BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bai C, Yao X, Li Y. Easy Access to Amides through Aldehydic C–H Bond Functionalization Catalyzed by Heterogeneous Co-Based Catalysts. ACS Catal 2015;5:884-91. [DOI: 10.1021/cs501822r] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Adegoke KA, Maxakato NW. Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy 2021;21:100816. [DOI: 10.1016/j.mtener.2021.100816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chen F, Topf C, Radnik J, Kreyenschulte C, Lund H, Schneider M, Surkus AE, He L, Junge K, Beller M. Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. J Am Chem Soc 2016;138:8781-8. [PMID: 27320777 DOI: 10.1021/jacs.6b03439] [Cited by in Crossref: 88] [Cited by in F6Publishing: 60] [Article Influence: 14.7] [Reference Citation Analysis]
4 Yao X, Bai C, Chen J, Li Y. Efficient and selective green oxidation of alcohols by MOF-derived magnetic nanoparticles as a recoverable catalyst. RSC Adv 2016;6:26921-8. [DOI: 10.1039/c6ra01617k] [Cited by in Crossref: 28] [Article Influence: 4.7] [Reference Citation Analysis]
5 Deng X, Albero J, Xu L, García H, Li Z. Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO 2 Reduction. Inorg Chem 2018;57:8276-86. [DOI: 10.1021/acs.inorgchem.8b00896] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
6 Chen H, Shen K, Chen J, Chen X, Li Y. Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J Mater Chem A 2017;5:9937-45. [DOI: 10.1039/c7ta02184d] [Cited by in Crossref: 92] [Cited by in F6Publishing: 2] [Article Influence: 18.4] [Reference Citation Analysis]
7 Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021;8:4886-913. [DOI: 10.1039/d1qo00727k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
8 Pérez-mayoral E, Matos I, Bernardo M, Fonseca I. New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts 2019;9:133. [DOI: 10.3390/catal9020133] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 7.3] [Reference Citation Analysis]
9 Zhang Y, Zhao Y, Luo Y, Xiao L, Huang Y, Li X, Peng Q, Liu Y, Yang B, Zhu C, Zhou X, Zhang J. Directed Aromatic C–H Activation/Acetoxylation Catalyzed by Pd Nanoparticles Supported on Graphene Oxide. Org Lett 2017;19:6470-3. [DOI: 10.1021/acs.orglett.7b02967] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
10 Xu D, Li J, Li B, Zhao H, Zhu H, Kou J, Zhang F, Dong Z, Ma J. Selective oxidation of alcohols to high value-added carbonyl compounds using air over Co-Co3O4@NC catalysts. Chemical Engineering Journal 2022;434:134545. [DOI: 10.1016/j.cej.2022.134545] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Bao Y, Wang L, Jia M, Xu A, Agula B, Baiyin M, Zhaorigetu B. Heterogeneous recyclable nano-palladium catalyzed amidation of esters using formamides as amine sources. Green Chem 2016;18:3808-14. [DOI: 10.1039/c5gc02985f] [Cited by in Crossref: 22] [Article Influence: 3.7] [Reference Citation Analysis]
12 Pandey R, Singh D, Thakur N, Raj KK. Catalytic C-H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal-Organic Frameworks. ACS Omega 2021;6:13240-59. [PMID: 34056473 DOI: 10.1021/acsomega.1c01155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
13 Hu Q, Wang L, Wang C, Wu Y, Ding Z, Yuan R. Ligand-free Pd(0)/SiO 2 -catalyzed aminocarbonylation of aryl iodides to amides under atmospheric CO pressure. RSC Adv 2017;7:37200-7. [DOI: 10.1039/c7ra04985d] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
