BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS Nano 2017;11:2313-81. [PMID: 28290206 DOI: 10.1021/acsnano.6b06040] [Cited by in Crossref: 755] [Cited by in F6Publishing: 776] [Article Influence: 151.0] [Reference Citation Analysis]
Number Citing Articles
1 Ianiski LB, Maciel AF, Braga CQ, Weiblen C, Pereira DIB, Sangioni LA, Santurio JM, Pötter L, Botton SDA. Promising use of nanotechnology in Pythium insidiosum: a systematic review. Cienc Rural 2023;53. [DOI: 10.1590/0103-8478cr20220091] [Reference Citation Analysis]
2 Zhang G, Zhen C, Yang J, Zhang Z, Wu Y, Che J, Shang P. 1–2 ​T static magnetic field combined with Ferumoxytol prevent unloading-induced bone loss by regulating iron metabolism in osteoclastogenesis. Journal of Orthopaedic Translation 2023;38:126-140. [DOI: 10.1016/j.jot.2022.10.007] [Reference Citation Analysis]
3 Mukherjee N, Dey S, Modak BK, Mukherjee S. Nanomaterials and Nanodevices for Treating Human Infectious and Inflammatory Diseases: Bane or Boon for Human Health? Next Generation Smart Nano-Bio-Devices 2023. [DOI: 10.1007/978-981-19-7107-5_7] [Reference Citation Analysis]
4 Wang M, Deng S, Cao Y, Zhou H, Wei W, Yu K, Cao Y, Liang B. Injectable versatile liquid-solid transformation implants alliance checkpoint blockade for magnetothermal dynamic-immunotherapy. Materials Today Bio 2022;16:100442. [DOI: 10.1016/j.mtbio.2022.100442] [Reference Citation Analysis]
5 Tariq M, Singh A, Varshney N, Samanta SK, Sk MP. Biomass-derived carbon dots as an emergent antibacterial agent. Materials Today Communications 2022;33:104347. [DOI: 10.1016/j.mtcomm.2022.104347] [Reference Citation Analysis]
6 Abere DV, Ojo SA, Paredes-epinosa MB, Hakami A. Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review. Biomedical Engineering Advances 2022;4:100058. [DOI: 10.1016/j.bea.2022.100058] [Reference Citation Analysis]
7 Jindal S, Gopinath P. Exploration of connexin-43 modulating, multifunctional silver nanocluster-hydrogel system for theranostic management of cancer. Materials Today Chemistry 2022;26:101213. [DOI: 10.1016/j.mtchem.2022.101213] [Reference Citation Analysis]
8 Stein R, Pfister F, Friedrich B, Blersch P, Unterweger H, Arkhypov A, Mokhir A, Kolot M, Alexiou C, Tietze R. Plasmid-DNA Delivery by Covalently Functionalized PEI-SPIONs as a Potential ‘Magnetofection’ Agent. Molecules 2022;27:7416. [DOI: 10.3390/molecules27217416] [Reference Citation Analysis]
9 Zhao X, Xu S, Jiang Y, Wang C, ur Rehman S, Ji S, Wang J, Tao T, Xu H, Chen R, Cai Y, Jiang Y, Wang H, Ma K, Wang J. BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140440] [Reference Citation Analysis]
10 Poley M, Chen G, Sharf-pauker N, Avital A, Kaduri M, Sela M, Raimundo PM, Koren L, Arber S, Egorov E, Shainsky J, Shklover J, Schroeder A. Sex‐Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200089] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Bardhan N. Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications. [DOI: 10.1557/s43579-022-00257-7] [Reference Citation Analysis]
12 Xin Y, Sun Z, Liu J, Li W, Wang M, Chu Y, Sun Z, Deng G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol 2022;10:1027468. [DOI: 10.3389/fbioe.2022.1027468] [Reference Citation Analysis]
13 Al-hindawi A, Aldallal U, Waly YM, Hussain MH, Shelig M, Saleh Elmitwalli OSMM, Deen GR, Henari FZ. An Exploration of Nanoparticle-Based Diagnostic Approaches for Coronaviruses: SARS-CoV-2, SARS-CoV and MERS-CoV. Nanomaterials 2022;12:3550. [DOI: 10.3390/nano12203550] [Reference Citation Analysis]
14 Alsenousy AHA, El-Tahan RA, Ghazal NA, Piñol R, Millán A, Ali LMA, Kamel MA. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics 2022;14:2134. [PMID: 36297569 DOI: 10.3390/pharmaceutics14102134] [Reference Citation Analysis]
