BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mangion IK, Sherry BD, Yin J, Fleitz FJ. Enantioselective Synthesis of a Dual Orexin Receptor Antagonist. Org Lett 2012;14:3458-61. [DOI: 10.1021/ol3014123] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Narancic T, Davis R, Nikodinovic-runic J, O’ Connor KE. Recent developments in biocatalysis beyond the laboratory. Biotechnol Lett 2015;37:943-54. [DOI: 10.1007/s10529-014-1762-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
2 Huisman GW, Collier SJ. On the development of new biocatalytic processes for practical pharmaceutical synthesis. Current Opinion in Chemical Biology 2013;17:284-92. [DOI: 10.1016/j.cbpa.2013.01.017] [Cited by in Crossref: 142] [Cited by in F6Publishing: 114] [Article Influence: 15.8] [Reference Citation Analysis]
3 Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Rhodium-Catalyzed Direct C-H Bond Cyanation in Ionic Liquids. Org Lett 2018;20:4994-7. [DOI: 10.1021/acs.orglett.8b01952] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
4 Richter N, Farnberger JE, Pressnitz D, Lechner H, Zepeck F, Kroutil W. A system for ω-transaminase mediated (R)-amination using l -alanine as an amine donor. Green Chem 2015;17:2952-8. [DOI: 10.1039/c4gc02363c] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
5 Tsukanov SV, Johnson MD, May SA, Rosemeyer M, Watkins MA, Kolis SP, Yates MH, Johnston JN. Development of an Intermittent-Flow Enantioselective Aza-Henry Reaction Using an Arylnitromethane and Homogeneous Brønsted Acid-Base Catalyst with Recycle. Org Process Res Dev 2016;20:215-26. [PMID: 27065720 DOI: 10.1021/acs.oprd.5b00245] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
6 Rattanangkool E, Sukwattanasinitt M, Wacharasindhu S. Organocatalytic Visible Light Enabled S N Ar of Heterocyclic Thiols: A Metal-Free Approach to 2-Aminobenzoxazoles and 4-Aminoquinazolines. J Org Chem 2017;82:13256-62. [DOI: 10.1021/acs.joc.7b02357] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Reference Citation Analysis]
8 Guntreddi T, Allam BK, Singh KN. Utilization of carbon disulfide as a powerful building block for the synthesis of 2-aminobenzoxazoles. RSC Adv 2013;3:9875. [DOI: 10.1039/c3ra41189c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
9 Kelly SA, Mix S, Moody TS, Gilmore BF. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol 2020;104:4781-94. [PMID: 32300853 DOI: 10.1007/s00253-020-10585-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
10 Fuchs CS, Hollauf M, Meissner M, Simon RC, Besset T, Reek JNH, Riethorst W, Zepeck F, Kroutil W. Dynamic Kinetic Resolution of 2-Phenylpropanal Derivatives to Yield β-Chiral Primary Amines via Bioamination. Adv Synth Catal 2014;356:2257-65. [DOI: 10.1002/adsc.201400217] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
11 Zheng Y, Song W, Zhang S, Xuan L. Palladium-catalyzed oxidative ortho-acylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles with toluene derivatives. Tetrahedron 2015;71:1574-80. [DOI: 10.1016/j.tet.2015.01.025] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 3.9] [Reference Citation Analysis]
12 Richter N, Simon RC, Kroutil W, Ward JM, Hailes HC. Synthesis of pharmaceutically relevant 17-α-amino steroids using an ω-transaminase. Chem Commun 2014;50:6098-100. [DOI: 10.1039/c3cc49080g] [Cited by in Crossref: 29] [Cited by in F6Publishing: 2] [Article Influence: 3.6] [Reference Citation Analysis]
13 Richter N, Simon RC, Lechner H, Kroutil W, Ward JM, Hailes HC. ω-Transaminases for the amination of functionalised cyclic ketones. Org Biomol Chem 2015;13:8843-51. [PMID: 26194788 DOI: 10.1039/c5ob01204j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
14 Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF. Application of ω-Transaminases in the Pharmaceutical Industry. Chem Rev 2018;118:349-67. [PMID: 29251912 DOI: 10.1021/acs.chemrev.7b00437] [Cited by in Crossref: 135] [Cited by in F6Publishing: 92] [Article Influence: 27.0] [Reference Citation Analysis]