14 Zhou Y, Chen Y, Cao L, Lu J, Jiang H. Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chem Commun 2015;51:8292-5. [DOI: 10.1039/c5cc01588j] [Cited by in Crossref: 136] [Cited by in F6Publishing: 3] [Article Influence: 19.4] [Reference Citation Analysis]
15 Yang C, Fu L, Zhu R, Liu Z. Influence of cobalt species on the catalytic performance of Co-N-C/SiO2 for ethylbenzene oxidation. Phys Chem Chem Phys 2016;18:4635-42. [PMID: 26794229 DOI: 10.1039/c5cp06779k] [Cited by in Crossref: 53] [Cited by in F6Publishing: 3] [Article Influence: 8.8] [Reference Citation Analysis]
16 Li N, Shang S, Wang L, Niu J, Lv Y, Gao S. Superior performance of Co-N/m-C for direct oxidation of alcohols to esters under air. Chinese Journal of Catalysis 2018;39:1249-57. [DOI: 10.1016/s1872-2067(18)63058-x] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
17 Yang H, Hu W, Deng S, Wu T, Cen H, Chen Y, Zhang D, Wang B. Catalyst-free amidation of aldehyde with amine under mild conditions. New J Chem 2015;39:5912-5. [DOI: 10.1039/c5nj01372k] [Cited by in Crossref: 15] [Article Influence: 2.1] [Reference Citation Analysis]
18 Dang S, Zhu Q, Xu Q. Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 2018;3. [DOI: 10.1038/natrevmats.2017.75] [Cited by in Crossref: 570] [Cited by in F6Publishing: 385] [Article Influence: 114.0] [Reference Citation Analysis]
19 He L, Weniger F, Neumann H, Beller M. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew Chem Int Ed 2016;55:12582-94. [DOI: 10.1002/anie.201603198] [Cited by in Crossref: 335] [Cited by in F6Publishing: 208] [Article Influence: 55.8] [Reference Citation Analysis]
20 Wu L, Long Y, Ma J, Lu G. Preparation of Co-Pd bimetallic nanoparticles encapsulated in bamboo-like N-doped mesoporous carbon by a facile one-pot method for green Suzuki coupling. Res Chem Intermed 2019;45:3809-21. [DOI: 10.1007/s11164-019-03822-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 He L, Weniger F, Neumann H, Beller M. Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angew Chem 2016;128:12770-83. [DOI: 10.1002/ange.201603198] [Cited by in Crossref: 53] [Cited by in F6Publishing: 31] [Article Influence: 8.8] [Reference Citation Analysis]
22 Li D, Xu H, Jiao L, Jiang H. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019;1:100005. [DOI: 10.1016/j.enchem.2019.100005] [Cited by in Crossref: 140] [Cited by in F6Publishing: 78] [Article Influence: 46.7] [Reference Citation Analysis]
23 Su L, Ren T, Dong J, Liu L, Xie S, Yuan L, Zhou Y, Yin S. Cu(I)-Catalyzed 6- endo-dig Cyclization of Terminal Alkynes, 2-Bromoaryl Ketones, and Amides toward 1-Naphthylamines: Applications and Photophysical Properties. J Am Chem Soc 2019;141:2535-44. [DOI: 10.1021/jacs.8b12495] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
24 Oar-arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Mater Chem Front 2017;1:1709-45. [DOI: 10.1039/c7qm00007c] [Cited by in Crossref: 141] [Cited by in F6Publishing: 5] [Article Influence: 28.2] [Reference Citation Analysis]
25 Xu X, Li H, Xie H, Ma Y, Chen T, Wang J. Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds. J Mater Res 2017;32:1777-86. [DOI: 10.1557/jmr.2017.148] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
26 Baroliya PK, Chopra J, Pal T, Maiti S, Al‐thabaiti SA, Mokhtar M, Maiti D. Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous C−H Bonds. ChemCatChem 2021;13:4655-78. [DOI: 10.1002/cctc.202100755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Sun D, Ye L, Sun F, García H, Li Z. From Mixed-Metal MOFs to Carbon-Coated Core–Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to Co x Ni 1– x @Co y Ni 1– y O@C for the Oxygen Evolution Reaction. Inorg Chem 2017;56:5203-9. [DOI: 10.1021/acs.inorgchem.7b00333] [Cited by in Crossref: 64] [Cited by in F6Publishing: 43] [Article Influence: 12.8] [Reference Citation Analysis]
