BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DWC. Metallaphotoredox-Catalyzed Cross-Electrophile Csp3-Csp3 Coupling of Aliphatic Bromides. J Am Chem Soc 2018;140:17433-8. [PMID: 30516995 DOI: 10.1021/jacs.8b12025] [Cited by in Crossref: 71] [Cited by in F6Publishing: 47] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 Komeyama K, Tsunemitsu R, Michiyuki T, Yoshida H, Osaka I. Ni/Co-Catalyzed Homo-Coupling of Alkyl Tosylates. Molecules 2019;24:E1458. [PMID: 31013850 DOI: 10.3390/molecules24081458] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Visible-Light-Enabled Stereodivergent Synthesis of E- and Z-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2020;59:177-81. [PMID: 31654458 DOI: 10.1002/anie.201909543] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
3 Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Visible‐Light‐Enabled Stereodivergent Synthesis of E ‐ and Z ‐Configured 1,4‐Dienes by Photoredox/Nickel Dual Catalysis. Angew Chem 2020;132:183-7. [DOI: 10.1002/ange.201909543] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
4 Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Garbacz M, Stecko S. Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Org Biomol Chem 2021;19:8578-85. [PMID: 34553201 DOI: 10.1039/d1ob01624e] [Reference Citation Analysis]
6 Luo Y, Gutiérrez-Bonet Á, Matsui JK, Rotella ME, Dykstra R, Gutierrez O, Molander GA. Oxa- and Azabenzonorbornadienes as Electrophilic Partners under Photoredox/Nickel Dual Catalysis. ACS Catal 2019;9:8835-42. [PMID: 34055458 DOI: 10.1021/acscatal.9b02458] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
7 Zhang HH, Tang M, Zhao JJ, Song C, Yu S. Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to C2-Symmetrical 1,5-Dienes. J Am Chem Soc 2021;143:12836-46. [PMID: 34351745 DOI: 10.1021/jacs.1c06271] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2020;59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Cited by in Crossref: 159] [Cited by in F6Publishing: 100] [Article Influence: 53.0] [Reference Citation Analysis]
9 Ji P, Zhang Y, Gao F, Bi F, Wang W. Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy. Chem Sci 2020;11:13079-84. [PMID: 34094490 DOI: 10.1039/d0sc04136j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sun S, Duan Y, Mega RS, Somerville RJ, Martin R. Site‐Selective 1,2‐Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem 2020;132:4400-4. [DOI: 10.1002/ange.201916279] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
11 López E, Melis C, Martín R, Petti A, Hoz A, Díaz‐ortíz Á, Dobbs AP, Lam K, Alcázar J. C( sp3 )−C( sp3 ) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Adv Synth Catal 2021;363:4521-5. [DOI: 10.1002/adsc.202100749] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Struwe J, Korvorapun K, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature. Chemistry 2021;27:16237-41. [PMID: 34435716 DOI: 10.1002/chem.202103077] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tian H, Yang S, Wang X, Xu W, Liu Y, Li Y, Wang Q. Dehalogenative Cross-Coupling of gem-Difluoroalkenes with Alkyl Halides via a Silyl Radical-Mediated Process. J Org Chem 2021;86:12772-82. [PMID: 34459192 DOI: 10.1021/acs.joc.1c01363] [Reference Citation Analysis]
14 Sanford AB, Thane TA, McGinnis TM, Chen PP, Hong X, Jarvo ER. Nickel-Catalyzed Alkyl-Alkyl Cross-Electrophile Coupling Reaction of 1,3-Dimesylates for the Synthesis of Alkylcyclopropanes. J Am Chem Soc 2020;142:5017-23. [PMID: 32129601 DOI: 10.1021/jacs.0c01330] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
15 Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl Iodides via Ni/Ti/Photoredox Catalysis. ACS Catal 2020;10:5821-7. [PMID: 32747870 DOI: 10.1021/acscatal.0c01199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
16 Kranthikumar R. Recent Advances in C(sp 3 )–C(sp 3 ) Cross-Coupling Chemistry: A Dominant Performance of Nickel Catalysts. Organometallics. [DOI: 10.1021/acs.organomet.2c00032] [Reference Citation Analysis]
17 Lipp A, Badir SO, Molander GA. Stereoinduction in Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2021;60:1714-26. [PMID: 32677341 DOI: 10.1002/anie.202007668] [Cited by in Crossref: 40] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