15 Fuchs M, Farnberger JE, Kroutil W. The Industrial Age of Biocatalytic Transamination. European J Org Chem 2015;2015:6965-82. [PMID: 26726292 DOI: 10.1002/ejoc.201500852] [Cited by in Crossref: 142] [Cited by in F6Publishing: 110] [Article Influence: 20.3] [Reference Citation Analysis]
16 Shamala D, Shivashankar K, Chandra, Mahendra M. Synthesis of N 1 and N 2 coumarin substituted 1,2,3-triazole isomers via click chemistry approach. Synthetic Communications 2016;46:433-41. [DOI: 10.1080/00397911.2016.1140785] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Hughes DL. Highlights of the Recent Patent Literature─Focus on Biocatalysis Innovation. Org Process Res Dev . [DOI: 10.1021/acs.oprd.1c00417] [Reference Citation Analysis]
18 Busto E, Simon RC, Grischek B, Gotor-fernández V, Kroutil W. Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ω-Transaminases. Adv Synth Catal 2014;356:1937-42. [DOI: 10.1002/adsc.201300993] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
19 Yang K, Li D, Zhang L, Chen Q, Tang T. Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers. RSC Adv 2018;8:13671-4. [DOI: 10.1039/c8ra01796d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
20 Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2018;118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Cited by in Crossref: 289] [Cited by in F6Publishing: 217] [Article Influence: 57.8] [Reference Citation Analysis]
21 Minehira D, Takahara S, Adachi I, Toyooka N. Laboratory and practical synthesis of Suvorexant, a selective dual orexin receptor antagonist. Tetrahedron Letters 2014;55:5778-80. [DOI: 10.1016/j.tetlet.2014.08.086] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
22 Shaughnessy KH, Ciganek E, Devasher RB. Copper-Catalyzed Amination of Aryl and Alkenyl Electrophiles. Organic Reactions. Hoboken: John Wiley & Sons, Inc.; 2004. pp. 1-668. [DOI: 10.1002/0471264180.or085.01] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
23 Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts: The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. Eur J Org Chem 2019;2019:3713-34. [DOI: 10.1002/ejoc.201900208] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
24 Belskaya N, Subbotina J, Lesogorova S. Synthesis of 2H-1,2,3-Triazoles. In: Dehaen W, Bakulev VA, editors. Chemistry of 1,2,3-triazoles. Cham: Springer International Publishing; 2015. pp. 51-116. [DOI: 10.1007/7081_2014_125] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
25 Correa A, Fiser B, Gómez-bengoa E. Iron-catalyzed direct α-arylation of ethers with azoles. Chem Commun 2015;51:13365-8. [DOI: 10.1039/c5cc05005g] [Cited by in Crossref: 53] [Cited by in F6Publishing: 3] [Article Influence: 7.6] [Reference Citation Analysis]
26 Treiber A, de Kanter R, Roch C, Gatfield J, Boss C, von Raumer M, Schindelholz B, Muehlan C, van Gerven J, Jenck F. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468. J Pharmacol Exp Ther 2017;362:489-503. [DOI: 10.1124/jpet.117.241596] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
27 Sercel ZP, Sun AW, Stoltz BM. Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of 1,4-Diazepan-5-ones. Org Lett 2019;21:9158-61. [DOI: 10.1021/acs.orglett.9b03530] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
28 Zeifman YS, Boyko KM, Nikolaeva AY, Timofeev VI, Rakitina TV, Popov VO, Bezsudnova EY. Functional characterization of PLP fold type IV transaminase with a mixed type of activity from Haliangium ochraceum. Biochim Biophys Acta Proteins Proteom 2019;1867:575-85. [PMID: 30902765 DOI: 10.1016/j.bbapap.2019.03.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
29 Andrade LH, Kroutil W, Jamison TF. Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both ω-transaminase and PLP. Org Lett 2014;16:6092-5. [PMID: 25394227 DOI: 10.1021/ol502712v] [Cited by in Crossref: 85] [Cited by in F6Publishing: 66] [Article Influence: 10.6] [Reference Citation Analysis]
30 Chen Y, Zhou Y, Li J, Sun J, Zhang G. Facile synthesis of suvorexant, an orexin receptor antagonist, via a chiral diazepane intermediate. Chinese Chemical Letters 2015;26:103-7. [DOI: 10.1016/j.cclet.2014.09.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