28 Panda A, Kim E, Choi Y, Lee J, Venkateswarlu S, Yoon M. Phase Controlled Synthesis of Pt Doped Co Nanoparticle Composites Using a Metal-Organic Framework for Fischer–Tropsch Catalysis. Catalysts 2019;9:156. [DOI: 10.3390/catal9020156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
29 Kawaai K, Yamaguchi T, Yamaguchi E, Endo S, Tada N, Ikari A, Itoh A. Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. J Org Chem 2018;83:1988-96. [DOI: 10.1021/acs.joc.7b02933] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 9.8] [Reference Citation Analysis]
30 Liu Z, Zhang X, Li J, Li F, Li C, Jia X, Li J. Exploiting the Reactivity of Isocyanide: Coupling Reaction between Isocyanide and Toluene Derivatives Using the Isocyano Group as an N1 Synthon. Org Lett 2016;18:4052-5. [DOI: 10.1021/acs.orglett.6b01928] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
31 Dutta PK, Dhar B, Sen S. Aerobic oxidative amidation of alkynes using titanium oxide encapsulated cuprous iodide nanoparticles (CuI@TiO 2 ). New J Chem 2018;42:12062-71. [DOI: 10.1039/c8nj01506f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
32 Li H, Yue F, Yang C, Xue P, Li N, Zhang Y, Wang J. Structural evolution of a metal–organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance. CrystEngComm 2017;19:64-71. [DOI: 10.1039/c6ce01995a] [Cited by in Crossref: 27] [Article Influence: 5.4] [Reference Citation Analysis]
33 Pei Y, Li Z, Li Y. Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks. AIChE J 2017;63:2935-44. [DOI: 10.1002/aic.15677] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
34 Zhang F, Zhao C, Chen S, Li H, Yang H, Zhang X. In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. Journal of Catalysis 2017;348:212-22. [DOI: 10.1016/j.jcat.2017.02.028] [Cited by in Crossref: 65] [Cited by in F6Publishing: 37] [Article Influence: 13.0] [Reference Citation Analysis]
35 Zhu L, Zhang Z, Jiang X, Yu L, Li X. The syntheses, efficient electromagnetic wave absorption and antibacterial activity properties of novel 3D Ln-MOFs based on maleic hydrazide. Journal of Molecular Structure 2020;1208:127826. [DOI: 10.1016/j.molstruc.2020.127826] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
36 Malko D, Guo Y, Jones P, Britovsek G, Kucernak A. Heterogeneous iron containing carbon catalyst (Fe-N/C) for epoxidation with molecular oxygen. Journal of Catalysis 2019;370:357-63. [DOI: 10.1016/j.jcat.2019.01.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
37 Bai C, Li A, Yao X, Liu H, Li Y. Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chem 2016;18:1061-9. [DOI: 10.1039/c5gc02082d] [Cited by in Crossref: 144] [Cited by in F6Publishing: 1] [Article Influence: 24.0] [Reference Citation Analysis]
38 Chen A, Yang D, Yu Y, Liu X, Rao C, Lin H, Guo P. Cu-catalyzed cross-coupling of methyl ketones and pyridin-2-amines for the synthesis of N-(2-pyridyl)-α-ketoamides. Journal of Chemical Research 2021;45:417-21. [DOI: 10.1177/1747519820950222] [Reference Citation Analysis]
39 Jiao L, Wang Y, Jiang HL, Xu Q. Metal-Organic Frameworks as Platforms for Catalytic Applications. Adv Mater 2018;30:e1703663. [PMID: 29178384 DOI: 10.1002/adma.201703663] [Cited by in Crossref: 835] [Cited by in F6Publishing: 690] [Article Influence: 208.8] [Reference Citation Analysis]