18 Qin J, Zhu S, Chu L. Dual Photoredox-/Palladium-Catalyzed Cross-Electrophile Couplings of Polyfluoroarenes with Aryl Halides and Triflates. Organometallics 2021;40:2246-52. [DOI: 10.1021/acs.organomet.0c00813] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
19 DeLano TJ, Reisman SE. Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis. ACS Catal 2019;9:6751-4. [PMID: 32351776 DOI: 10.1021/acscatal.9b01785] [Cited by in Crossref: 65] [Cited by in F6Publishing: 35] [Article Influence: 21.7] [Reference Citation Analysis]
20 Tang S, Xu ZH, Liu T, Wang SW, Yu J, Liu J, Hong Y, Chen SL, He J, Li JH. Radical 1,4-Aryl Migration Enabled Remote Cross-Electrophile Coupling of α-Amino-β-Bromo Acid Esters with Aryl Bromides. Angew Chem Int Ed Engl 2021;60:21360-7. [PMID: 34291545 DOI: 10.1002/anie.202106273] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhao X, MacMillan DWC. Metallaphotoredox Perfluoroalkylation of Organobromides. J Am Chem Soc 2020;142:19480-6. [PMID: 33164534 DOI: 10.1021/jacs.0c09977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
22 Liang Y, Dong Y, Sun G, Su Z, Guan W. Theoretical mechanistic study of 4CzIPN/Ni0-metallaphotoredox catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Dalton Trans 2021;50:17675-87. [PMID: 34806735 DOI: 10.1039/d1dt03353k] [Reference Citation Analysis]
23 Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S. Synergistic Dual Transition Metal Catalysis. Chem Rev 2020;120:13382-433. [DOI: 10.1021/acs.chemrev.0c00245] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
24 Green SA, Huffman TR, Mccourt RO, van der Puyl V, Shenvi RA. Hydroalkylation of Olefins To Form Quaternary Carbons. J Am Chem Soc 2019;141:7709-14. [DOI: 10.1021/jacs.9b02844] [Cited by in Crossref: 66] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
25 Boehm P, Roediger S, Bismuto A, Morandi B. Palladium‐Catalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angew Chem Int Ed 2020;59:17887-96. [DOI: 10.1002/anie.202005891] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
26 Brill ZG, Ritts CB, Mansoor UF, Sciammetta N. Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Org Lett 2020;22:410-6. [DOI: 10.1021/acs.orglett.9b04117] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
27 Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy. Angew Chem Int Ed Engl 2021. [PMID: 34783143 DOI: 10.1002/anie.202114731] [Reference Citation Analysis]
28 Dow NW, Cabré A, MacMillan DWC. A General N-alkylation Platform via Copper Metallaphotoredox and Silyl Radical Activation of Alkyl Halides. Chem 2021;7:1827-42. [PMID: 34423174 DOI: 10.1016/j.chempr.2021.05.005] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
29 Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Reference Citation Analysis]
30 Pan S, Jiang M, Hu J, Xu R, Zeng X, Zhong G. Synthesis of 1,2-amino alcohols by decarboxylative coupling of amino acid derived α-amino radicals to carbonyl compounds via visible-light photocatalyst in water. Green Chem 2020;22:336-41. [DOI: 10.1039/c9gc03470f] [Cited by in Crossref: 14] [Article Influence: 7.0] [Reference Citation Analysis]
31 Sun SZ, Duan Y, Mega RS, Somerville RJ, Martin R. Site-Selective 1,2-Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem Int Ed Engl 2020;59:4370-4. [PMID: 31910307 DOI: 10.1002/anie.201916279] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 21.0] [Reference Citation Analysis]
32 Li Y, Li Y, Peng L, Wu D, Zhu L, Yin G. Nickel-catalyzed migratory alkyl-alkyl cross-coupling reaction. Chem Sci 2020;11:10461-4. [PMID: 34094304 DOI: 10.1039/d0sc03217d] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chem Rev 2020;120:6124-96. [DOI: 10.1021/acs.chemrev.9b00682] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
34 Miao M, Liao L, Cao G, Zhou W, Yu D. Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles. Sci China Chem 2019;62:1519-24. [DOI: 10.1007/s11426-019-9597-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
