BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi Y, Chen L, Zhang H, Nie G, Zhang Z, Zhu M. The potential of nano-enabled oral ecosystem surveillance for respiratory disease management. Nano Today 2023;48:101693. [DOI: 10.1016/j.nantod.2022.101693] [Reference Citation Analysis]
2 Regalia G, Resnati D, Tognetti S. Sensors on the Wrist. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00130-8] [Reference Citation Analysis]
3 Shi H, Cao Y, Xie Z, Zhao Y, Zhang C, Chen Z. Multi-parameter photoelectric data fitting for microfluidic sweat colorimetric analysis. Sensors and Actuators B: Chemical 2022;372:132644. [DOI: 10.1016/j.snb.2022.132644] [Reference Citation Analysis]
4 Xu S, Kim J, Walter JR, Ghaffari R, Rogers JA. Translational gaps and opportunities for medical wearables in digital health. Sci Transl Med 2022;14:eabn6036. [PMID: 36223451 DOI: 10.1126/scitranslmed.abn6036] [Reference Citation Analysis]
5 Yang Z, Yang D, Zhao X, Zhao Q, Zhu M, Liu Y, Wang Y, Lu W, Qi D. From liquid metal to stretchable electronics: Overcoming the surface tension. Sci China Mater 2022;65:2072-2088. [DOI: 10.1007/s40843-021-2023-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Shen H, Xue L, Ma Y, Huang H, Chen L. Recent Advances toward Wearable Sweat Monitoring Systems. Adv Materials Technologies. [DOI: 10.1002/admt.202200513] [Reference Citation Analysis]
7 Ryu J, Landers M, Choi S. A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosensors and Bioelectronics 2022;205:114128. [DOI: 10.1016/j.bios.2022.114128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Chiossi F, Welsch R, Villa S, Chuang L, Mayer S. Virtual Reality Adaptation Using Electrodermal Activity to Support the User Experience. BDCC 2022;6:55. [DOI: 10.3390/bdcc6020055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Mirzajani H, Istif E, Abbasiasl T, Mirlou F, Özkahraman EE, Hasanreisoglu M, Beker L. Femtosecond Laser Ablation Assisted NFC Antenna Fabrication for Smart Contact Lenses. Adv Materials Technologies. [DOI: 10.1002/admt.202101629] [Reference Citation Analysis]
10 Kothari A, Jagannath B, Muthukumar S, Prasad S. An observational study for detection and quantification of interferon- γ in sweat toward inflammation monitoring. Biosensors and Bioelectronics: X 2022;10:100122. [DOI: 10.1016/j.biosx.2022.100122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Steijlen ASM, Jansen KMB, Bastemeijer J, French PJ, Bossche A. Low-Cost Wearable Fluidic Sweat Collection Patch for Continuous Analyte Monitoring and Offline Analysis. Anal Chem 2022. [PMID: 35486709 DOI: 10.1021/acs.analchem.2c01052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022. [PMID: 35420617 DOI: 10.1039/d2cs00207h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
13 Barbosa JA, Freitas VMS, Vidotto LHB, Schleder GR, de Oliveira RAG, da Rocha JF, Kubota LT, Vieira LCS, Tolentino HCN, Neckel IT, Gobbi AL, Santhiago M, Lima RS. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Appl Mater Interfaces 2022. [PMID: 35311272 DOI: 10.1021/acsami.2c02943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Durai L, Badhulika S. A Wearable PVA Film Supported TiO 2 Nanoparticles Decorated NaNbO 3 Nanoflakes‐Based SERS Sensor for Simultaneous Detection of Metabolites and Biomolecules in Human Sweat Samples. Adv Materials Inter 2022;9:2200146. [DOI: 10.1002/admi.202200146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Lin K, Xie J, Bao Y, Ma Y, Chen L, Wang H, Xu L, Tang Y, Liu Z, Sun Z, Gan S, Niu L. Self-adhesive and printable tannin–graphene supramolecular aggregates for wearable potentiometric pH sensing. Electrochemistry Communications 2022. [DOI: 10.1016/j.elecom.2022.107261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Vaquer A, Barón E, de la Rica R. Dissolvable Polymer Valves for Sweat Chrono-Sampling in Wearable Paper-Based Analytical Devices. ACS Sens 2022;7:488-94. [PMID: 35172102 DOI: 10.1021/acssensors.1c02244] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
17 Li H, Chang T, Gai Y, Liang K, Jiao Y, Li D, Jiang X, Wang Y, Huang X, Wu H, Liu Y, Li J, Bai Y, Geng K, Zhang N, Meng H, Huang D, Li Z, Yu X, Chang L. Human joint enabled flexible self-sustainable sweat sensors. Nano Energy 2022;92:106786. [DOI: 10.1016/j.nanoen.2021.106786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
18 Naik AR, Zhou Y, Dey AA, Arellano DLG, Okoroanyanwu U, Secor EB, Hersam MC, Morse J, Rothstein JP, Carter KR, Watkins JJ. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2021;22:156-69. [PMID: 34881383 DOI: 10.1039/d1lc00633a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Fu F, Wang J, Tan Y, Yu J. Super-Hydrophilic Zwitterionic Polymer Surface Modification Facilitates Liquid Transportation of Microfluidic Sweat Sensors. Macromol Rapid Commun 2021;:e2100776. [PMID: 34825435 DOI: 10.1002/marc.202100776] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Bunea AC, Dediu V, Laszlo EA, Pistriţu F, Carp M, Iliescu FS, Ionescu ON, Iliescu C. E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines (Basel) 2021;12:1091. [PMID: 34577734 DOI: 10.3390/mi12091091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]