40 Singh G, Dada R, Yaragorla S. TfOH catalyzed One-Pot Schmidt–Ritter reaction for the synthesis of amides through N-acylimides. Tetrahedron Letters 2016;57:4424-7. [DOI: 10.1016/j.tetlet.2016.08.069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Samudrala PS, Nakhate AV, Gupta SSR, Rasal KB, Deshmukh GP, Gadipelly CR, Theegala S, Dumbre DK, Periasamy S, Komandur VC, Bhargava SK, Mannepalli LK. Oxidative coupling of carboxylic acids or benzaldehydes with DMF using hydrotalicite-derived oxide catalysts. Applied Catalysis B: Environmental 2019;240:348-57. [DOI: 10.1016/j.apcatb.2017.12.058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
42 Yang K, Li D, Zhang L, Chen Q, Tang T. Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers. RSC Adv 2018;8:13671-4. [DOI: 10.1039/c8ra01796d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
43 Mohammad A, Chandra P, Ghosh T, Carraro M, Mobin SM. Facile Access to Amides from Oxygenated or Unsaturated Organic Compounds by Metal Oxide Nanocatalysts Derived from Single-Source Molecular Precursors. Inorg Chem 2017;56:10596-608. [PMID: 28825791 DOI: 10.1021/acs.inorgchem.7b01576] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
44 Toyao T, Fujiwaki M, Miyahara K, Kim T, Horiuchi Y, Matsuoka M. Design of Zeolitic Imidazolate Framework Derived Nitrogen-Doped Nanoporous Carbons Containing Metal Species for Carbon Dioxide Fixation Reactions. ChemSusChem 2015;8:3905-12. [DOI: 10.1002/cssc.201500780] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 4.9] [Reference Citation Analysis]
45 Liu Y, Zhan H, Yao K, Mai Y, Wang E, He J, Guo P. Magnetic Supported Copper Nanoparticles: An Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Diketones by Cross-Coupling Reaction of Imidazo[1,2- a ]pyridines with Methyl Ketones: Magnetic Supported Copper Nanoparticles: An Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Diketones by Cross-Coupling Reaction of Imidazo[. Eur J Org Chem 2016;2016:4991-7. [DOI: 10.1002/ejoc.201600694] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
46 Zhou Y, Long J, Li Y. Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes. Chinese Journal of Catalysis 2016;37:955-62. [DOI: 10.1016/s1872-2067(15)61067-1] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
47 de Figueiredo RM, Suppo JS, Campagne JM. Nonclassical Routes for Amide Bond Formation. Chem Rev 2016;116:12029-122. [PMID: 27673596 DOI: 10.1021/acs.chemrev.6b00237] [Cited by in Crossref: 401] [Cited by in F6Publishing: 296] [Article Influence: 66.8] [Reference Citation Analysis]
48 Zhang Y, Schilling W, Das S. Metal-Free Photocatalysts for C-H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem 2019;12:2898-910. [PMID: 30934144 DOI: 10.1002/cssc.201900414] [Cited by in Crossref: 46] [Cited by in F6Publishing: 11] [Article Influence: 15.3] [Reference Citation Analysis]
49 Albert-soriano M, Pastor IM. Metal-Organic Framework Based on Copper and Carboxylate-Imidazole as Robust and Effective Catalyst in the Oxidative Amidation of Carboxylic Acids and Formamides: Metal-Organic Framework Based on Copper and Carboxylate-Imidazole as Robust and Effective Catalyst in the Oxidative Amidation of Carboxylic Acids and. Eur J Org Chem 2016;2016:5180-8. [DOI: 10.1002/ejoc.201600991] [Cited by in Crossref: 21] [Article Influence: 3.5] [Reference Citation Analysis]
