BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Worsley R, Pimpolari L, McManus D, Ge N, Ionescu R, Wittkopf JA, Alieva A, Basso G, Macucci M, Iannaccone G, Novoselov KS, Holder H, Fiori G, Casiraghi C. All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Circuits. ACS Nano 2019;13:54-60. [PMID: 30452230 DOI: 10.1021/acsnano.8b06464] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 20.7] [Reference Citation Analysis]
Number Citing Articles
1 Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon YA, Cho JH, Kim Y, Sofer Z, Kang J. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater Appl 2022;6. [DOI: 10.1038/s41699-022-00337-1] [Reference Citation Analysis]
2 Šakalys R, Mohammadlou BS, Raghavendra R. Fabrication of multi-material electronic components applying non-contact printing technologies: A review. Results in Engineering 2022;15:100578. [DOI: 10.1016/j.rineng.2022.100578] [Reference Citation Analysis]
3 Cho K, Lee T, Chung S. Inkjet printing of two-dimensional van der Waals materials: a new route towards emerging electronic device applications. Nanoscale Horiz 2022. [PMID: 35894100 DOI: 10.1039/d2nh00162d] [Reference Citation Analysis]
4 Cui Z, Zhang S, Wang L, Yang K. Optoelectronic and magnetic properties of transition metals adsorbed Pd2Se3 monolayer. Micro and Nanostructures 2022;167:207260. [DOI: 10.1016/j.micrna.2022.207260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Garrido M, Barrejón M, Berrocal JA, Syrgiannis Z, Prato M. Polyaromatic cores for the exfoliation of popular 2D materials. Nanoscale 2022;14:8986-94. [PMID: 35699137 DOI: 10.1039/d2nr00894g] [Reference Citation Analysis]
6 Wan X, Gao M, Xu S, Huang T, Duan Y, Chen E, Chen K, Zeng X, Xie W, Gu X. Inkjet-printed TMDC–graphene heterostructures for flexible and broadband photodetectors. Journal of Applied Physics 2022;131:234303. [DOI: 10.1063/5.0093882] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kaushal P, Khanna G. The role of 2-Dimensional materials for electronic devices. Materials Science in Semiconductor Processing 2022;143:106546. [DOI: 10.1016/j.mssp.2022.106546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Pinilla S, Coelho J, Li K, Liu J, Nicolosi V. Two-dimensional material inks. Nat Rev Mater. [DOI: 10.1038/s41578-022-00448-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Bai C, Yang Z, Zhang J, Zhang B, Yu Y, Zhang J. Friction Behavior and Structural Evolution of Hexagonal Boron Nitride: A Relation to Environmental Molecules Containing -OH Functional Group. ACS Appl Mater Interfaces 2022;14:19043-55. [PMID: 35416641 DOI: 10.1021/acsami.2c02450] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Peng G, Keshavan S, Delogu L, Shin Y, Casiraghi C, Fadeel B. 2D Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. Small. [DOI: 10.1002/smll.202107816] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hayes B, Hainsworth T, Maccurdy R. Liquid–solid co-printing of multi-material 3D fluidic devices via material jetting. Additive Manufacturing 2022;55:102785. [DOI: 10.1016/j.addma.2022.102785] [Reference Citation Analysis]
12 Pereira NM, Rezende NP, Cunha THR, Barboza APM, Silva GG, Lippross D, Neves BRA, Chacham H, Ferlauto AS, Lacerda RG. Aerosol-Printed MoS2 Ink as a High Sensitivity Humidity Sensor. ACS Omega 2022;7:9388-96. [PMID: 35356695 DOI: 10.1021/acsomega.1c06525] [Reference Citation Analysis]
13 Liu T, Zhao J, Luo D, Xu Z, Liu X, Ning H, Chen J, Zhong J, Yao R, Peng J. Inkjet printing high performance flexible electrodes via a graphene decorated Ag ink. Surfaces and Interfaces 2022;28:101609. [DOI: 10.1016/j.surfin.2021.101609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Blaž NV, Živanov LD, Kisić MG, Menićanin AB. Fully 3D printed rolled capacitor based on conductive ABS composite electrodes. Electrochemistry Communications 2022;134:107178. [DOI: 10.1016/j.elecom.2021.107178] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ogilvie SP, Large MJ, Wood HJ, Amorim Graf A, Lee F, Salvage JP, King AAK, Dalton AB. Size selection and thin-film assembly of MoS2 elucidates thousandfold