35 Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. Prog Nucl Magn Reson Spectrosc 2019;114-115:86-134. [PMID: 31779887 DOI: 10.1016/j.pnmrs.2019.06.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
36 Singsardar M, Mondal S, Laru S, Hajra A. Organophotoredox-Catalyzed C(sp 2 )–H Difluoromethylenephosphonation of Imidazoheterocycles. Org Lett 2019;21:5606-10. [DOI: 10.1021/acs.orglett.9b01954] [Cited by in Crossref: 38] [Cited by in F6Publishing: 23] [Article Influence: 12.7] [Reference Citation Analysis]
37 Li P, Terrett JA, Zbieg JR. Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Med Chem Lett 2020;11:2120-30. [PMID: 33214820 DOI: 10.1021/acsmedchemlett.0c00436] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
38 Pickford HD, Nugent J, Owen B, Mousseau JJ, Smith RC, Anderson EA. Twofold Radical-Based Synthesis of N,C-Difunctionalized Bicyclo[1.1.1]pentanes. J Am Chem Soc 2021;143:9729-36. [PMID: 34161076 DOI: 10.1021/jacs.1c04180] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
39 Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021;50:9540-685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Reference Citation Analysis]
40 Zhang D, Hui X, Wu C, Zhu Y. Metal‐Catalyzed Hydrogen Evolution Reactions Involving Strong C−H Bonds Activation via Hydrogen Atom Transfer. ChemCatChem 2021;13:3370-80. [DOI: 10.1002/cctc.202100248] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Ye S, Xiang T, Li X, Wu J. Metal-catalyzed radical-type transformation of unactivated alkyl halides with C–C bond formation under photoinduced conditions. Org Chem Front 2019;6:2183-99. [DOI: 10.1039/c9qo00272c] [Cited by in Crossref: 63] [Article Influence: 21.0] [Reference Citation Analysis]
42 Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Reference Citation Analysis]
43 Wang Z, Wang L, Wang Z, Li P. Visible‐Light‐Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1‐ c ]coumarins. Asian J Org Chem 2019;8:1448-57. [DOI: 10.1002/ajoc.201900333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
44 Wang L, Liu G. One-pot Negishi cross-coupling reaction of aryldiazonium salts via Ni catalysis induced by visible-light. Catalysis Communications 2019;131:105785. [DOI: 10.1016/j.catcom.2019.105785] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Ruzi R, Liu K, Zhu C, Xie J. Upgrading ketone synthesis direct from carboxylic acids and organohalides. Nat Commun 2020;11:3312. [PMID: 32620758 DOI: 10.1038/s41467-020-17224-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
46 Leifert D, Studer A. Der “Persistent Radical Effect” in der organischen Chemie. Angew Chem 2020;132:74-110. [DOI: 10.1002/ange.201903726] [Cited by in Crossref: 53] [Cited by in F6Publishing: 22] [Article Influence: 17.7] [Reference Citation Analysis]
47 Garbacz M, Stecko S. The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Adv Synth Catal 2020;362:3213-22. [DOI: 10.1002/adsc.202000404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
48 Behnke NE, Sales ZS, Li M, Herrmann AT. Dual Photoredox/Nickel-Promoted Alkylation of Heteroaryl Halides with Redox-Active Esters. J Org Chem 2021;86:12945-55. [PMID: 34464532 DOI: 10.1021/acs.joc.1c01625] [Reference Citation Analysis]
49 Zhang R, Xu P, Wang S, Ji S. Visible Light-Induced Co- or Cu-Catalyzed Selenosulfonylation of Alkynes: Synthesis of β-(Seleno)vinyl Sulfones. J Org Chem 2019;84:12324-33. [DOI: 10.1021/acs.joc.9b01626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
50 Shee M, Shah SS, Singh NDP. Organophotoredox assisted cyanation of bromoarenes via silyl-radical-mediated bromine abstraction. Chem Commun 2020;56:4240-3. [DOI: 10.1039/d0cc00163e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
51 Qian D, Hu X. Ligand‐Controlled Regiodivergent Hydroalkylation of Pyrrolines. Angew Chem 2019;131:18690-4. [DOI: 10.1002/ange.201912629] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
52 Zheng S, Hu Y, Yuan W. Recent Advances in C(sp3)–C(sp3) Cross-Coupling via Metalla­photoredox Strategies. Synthesis 2021;53:1719-33. [DOI: 10.1055/a-1344-2434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Levernier E, Lévêque C, Derat E, Fensterbank L, Ollivier C. Towards Visible‐Light Photocatalytic Reduction of Hypercoordinated Silicon Species. HCA 2020;103. [DOI: 10.1002/hlca.201900238] [Reference Citation Analysis]