50 Gupta SSR, Nakhate AV, Rasal KB, Deshmukh GP, Mannepalli LK. Oxidative amidation of benzaldehydes and benzylamines with N -substituted formamides over a Co/Al hydrotalcite-derived catalyst. New J Chem 2017;41:15268-76. [DOI: 10.1039/c7nj03123h] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
51 Fang R, Luque R, Li Y. Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem 2016;18:3152-7. [DOI: 10.1039/c5gc03051j] [Cited by in Crossref: 115] [Cited by in F6Publishing: 1] [Article Influence: 19.2] [Reference Citation Analysis]
52 Chevalier A, Zhang Y, Khdour OM, Hecht SM. Selective Functionalization of Antimycin A Through an N -Transacylation Reaction. Org Lett 2016;18:2395-8. [DOI: 10.1021/acs.orglett.6b00882] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
53 You T, Wang Z, Chen J, Xia Y. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex. J Org Chem 2017;82:1340-6. [DOI: 10.1021/acs.joc.6b02222] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 5.4] [Reference Citation Analysis]
54 Fang R, Dhakshinamoorthy A, Li Y, Garcia H. Metal organic frameworks for biomass conversion. Chem Soc Rev 2020;49:3638-87. [DOI: 10.1039/d0cs00070a] [Cited by in Crossref: 51] [Cited by in F6Publishing: 2] [Article Influence: 25.5] [Reference Citation Analysis]
55 Tan P, Li G, Fang R, Chen L, Luque R, Li Y. Controlled Growth of Monodisperse Ferrite Octahedral Nanocrystals for Biomass-Derived Catalytic Applications. ACS Catal 2017;7:2948-55. [DOI: 10.1021/acscatal.6b02853] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
56 Zhao S, Song X, Song S, Zhang H. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews 2017;337:80-96. [DOI: 10.1016/j.ccr.2017.02.010] [Cited by in Crossref: 212] [Cited by in F6Publishing: 141] [Article Influence: 42.4] [Reference Citation Analysis]
57 Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh F, Wu KC. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews 2020;416:213319. [DOI: 10.1016/j.ccr.2020.213319] [Cited by in Crossref: 164] [Cited by in F6Publishing: 37] [Article Influence: 82.0] [Reference Citation Analysis]
58 Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catal 2018;8:6659-64. [DOI: 10.1021/acscatal.8b01897] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 20.5] [Reference Citation Analysis]
59 Chen J, Li Y. The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chem Rec 2016;16:1456-76. [PMID: 27185058 DOI: 10.1002/tcr.201500304] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
60 Zhang Q, Li J, Li J, Yuan S, Li D. An unprecedented cobalt-catalyzed selective aroylation of primary amines with aroyl peroxides. Tetrahedron Letters 2020;61:152399. [DOI: 10.1016/j.tetlet.2020.152399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Li H, Chi L, Yang C, Zhang L, Yue F, Wang J. MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J Mater Res 2016;31:3069-77. [DOI: 10.1557/jmr.2016.314] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
62 Kadam RG, Petr M, Zbořil R, Gawande MB, Jayaram RV. Hexagonal Mesoporous Silica Supported Ultrasmall Copper Oxides for Oxidative Amidation of Carboxylic Acids. ACS Sustainable Chem Eng 2018;6:12935-45. [DOI: 10.1021/acssuschemeng.8b02247] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
63 Gupta SSR, Nakhate AV, Deshmukh GP, Periasamy S, Samudrala PS, Bhargava SK, Lakshmi Kantam M. Direct Synthesis of Amides from Oxidative Coupling of Benzyl Alcohols or Benzylamines with N -Substituted Formamides Using a Cu-Fe-Based Heterogeneous Catalyst. ChemistrySelect 2018;3:8436-43. [DOI: 10.1002/slct.201801297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