conductivity enhancement in few-layer nanosheet networks. Nanoscale 2021. [PMID: 34932055 DOI: 10.1039/d1nr05815k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Moazzami Gudarzi M, Asaad M, Mao B, Pinter G, Guo J, Smith M, Zhong X, Georgiou T, Gorbachev R, Haigh SJ, Novoselov KS, Kretinin AV. Chlorosulfuric acid-assisted production of functional 2D materials. npj 2D Mater Appl 2021;5. [DOI: 10.1038/s41699-021-00215-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Brunetti I, Pimpolari L, Conti S, Worsley R, Majee S, Polyushkin DK, Paur M, Dimaggio E, Pennelli G, Iannaccone G, Macucci M, Pieri F, Mueller T, Casiraghi C, Fiori G. Inkjet-printed low-dimensional materials-based complementary electronic circuits on paper. npj 2D Mater Appl 2021;5. [DOI: 10.1038/s41699-021-00266-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Kelly AG, O’suilleabhain D, Gabbett C, Coleman JN. The electrical conductivity of solution-processed nanosheet networks. Nat Rev Mater. [DOI: 10.1038/s41578-021-00386-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
19 Patil B, Bernini C, Marré D, Pellegrino L, Pallecchi I. Ink-jet printing and drop-casting deposition of 2H-phase SnSe2and WSe2nanoflake assemblies for thermoelectric applications. Nanotechnology 2021;33. [PMID: 34638111 DOI: 10.1088/1361-6528/ac2f26] [Reference Citation Analysis]
20 Meziani MJ, Sheriff K, Parajuli P, Priego P, Bhattacharya S, Rao AM, Quimby JL, Qiao R, Wang P, Hwu SJ, Wang Z, Sun YP. Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. Chemphyschem 2021. [PMID: 34626067 DOI: 10.1002/cphc.202100645] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Maestre C, Toury B, Steyer P, Garnier V, Journet C. Hexagonal boron nitride: a review on selfstanding crystals synthesis towards 2D nanosheets. J Phys Mater 2021;4:044018. [DOI: 10.1088/2515-7639/ac2b87] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Tagliaferri S, Nagaraju G, Panagiotopoulos A, Och M, Cheng G, Iacoviello F, Mattevi C. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. ACS Nano 2021;15:15342-53. [PMID: 34491713 DOI: 10.1021/acsnano.1c06535] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
23 Fu Y, Zhang P, Li B, Zhang B, Yu Y, Shen Z, Zhang X, Wu J, Nan C, Zhang S. Inkjet Printing of Perovskite Nanosheets for Microcapacitors. Adv Electron Mater 2021;7:2100402. [DOI: 10.1002/aelm.202100402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang Y, Mehrali M, Zhang Y, Timmerman MA, Boukamp BA, Xu P, ten Elshof JE. Tunable capacitance in all-inkjet-printed nanosheet heterostructures. Energy Storage Materials 2021;36:318-25. [DOI: 10.1016/j.ensm.2021.01.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Liu Z, Dibaji A, Li D, Mateti S, Liu J, Yan F, Barrow CJ, Chen Y, Ariga K, Yang W. Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Materials Today 2021;44:194-210. [DOI: 10.1016/j.mattod.2020.11.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
26 Cardenas JA, Lu S, Williams NX, Doherty JL, Franklin AD. In-Place Printing of Flexible Electrolyte-Gated Carbon Nanotube Transistors with Enhanced Stability. IEEE Electron Device Lett 2021;42:367-70. [PMID: 33746353 DOI: 10.1109/led.2021.3055787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
27 Raikwar S, Srivastava DK, Saini JP, Prajapati YK. 2D-antimonene-based surface plasmon resonance sensor for improvement of sensitivity. Appl Phys A 2021;127. [DOI: 10.1007/s00339-020-04248-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
28 Hu CX, Shin Y, Read O, Casiraghi C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 2021;13:460-84. [PMID: 33404043 DOI: 10.1039/d0nr05514j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
29 Barwich S, Medeiros de Araújo J, Rafferty A, Gomes da Rocha C, Ferreira MS, Coleman JN. On the relationship between morphology and conductivity in nanosheet networks. Carbon 2021;171:306-19. [DOI: 10.1016/j.carbon.2020.09.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Leydecker T, Zhang Q, Eryilmaz IH, Wang ZM, Ma D, Orgiu E. Air stable conductivity of black phosphorous/graphitic carbon nitride blends. J Mater Chem C 2021;9:6404-8. [DOI: 10.1039/d1tc00909e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mccreary A, Kazakova O, Jariwala D, Al Balushi ZY. An outlook into the flat land of 2D materials beyond graphene: synthesis, properties and device applications. 2D Mater 2020;8:013001. [DOI: 10.1088/2053-1583/abc13d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