15 Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.1004729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lusina A, Nazim T, Cegłowski M. Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers (Basel) 2022;14:4176. [PMID: 36236124 DOI: 10.3390/polym14194176] [Reference Citation Analysis]
17 Lv N, Ma T, Qin H, Yang Z, Wu Y, Li D, Tao J, Jiang H, Zhu J. ROS-initiated in-situ polymerization of diacetylene-containing lipidated peptide amphiphile in living cells. Sci China Mater 2022;65:2861-2870. [DOI: 10.1007/s40843-022-2008-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Białas N, Sokolova V, van der Meer SB, Knuschke T, Ruks T, Klein K, Westendorf AM, Epple M. Bacteria ( E. coli ) take up ultrasmall gold nanoparticles (2 nm) as shown by different optical microscopic techniques (CLSM, SIM, STORM). Nano Select 2022;3:1407-20. [DOI: 10.1002/nano.202200049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ocampo‐garcía B, Lara LA, Ferro‐flores G, Morales‐avila E, Isaac‐olivé K. Role of Nanotechnology in Biological Therapies. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch5] [Reference Citation Analysis]
20 Visakh PM. Nanomaterials and Nanotechnology in Medicine. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch1] [Reference Citation Analysis]
21 Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022;17:4367-81. [PMID: 36160469 DOI: 10.2147/IJN.S385590] [Reference Citation Analysis]
22 Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202455] [Reference Citation Analysis]
23 Liz-marzán LM, Nel AE, Brinker CJ, Chan WCW, Chen C, Chen X, Ho D, Hu T, Kataoka K, Kotov NA, Parak WJ, Stevens MM. What Do We Mean When We Say Nanomedicine? ACS Nano 2022;16:13257-9. [DOI: 10.1021/acsnano.2c08675] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Li YJ, Zhang L, Yang PP, Zhang K, Gong XF, Hou DY, Cao H, Wu XC, Liu R, Lam KS, Wang L. Bioinspired Screening of Anti-Adhesion Peptides against Blood Proteins for Intravenous Delivery of Nanomaterials. Nano Lett 2022. [PMID: 36135098 DOI: 10.1021/acs.nanolett.2c02243] [Reference Citation Analysis]
25 Wu PY, Shen ZC, Jiang JL, Zhang BC, Zhang WZ, Zou JJ, Lin JF, Li C, Shao JW. A multifunctional theranostics nanosystem featuring self-assembly of alcohol-abuse drug and photosensitizers for synergistic cancer therapy. Biomater Sci 2022. [PMID: 36128848 DOI: 10.1039/d2bm00803c] [Reference Citation Analysis]
26 Wang Y, Zhou Y, Sun J, Wang X, Jia Y, Ge K, Yan Y, Dawson KA, Guo S, Zhang J, Liang X. The Yin and Yang of the protein corona on the delivery journey of nanoparticles. Nano Res . [DOI: 10.1007/s12274-022-4849-6] [Reference Citation Analysis]
27 Pollak U, Feinstein Y, Mannarino CN, Mcbride ME, Mendonca M, Keizman E, Mishaly D, van Leeuwen G, Roeleveld PP, Koers L, Klugman D. The horizon of pediatric cardiac critical care. Front Pediatr 2022;10:863868. [DOI: 10.3389/fped.2022.863868] [Reference Citation Analysis]
28 Jung W, Kwon J, Cho W, Yeom J. Chiral Biomaterials for Nanomedicines: From Molecules to Supraparticles. Pharmaceutics 2022;14:1951. [DOI: 10.3390/pharmaceutics14091951] [Reference Citation Analysis]
29 Baranwal M, Magner A, Saldinger J, Turali-emre ES, Elvati P, Kozarekar S, Vanepps JS, Kotov NA, Violi A, Hero AO. Struct2Graph: a graph attention network for structure based predictions of protein–protein interactions. BMC Bioinformatics 2022;23. [DOI: 10.1186/s12859-022-04910-9] [Reference Citation Analysis]
30 Gao F, Yu B, Cong H, Shen Y. Delivery process and effective design of vectors for cancer therapy. J Mater Chem B 2022. [PMID: 36048171 DOI: 10.1039/d2tb01326f] [Reference Citation Analysis]