54 Boehm P, Roediger S, Bismuto A, Morandi B. Palladium‐Catalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angew Chem 2020;132:18043-52. [DOI: 10.1002/ange.202005891] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
55 Qian D, Hu X. Ligand‐Controlled Regiodivergent Hydroalkylation of Pyrrolines. Angew Chem Int Ed 2019;58:18519-23. [DOI: 10.1002/anie.201912629] [Cited by in Crossref: 36] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
56 Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020;120:9790-833. [PMID: 32786419 DOI: 10.1021/acs.chemrev.0c00278] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 23.5] [Reference Citation Analysis]
57 Hughes JME, Fier PS. Desulfonylative Arylation of Redox-Active Alkyl Sulfones with Aryl Bromides. Org Lett 2019;21:5650-4. [PMID: 31273985 DOI: 10.1021/acs.orglett.9b01987] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
58 Merchant RR, Lopez JA. A General C(sp 3 )–C(sp 3 ) Cross-Coupling of Benzyl Sulfonylhydrazones with Alkyl Boronic Acids. Org Lett 2020;22:2271-5. [DOI: 10.1021/acs.orglett.0c00471] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
59 Zhang Y, Zhang Y, Shen X. Alkoxyl-radical-mediated synthesis of functionalized allyl tert-(hetero)cyclobutanols and their ring-opening and ring-expansion functionalizations. Chem Catalysis 2021;1:423-36. [DOI: 10.1016/j.checat.2021.03.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
60 Wan ZJ, Yuan XF, Luo J. Visible light induced 3-position-selective addition of arylpropiolic acids with ethers via C(sp3)-H functionalization. Org Biomol Chem 2020;18:3258-62. [PMID: 32297885 DOI: 10.1039/d0ob00480d] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021;143:21024-36. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Reference Citation Analysis]
62 Baker KM, Tallon A, Loach RP, Bercher OP, Perry MA, Watson MP. α-Chiral Amines via Thermally Promoted Deaminative Addition of Alkylpyridinium Salts to Sulfinimines. Org Lett 2021;23:7735-9. [PMID: 34570516 DOI: 10.1021/acs.orglett.1c02708] [Reference Citation Analysis]
63 Kang K, Weix DJ. Nickel-Catalyzed C(sp3)-C(sp3) Cross-Electrophile Coupling of In Situ Generated NHP Esters with Unactivated Alkyl Bromides. Org Lett 2022. [PMID: 35416673 DOI: 10.1021/acs.orglett.2c00805] [Reference Citation Analysis]
64 Kölmel DK, Ratnayake AS, Flanagan ME. Photoredox cross-electrophile coupling in DNA-encoded chemistry. Biochemical and Biophysical Research Communications 2020;533:201-8. [DOI: 10.1016/j.bbrc.2020.04.028] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
65 Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD3 Reagents. Chemistry 2021;27:11751-72. [PMID: 34076925 DOI: 10.1002/chem.202101179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Bercher OP, Plunkett S, Mortimer TE, Watson MP. Deaminative Reductive Methylation of Alkylpyridinium Salts. Org Lett 2021;23:7059-63. [PMID: 34464140 DOI: 10.1021/acs.orglett.1c02458] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zackasee JLS, Al Zubaydi S, Truesdell BL, Sevov CS. Synergistic Catalyst–Mediator Pairings for Electroreductive Cross-Electrophile Coupling Reactions. ACS Catal . [DOI: 10.1021/acscatal.1c05144] [Reference Citation Analysis]
68 Sakai HA, Liu W, Le CC, MacMillan DWC. Cross-Electrophile Coupling of Unactivated Alkyl Chlorides. J Am Chem Soc 2020;142:11691-7. [PMID: 32564602 DOI: 10.1021/jacs.0c04812] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
69 Lovett GH, Chen S, Xue X, Houk KN, Macmillan DWC. Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process. J Am Chem Soc 2019;141:20031-6. [DOI: 10.1021/jacs.9b11434] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
70 Pagire SK, Föll T, Reiser O. Shining Visible Light on Vinyl Halides: Expanding the Horizons of Photocatalysis. Acc Chem Res 2020;53:782-91. [PMID: 32150385 DOI: 10.1021/acs.accounts.9b00615] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 13.5] [Reference Citation Analysis]