Zohaib A, Song Y, Chen H, Cao S. MicroRNA-33a-5p Modulates Japanese Encephalitis Virus Replication by Targeting Eukaryotic Translation Elongation Factor 1A1. J Virol 2016;90:3722-34. [PMID: 26819305 DOI: 10.1128/JVI.03242-15] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
59 Wan W, Wang L, Chen X, Zhu S, Shang W, Xiao G, Zhang LK. A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Cells. Molecules 2019;24:E4215. [PMID: 31757042 DOI: 10.3390/molecules24234215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
60 Luo L, Yang J, Liang K, Chen C, Chen X, Cai C. Fast and sensitive detection of Japanese encephalitis virus based on a magnetic molecular imprinted polymer-resonance light scattering sensor. Talanta 2019;202:21-6. [PMID: 31171172 DOI: 10.1016/j.talanta.2019.04.064] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
61 Sun Y, Hu B, Fan C, Jia L, Zhang Y, Du A, Zheng X, Zhou J. iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells. Electrophoresis 2015;36:1596-611. [PMID: 25929241 DOI: 10.1002/elps.201500014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zhong C, Li J, Mao L, Liu M, Zhu X, Li W, Sun M, Ji X, Xiao F, Yang L, Zhang W, Liao Z. Proteomics analysis reveals heat shock proteins involved in caprine parainfluenza virus type 3 infection. BMC Vet Res 2019;15:151. [PMID: 31101113 DOI: 10.1186/s12917-019-1897-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
63 Shang J, Xia T, Han QQ, Zhao X, Hu MM, Shu HB, Guo L. Quantitative Proteomics Identified TTC4 as a TBK1 Interactor and a Positive Regulator of SeV-Induced Innate Immunity. Proteomics 2018;18. [PMID: 29251827 DOI: 10.1002/pmic.201700403] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]