64 Shah SSA, Najam T, Aslam MK, Ashfaq M, Rahman MM, Wang K, Tsiakaras P, Song S, Wang Y. Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Applied Catalysis B: Environmental 2020;268:118570. [DOI: 10.1016/j.apcatb.2019.118570] [Cited by in Crossref: 51] [Cited by in F6Publishing: 16] [Article Influence: 25.5] [Reference Citation Analysis]
65 Chen Y, Zhang R, Jiao L, Jiang H. Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews 2018;362:1-23. [DOI: 10.1016/j.ccr.2018.02.008] [Cited by in Crossref: 435] [Cited by in F6Publishing: 248] [Article Influence: 108.8] [Reference Citation Analysis]
66 Yang S, Peng L, Bulut S, Queen WL. Recent Advances of MOFs and MOF-Derived Materials in Thermally Driven Organic Transformations. Chem Eur J 2019;25:2161-78. [DOI: 10.1002/chem.201803157] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
67 Narendar reddy T, Beatriz A, Jayathirtha rao V, de Lima DP. Carbonyl Compounds′ Journey to Amide Bond Formation. Chem Asian J 2019;14:344-88. [DOI: 10.1002/asia.201801560] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 10.7] [Reference Citation Analysis]
68 Ullah N, Ramiere A, Raza W, Ye P, Liu W, Cai X, Peng Z, Kim K. Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides. Journal of Colloid and Interface Science 2022;623:752-61. [DOI: 10.1016/j.jcis.2022.05.082] [Reference Citation Analysis]
69 Li G, Yang S, Lv B, Han Q, Ma X, Sun K, Wang Z, Zhao F, Lv Y, Wu H. Metal-free methylation of a pyridine N-oxide C–H bond by using peroxides. Org Biomol Chem 2015;13:11184-8. [DOI: 10.1039/c5ob01900a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
70 Nguyen CK, Nguyen NN, Tran KN, Nguyen VD, Nguyen TT, Le DT, Phan NT. Copper ferrite superparamagnetic nanoparticles as a heterogeneous catalyst for directed phenol/formamide coupling. Tetrahedron Letters 2017;58:3370-3. [DOI: 10.1016/j.tetlet.2017.07.049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
71 Li J, Huang C, Wen D, Zheng Q, Tu B, Tu T. Nickel-Catalyzed Amination of Aryl Chlorides with Amides. Org Lett 2021;23:687-91. [PMID: 33337157 DOI: 10.1021/acs.orglett.0c03836] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
72 Shen K, Chen X, Chen J, Li Y. Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catal 2016;6:5887-903. [DOI: 10.1021/acscatal.6b01222] [Cited by in Crossref: 804] [Cited by in F6Publishing: 653] [Article Influence: 134.0] [Reference Citation Analysis]
73 Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem 2016;18:3471-93. [DOI: 10.1039/c6gc00385k] [Cited by in Crossref: 148] [Cited by in F6Publishing: 2] [Article Influence: 24.7] [Reference Citation Analysis]
74 Wang H, Feng X, Zhou M, Bo X, Guo L. FeNi Nanoparticles Embedded in Porous Nitrogen-Doped Graphene for Electrocatalytic Evolution of Hydrogen and Oxygen. ACS Appl Nano Mater 2020;3:6336-43. [DOI: 10.1021/acsanm.0c00619] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
75 Hui J, Chu H, Zhang W, Shen Y, Chen W, Hu Y, Liu W, Gao C, Guo S, Xiao G, Li S, Fu Y, Fan D, Zhang W, Huo F. Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale 2018;10:8772-8. [DOI: 10.1039/c8nr01336e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 5.8] [Reference Citation Analysis]
76 Hédou D, Voisin‐chiret AS. Br vs. TsO Chemoselective Suzuki–Miyaura Cross‐Coupling Reaction on Nicotinaldehyde Moiety for the Preparation of 2,3,5‐Trisubstituted Pyridines. Eur J Org Chem 2020;2020:3640-9. [DOI: 10.1002/ejoc.202000417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]