31 Nader K, Castellanos-rubio I, Orue I, Iglesias-rojas D, Barón A, de Muro IG, Lezama L, Insausti M. Getting insight into how iron(III) oleate precursors affect the features of magnetite nanoparticles. Journal of Solid State Chemistry 2022. [DOI: 10.1016/j.jssc.2022.123619] [Reference Citation Analysis]
32 Lu Z, Liu D, Wei P, Yi T. Activated aggregation strategies to construct size‐increasing nanoparticles for cancer therapy. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1848] [Reference Citation Analysis]
33 Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022;14:1817. [DOI: 10.3390/pharmaceutics14091817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022;13:958790. [DOI: 10.3389/fimmu.2022.958790] [Reference Citation Analysis]
35 Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022;20:371. [PMID: 35953863 DOI: 10.1186/s12951-022-01586-4] [Reference Citation Analysis]
36 Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Reference Citation Analysis]
37 Golovin YI, Zhigachev AO, Klyachko NL, Golovin DY. Controlled localization of magnetic nanoparticle mechanical activation in suspension exposed to alternating magnetic field using gradient magnetic field. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05501-8] [Reference Citation Analysis]
38 Zhu Q, Chua MH, Ong PJ, Cheng Lee JJ, Le Osmund Chin K, Wang S, Kai D, Ji R, Kong J, Dong Z, Xu J, Loh XJ. Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances 2022;15:100270. [DOI: 10.1016/j.mtadv.2022.100270] [Reference Citation Analysis]
39 Zyuzin MV, Hartmann R, Timin AS, Carregal-romero S, Parak WJ, Escudero A. Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. Biomaterials Advances 2022;139:212966. [DOI: 10.1016/j.bioadv.2022.212966] [Reference Citation Analysis]
40 Otto F, Sun X, Schulz F, Sanchez-Cano C, Feliu N, Westermeier F, Parak WJ. X-Ray Photon Correlation Spectroscopy Towards Measuring Nanoparticle Diameters in Biological Environments Allowing for the In Situ Analysis of their Bio-Nano Interface. Small 2022;:e2201324. [PMID: 35905490 DOI: 10.1002/smll.202201324] [Reference Citation Analysis]
41 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
42 Wang R, Ponsard B, Wolterbeek H, Denkova A. Core-shell structured gold nanoparticles as carrier for 166Dy/166Ho in vivo generator. EJNMMI Radiopharm Chem 2022;7:16. [PMID: 35852733 DOI: 10.1186/s41181-022-00170-3] [Reference Citation Analysis]
43 Christenson PR, Li M, Rowden G, Schwabenlander MD, Wolf TM, Oh SH, Larsen PA. A field-deployable diagnostic assay for the visual detection of misfolded prions. Sci Rep 2022;12:12246. [PMID: 35851406 DOI: 10.1038/s41598-022-16323-y] [Reference Citation Analysis]
44 Jafarzadeh E, Soodi M, Tiraihi T, Zarei M, Qasemian-Lemraski M. Study of lead-induced neurotoxicity in cholinergic cells differentiated from bone marrow-derived mesenchymal stem cells. Toxicol Ind Health 2022;:7482337221115514. [PMID: 35838060 DOI: 10.1177/07482337221115514] [Reference Citation Analysis]
45 Adhikari A, Bhutani VK, Mondal S, Das M, Darbar S, Ghosh R, Polley N, Das AK, Bhattacharya SS, Pal D, Mallick AK, Pal SK. Chemoprevention of bilirubin encephalopathy with a nanoceutical agent. Pediatr Res. [DOI: 10.1038/s41390-022-02179-5] [Reference Citation Analysis]
46 Eder KM, Marzi A, Wågbø AM, Vermeulen JP, de la Fonteyne-Blankestijn LJJ, Rösslein M, Ossig R, Klinkenberg G, Vandebriel RJ, Schnekenburger J. Standardization of an in vitro assay matrix to assess cytotoxicity of organic nanocarriers: a pilot interlaboratory comparison. Drug Deliv Transl Res 2022. [PMID: 35794354 DOI: 10.1007/s13346-022-01203-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Liang Y, Liao S, Zhang X. A Bibliometric Analysis of Reactive Oxygen Species Based Nanotechnology for Cardiovascular Diseases. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.940769] [Reference Citation Analysis]