32 Wang F, Gosling JH, Trindade GF, Rance GA, Makarovsky O, Cottam ND, Kudrynskyi Z, Balanov AG, Greenaway MT, Wildman RD, Hague R, Tuck C, Fromhold TM, Turyanska L. Inter‐Flake Quantum Transport of Electrons and Holes in Inkjet‐Printed Graphene Devices. Adv Funct Mater 2021;31:2007478. [DOI: 10.1002/adfm.202007478] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
33 Pandhi T, Cornwell C, Fujimoto K, Barnes P, Cox J, Xiong H, Davis PH, Subbaraman H, Koehne JE, Estrada D. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv 2020;10:38205-19. [PMID: 35517530 DOI: 10.1039/d0ra04786d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Nalawade Y, Pepper J, Harvey A, Griffin A, Caffrey D, Kelly AG, Coleman JN. All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. ACS Appl Electron Mater 2020;2:3233-41. [DOI: 10.1021/acsaelm.0c00561] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
35 Pachioni-vasconcelos JDA, Apolinário AC, Lopes AM, Pessoa A, Barbosa LRS, Rangel-yagui CDO. Compartmentalization of therapeutic proteins into semi-crystalline PEG-PCL polymersomes. Soft Materials 2021;19:222-30. [DOI: 10.1080/1539445x.2020.1812643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Mensing JP, Lomas T, Tuantranont A. 2D and 3D printing for graphene based supercapacitors and batteries: A review. Sustainable Materials and Technologies 2020;25:e00190. [DOI: 10.1016/j.susmat.2020.e00190] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
37 Han Y, Han HJ, Rah Y, Kim C, Kim M, Lim H, Ahn KH, Jang H, Yu K, Kim TS, Cho EN, Jung YS. Desolvation-Triggered Versatile Transfer-Printing of Pure BN Films with Thermal-Optical Dual Functionality. Adv Mater 2020;32:e2002099. [PMID: 33617118 DOI: 10.1002/adma.202002099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Zhu X, Ng LWT, Hu G, Wu TC, Um DS, Macadam N, Hasan T. Hexagonal Boron Nitride-Enhanced Optically Transparent Polymer Dielectric Inks for Printable Electronics. Adv Funct Mater 2020;30:2002339. [PMID: 32774201 DOI: 10.1002/adfm.202002339] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
39 Huang Y, Jiang L, Li B, Premaratne P, Jiang S, Qin H. Study effects of particle size in metal nanoink for electrohydrodynamic inkjet printing through analysis of droplet impact behaviors. Journal of Manufacturing Processes 2020;56:1270-6. [DOI: 10.1016/j.jmapro.2020.04.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Xu S, Wu W. Ink‐Based Additive Nanomanufacturing of Functional Materials for Human‐Integrated Smart Wearables. Advanced Intelligent Systems 2020;2:2000117. [DOI: 10.1002/aisy.202000117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
41 Conti S, Pimpolari L, Calabrese G, Worsley R, Majee S, Polyushkin DK, Paur M, Pace S, Keum DH, Fabbri F, Iannaccone G, Macucci M, Coletti C, Mueller T, Casiraghi C, Fiori G. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat Commun 2020;11:3566. [PMID: 32678084 DOI: 10.1038/s41467-020-17297-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]
42 Nutting D, Felix JF, Tillotson E, Shin DW, De Sanctis A, Chang H, Cole N, Russo S, Woodgate A, Leontis I, Fernández HA, Craciun MF, Haigh SJ, Withers F. Heterostructures formed through abraded van der Waals materials. Nat Commun 2020;11:3047. [PMID: 32546703 DOI: 10.1038/s41467-020-16717-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
43 Zhang M, Li Y, Li X, Wang N, Huang C. Graphdiyne Ink for Ionic Liquid Gated Printed Transistor. Adv Electron Mater 2020;6:2000157. [DOI: 10.1002/aelm.202000157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
