BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sempionatto JR, Moon JM, Wang J. Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sens 2021;6:1875-83. [PMID: 33872007 DOI: 10.1021/acssensors.1c00139] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Todaro B, Begarani F, Sartori F, Luin S. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management? Front Chem 2022;10:994272. [DOI: 10.3389/fchem.2022.994272] [Reference Citation Analysis]
2 Singaram S, Ramakrishnan K, Selvam J, Senthil M, Narayanamurthy V. Sweat gland morphology and physiology in diabetes, neuropathy, and nephropathy: a review. Arch Physiol Biochem 2022;:1-15. [PMID: 36063413 DOI: 10.1080/13813455.2022.2114499] [Reference Citation Analysis]
3 Iwasa S, Kobara Y, Maeda K, Nagamine K. Hydrogel-extraction technique for non-invasive detection of blue fluorescent substances in plant leaves. Sci Rep 2022;12:13598. [PMID: 35948743 DOI: 10.1038/s41598-022-17785-w] [Reference Citation Analysis]
4 Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors 2022;22:5670. [DOI: 10.3390/s22155670] [Reference Citation Analysis]
5 Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. Sensors 2022;22:5200. [DOI: 10.3390/s22145200] [Reference Citation Analysis]
6 Myndrul V, Iatsunskyi I, Babayevska N, Jarek M, Jesionowski T. Effect of Electrode Modification with Chitosan and Nafion® on the Efficiency of Real-Time Enzyme Glucose Biosensors Based on ZnO Tetrapods. Materials 2022;15:4672. [DOI: 10.3390/ma15134672] [Reference Citation Analysis]
7 Li R, Zhang W, Qin Y, Zhang Y, Zhu X, Li Y, Zhu N, Hou C, Zhang M. Multifunctional Prussian Blue from Nano-Structure Designed to Wearable Sensors Application. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116729] [Reference Citation Analysis]
8 Zhang L, Wang L, Li J, Cui C, Zhou Z, Wen L. Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously. Nano Lett 2022. [PMID: 35731860 DOI: 10.1021/acs.nanolett.2c01500] [Reference Citation Analysis]
9 Xiang Z, Han M, Zhang H. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res . [DOI: 10.1007/s12274-022-4551-8] [Reference Citation Analysis]
10 Yang P, Wei G, Liu A, Huo F, Zhang Z. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00165-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Yu Y, Jiang C, Zheng X, Liu Y, Goh W, Lim R, Tan S, Yang L. Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Materials Today Advances 2022;14:100238. [DOI: 10.1016/j.mtadv.2022.100238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Alhaddad AY, Aly H, Gad H, Al-ali A, Sadasivuni KK, Cabibihan J, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022;10:876672. [DOI: 10.3389/fbioe.2022.876672] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Zhang S, Liu Y, Wang J, Liu Z. A Laser-Induced Photoelectrochemical Sensor for Natural Sweat Cu2+ Detection. Chemosensors 2022;10:169. [DOI: 10.3390/chemosensors10050169] [Reference Citation Analysis]
14 Zhu C, Xue H, Zhao H, Fei T, Liu S, Chen Q, Gao B, Zhang T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022;242:123289. [DOI: 10.1016/j.talanta.2022.123289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
15 Lin S, Zhu J, Yu W, Wang B, Sabet KA, Zhao Y, Cheng X, Hojaiji H, Lin H, Tan J, Milla C, Davis RW, Emaminejad S. A touch-based multimodal and cryptographic bio-human-machine interface. Proc Natl Acad Sci U S A 2022;119:e2201937119. [PMID: 35377784 DOI: 10.1073/pnas.2201937119] [Reference Citation Analysis]
16 Fang Z, Chen D, Xu J, Liu S, Xu G, Tian X, Xuan J, Tian Y, Zhang Q. A multi-photon fluorescence “on-off-on” probe based on organotin (IV) complex for high-sensitive detection of Cu2+. Sensors and Actuators B: Chemical 2022;357:131423. [DOI: 10.1016/j.snb.2022.131423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Xiao J, Luo Y, Su L, Lu J, Han W, Xu T, Zhang X. Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339843] [Reference Citation Analysis]