31 Busto E, Simon RC, Richter N, Kroutil W. Enzymatic Synthesis of Chiral Amines using ω-Transaminases, Amine Oxidases, and the Berberine Bridge Enzyme. In: Patel RN, editor. Green Biocatalysis. Hoboken: John Wiley & Sons, Inc; 2016. pp. 17-57. [DOI: 10.1002/9781118828083.ch2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
32 Guan C, Ji J, Li Z, Wei Q, Wu X, Liu S. Facile synthesis of N2-substituted-1,2,3-triazole from aryl ethynylene and azide via a one-pot two-step strategy. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132670] [Reference Citation Analysis]
33 Tankam T, Srisa J, Sukwattanasinitt M, Wacharasindhu S. Microwave-Enhanced On-Water Amination of 2-Mercaptobenzoxazoles To Prepare 2-Aminobenzoxazoles. J Org Chem 2018;83:11936-43. [DOI: 10.1021/acs.joc.8b01824] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
34 Gavlik KD, Lesogorova SG, Sukhorukova ES, Subbotina JO, Slepukhin PA, Benassi E, Belskaya NP. Synthesis of 2-Aryl-1,2,3-triazoles by Oxidative Cyclization of 2-(Arylazo)ethene-1,1-diamines: A One-Pot Approach. Eur J Org Chem 2016;2016:2700-10. [DOI: 10.1002/ejoc.201600256] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
35 Ma J, Liu H, He X, Chen Z, Liu Y, Hou C, Sun Z, Chu W. Ni-Catalyzed C–H Cyanation of (Hetero)arenes with 2-Cyanoisothiazolidine 1,1-Dioxide as a Cyanation Reagent. Org Lett 2021;23:2868-72. [DOI: 10.1021/acs.orglett.1c00468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
36 Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017;7:8263-84. [DOI: 10.1021/acscatal.7b02686] [Cited by in Crossref: 138] [Cited by in F6Publishing: 68] [Article Influence: 27.6] [Reference Citation Analysis]
37 Lv X, Pan J, Liu W, Meng X, Chen L, Zhou T, Lin K, Ye D, Zhou W. Identification, synthesis and strategy for minimization of potential impurities in the synthesis of suvorexant. Synthetic Communications 2021;51:2225-36. [DOI: 10.1080/00397911.2021.1930055] [Reference Citation Analysis]
38 Zhang Q, Li C, Yang F, Li J, Wu Y. Palladium-catalyzed ortho-acylation of 2-arylbenzoxazoles. Tetrahedron 2013;69:320-6. [DOI: 10.1016/j.tet.2012.10.033] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
39 Xu Z, Yao P, Sheng X, Li J, Li J, Yu S, Feng J, Wu Q, Zhu D. Biocatalytic Access to 1,4-Diazepanes via Imine Reductase-Catalyzed Intramolecular Asymmetric Reductive Amination. ACS Catal 2020;10:8780-7. [DOI: 10.1021/acscatal.0c02400] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
40 Kelly SA, Magill DJ, Megaw J, Skvortsov T, Allers T, McGrath JW, Allen CCR, Moody TS, Gilmore BF. Characterisation of a solvent-tolerant haloarchaeal (R)-selective transaminase isolated from a Triassic period salt mine. Appl Microbiol Biotechnol 2019;103:5727-37. [PMID: 31123770 DOI: 10.1007/s00253-019-09806-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
41 Reis JS, Simon RC, Kroutil W, Andrade LH. Asymmetric reductive amination of boron-containing aryl-ketones using ω-transaminases. Tetrahedron: Asymmetry 2013;24:1495-501. [DOI: 10.1016/j.tetasy.2013.10.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
42 Blincoe WD, Rodriguez-granillo A, Saurí J, Pierson NA, Joyce LA, Mangion I, Sheng H. Identification of ortho -Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry. J Am Soc Mass Spectrom 2018;29:694-703. [DOI: 10.1007/s13361-017-1884-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Simon RC, Sattler JH, Farnberger JE, Fuchs CS, Richter N, Zepeck F, Kroutil W. Enzymatic asymmetric synthesis of the silodosin amine intermediate. Tetrahedron: Asymmetry 2014;25:284-8. [DOI: 10.1016/j.tetasy.2013.12.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
44 Nimnual P, Tummatorn J, Thongsornkleeb C, Ruchirawat S. Utility of Nitrogen Extrusion of Azido Complexes for the Synthesis of Nitriles, Benzoxazoles, and Benzisoxazoles. J Org Chem 2015;80:8657-67. [DOI: 10.1021/acs.joc.5b01305] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]