44 Calabrese G, Pimpolari L, Conti S, Mavier F, Majee S, Worsley R, Wang Z, Pieri F, Basso G, Pennelli G, Parvez K, Brooks D, Macucci M, Iannaccone G, Novoselov KS, Casiraghi C, Fiori G. Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale 2020;12:6708-16. [PMID: 32186302 DOI: 10.1039/c9nr09289g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Legge EJ, Paton KR, Wywijas M, Mcmahon G, Pemberton R, Kumar N, Aranga Raju AP, Dawson CP, Strudwick AJ, Bradley JW, Stolojan V, Silva SRP, Hodge SA, Brennan B, Pollard AJ. Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites. ACS Appl Mater Interfaces 2020;12:13481-93. [DOI: 10.1021/acsami.9b22144] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
46 Karuppannan SK, Neoh EHL, Vilan A, Nijhuis CA. Protective Layers Based on Carbon Paint To Yield High-Quality Large-Area Molecular Junctions with Low Contact Resistance. J Am Chem Soc 2020;142:3513-24. [PMID: 31951129 DOI: 10.1021/jacs.9b12424] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
47 Leng T, Parvez K, Pan K, Ali J, Mcmanus D, Novoselov KS, Casiraghi C, Hu Z. Printed graphene/WS 2 battery-free wireless photosensor on papers. 2D Mater 2020;7:024004. [DOI: 10.1088/2053-1583/ab602f] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
48 Byers KM, Lin L, Moehling TJ, Stanciu L, Linnes JC. Versatile printed microheaters to enable low-power thermal control in paper diagnostics. Analyst 2020;145:184-96. [DOI: 10.1039/c9an01546a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
49 Lu S, Franklin AD. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. Nanoscale 2020;12:23371-90. [PMID: 33216106 DOI: 10.1039/d0nr06231f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
50 Lin J, Zhu Z, Cheung CF, Yan F, Li G. Digital manufacturing of functional materials for wearable electronics. J Mater Chem C 2020;8:10587-603. [DOI: 10.1039/d0tc01112f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
51 Boland CS. Stumbling through the Research Wilderness, Standard Methods To Shine Light on Electrically Conductive Nanocomposites for Future Healthcare Monitoring. ACS Nano 2019;13:13627-36. [PMID: 31765126 DOI: 10.1021/acsnano.9b06847] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
52 Rosa M, Costa Bassetto V, Girault HH, Lesch A, Esposito V. Assembling Ni–Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Appl Energy Mater 2020;3:1017-26. [DOI: 10.1021/acsaem.9b02055] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
53 Lu S, Cardenas JA, Worsley R, Williams NX, Andrews JB, Casiraghi C, Franklin AD. Flexible, Print-in-Place 1D-2D Thin-Film Transistors Using Aerosol Jet Printing. ACS Nano 2019;13:11263-72. [PMID: 31578857 DOI: 10.1021/acsnano.9b04337] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 17.3] [Reference Citation Analysis]
54 Gupta B, Matte HSSR. Solution-Processed Layered Hexagonal Boron Nitride Dielectrics: A Route toward Fabrication of High Performance Flexible Devices. ACS Appl Electron Mater 2019;1:2130-9. [DOI: 10.1021/acsaelm.9b00500] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
55 Lin Z, Huang Y, Duan X. Van der Waals thin-film electronics. Nat Electron 2019;2:378-88. [DOI: 10.1038/s41928-019-0301-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 58] [Article Influence: 13.3] [Reference Citation Analysis]
56 Parvez K, Worsley R, Alieva A, Felten A, Casiraghi C. Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon 2019;149:213-21. [DOI: 10.1016/j.carbon.2019.04.047] [Cited by in Crossref: 36] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
57 Moraes ACM, Hyun WJ, Seo JT, Downing JR, Lim J, Hersam MC. Ion‐Conductive, Viscosity‐Tunable Hexagonal Boron Nitride Nanosheet Inks. Adv Funct Mater 2019;29:1902245. [DOI: 10.1002/adfm.201902245] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
58 Travan C, Bergmann A. NO2 and NH3 Sensing Characteristics of Inkjet Printing Graphene Gas Sensors. Sensors (Basel) 2019;19:E3379. [PMID: 31374891 DOI: 10.3390/s19153379] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
59 Qiang S, Carey T, Arbab A, Song W, Wang C, Torrisi F. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures. Nanoscale 2019;11:9912-9. [DOI: 10.1039/c9nr00463g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]