18 Reddy VS, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A, Narayan RJ, Ramakrishna S, Ghosh R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. Nanomaterials (Basel) 2022;12:1082. [PMID: 35407200 DOI: 10.3390/nano12071082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Sankhala D, Sardesai AU, Pali M, Lin KC, Jagannath B, Muthukumar S, Prasad S. A machine learning-based on-demand sweat glucose reporting platform. Sci Rep 2022;12:2442. [PMID: 35165316 DOI: 10.1038/s41598-022-06434-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zhao H, Su R, Teng L, Tian Q, Han F, Li H, Cao Z, Xie R, Li G, Liu X, Liu Z. Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale 2022;14:1653-69. [PMID: 35040855 DOI: 10.1039/d1nr06244a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
21 Yoon S, Yoon H, Zahed MA, Park C, Kim D, Park JY. Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosens Bioelectron 2022;196:113685. [PMID: 34655969 DOI: 10.1016/j.bios.2021.113685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
22 Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J, de Loyola E Silva AN, Rueda R, Brown C, Angnes L, Wang J, Sempionatto JR. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal Bioanal Chem 2022. [PMID: 35015101 DOI: 10.1007/s00216-021-03865-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
23 Sun M, Pei X, Xin T, Liu J, Ma C, Cao M, Zhou M. A Flexible Microfluidic Chip-Based Universal Fully Integrated Nanoelectronic System with Point-of-Care Raw Sweat, Tears, or Saliva Glucose Monitoring for Potential Noninvasive Glucose Management. Anal Chem . [DOI: 10.1021/acs.analchem.1c05174] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
24 Khor SM, Choi J, Won P, Ko SH. Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. Nanomaterials (Basel) 2022;12:221. [PMID: 35055239 DOI: 10.3390/nano12020221] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
25 Demuru S, Huang C, Parvez K, Worsley R, Mattana G, Piro B, Noël V, Casiraghi C, Briand D. All-Inkjet-Printed Graphene-Gated Organic Electrochemical Transistors on Polymeric Foil as Highly Sensitive Enzymatic Biosensors. ACS Appl Nano Mater 2022;5:1664-73. [DOI: 10.1021/acsanm.1c04434] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhong B, Jiang K, Wang L, Shen G. Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Adv Sci (Weinh) 2022;9:e2103257. [PMID: 34713981 DOI: 10.1002/advs.202103257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
27 Naik AR, Zhou Y, Dey AA, Arellano DLG, Okoroanyanwu U, Secor EB, Hersam MC, Morse J, Rothstein JP, Carter KR, Watkins JJ. Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab Chip 2021;22:156-69. [PMID: 34881383 DOI: 10.1039/d1lc00633a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Shu Y, Su T, Lu Q, Shang Z, Xu Q, Hu X. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal Chem 2021;93:16222-30. [PMID: 34813294 DOI: 10.1021/acs.analchem.1c04106] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
29 Jiang Y, Yang Y, Shen L, Ma J, Ma H, Zhu N. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal Chem 2021. [PMID: 34874165 DOI: 10.1021/acs.analchem.1c04420] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
30 Nagamine K, Tokito S. Organic-transistor-based biosensors interfaced with human skin for non-invasive perspiration analysis. Sensors and Actuators B: Chemical 2021;349:130778. [DOI: 10.1016/j.snb.2021.130778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater Sci 2021. [PMID: 34797359 DOI: 10.1039/d1bm01136g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Campuzano S, Pedrero M, Yáñez-sedeño P, Pingarrón JM. New challenges in point of care electrochemical detection of clinical biomarkers. Sensors and Actuators B: Chemical 2021;345:130349. [DOI: 10.1016/j.snb.2021.130349] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
33 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 19.0] [Reference Citation Analysis]
34 Moon JM, Teymourian H, De la Paz E, Sempionatto JR, Mahato K, Sonsa-Ard T, Huang N, Longardner K, Litvan I, Wang J. Non-Invasive Sweat-Based Tracking of L-Dopa Pharmacokinetic Profiles Following an Oral Tablet Administration. Angew Chem Int Ed Engl 2021;60:19074-8. [PMID: 34145703 DOI: 10.1002/anie.202106674] [Cited by in F6Publishing: 7] [Reference Citation Analysis]