48 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022;146:10-22. [PMID: 35523414 DOI: 10.1016/j.actbio.2022.04.046] [Reference Citation Analysis]
49 Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022;186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Reference Citation Analysis]
51 Catanzaro E, Feron O, Skirtach AG, Krysko DV. Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Front Immunol 2022;13:925290. [DOI: 10.3389/fimmu.2022.925290] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wu H, Ou S, Zhang H, Huang R, Yu S, Zhao M, Tai S. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int 2022;22. [DOI: 10.1186/s12935-022-02640-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Tian H, Xu Z, Li H, Hu X, Guo D. Study on assembling compactness of amphiphilic calixarenes by fluorescence anisotropy. Supramolecular Chemistry. [DOI: 10.1080/10610278.2022.2087523] [Reference Citation Analysis]
54 Sokolova V, Ebel JF, Kollenda S, Klein K, Kruse B, Veltkamp C, Lange CM, Westendorf AM, Epple M. Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. Small 2022;:e2201167. [PMID: 35712760 DOI: 10.1002/smll.202201167] [Reference Citation Analysis]
55 Lemaître TA, Burgoyne AR, Ooms M, Parac-vogt TN, Cardinaels T. Inorganic Radiolabeled Nanomaterials in Cancer Therapy: A Review. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Zhang H, Li Y, Liu J, Chang C. Nano-Sonosensitized Sonodynamic Nanomedicine Augments Tumor-Selective Catalytic Tumor Eradication. Front Mater 2022;9:908789. [DOI: 10.3389/fmats.2022.908789] [Reference Citation Analysis]
57 Zhao C, Zhang X, Chen G, Shang L. Developing sensor materials for screening intestinal diseases. Mater Futures 2022;1:022401. [DOI: 10.1088/2752-5724/ac48a3] [Reference Citation Analysis]
58 Gonzalez-avila G, Sommer B, García-hernandez AA, Ramos C, Flores-soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022;9:918789. [DOI: 10.3389/fmolb.2022.918789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhu J, Fu Q, Song L, Liu L, Zheng Z, Xu Y, Zhang Z, Karimi-maleh H. Advances in Peripheral Nerve Injury Repair with the Application of Nanomaterials. Journal of Nanomaterials 2022;2022:1-22. [DOI: 10.1155/2022/7619884] [Reference Citation Analysis]
60 Nune A, Barman B, Sapkota HR, Ish P, Chelliah EG, Diwan M, Chiphang A, Iyengar KP. Nanotechnology applications in rheumatology. Rheumatol Int 2022. [PMID: 35587833 DOI: 10.1007/s00296-022-05141-0] [Reference Citation Analysis]
61 Busatto S, de Mello Donega C. Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from? ACS Mater Au 2022;2:237-49. [PMID: 35578704 DOI: 10.1021/acsmaterialsau.1c00075] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
62 Wang Y, Zhong D, Xie F, Chen S, Ma Z, Yang X, Iqbal MZ, Zhang Q, Lu J, Wang S, Zhao R, Kong X. Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomater Sci Eng 2022;8:1930-41. [PMID: 35380774 DOI: 10.1021/acsbiomaterials.2c00011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Rajagopal M, Paul AK, Lee M, Joykin AR, Por C, Mahboob T, Salibay CC, Torres MS, Guiang MMM, Rahmatullah M, Jahan R, Jannat K, Wilairatana P, de Lourdes Pereira M, Lim CL, Nissapatorn V. Phytochemicals and Nano-Phytopharmaceuticals Use in Skin, Urogenital and Locomotor Disorders: Are We There? Plants 2022;11:1265. [DOI: 10.3390/plants11091265] [Reference Citation Analysis]
64 Tutty MA, Movia D, Prina-Mello A. Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022. [PMID: 35507131 DOI: 10.1007/s13346-022-01147-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Rasool A, Kanagaraj T, Mir MI, Zulfajri M, Ponnusamy VK, Mehboob M. Green Coalescence of CuO Nanospheres for Efficient Anti-Microbial and Anti-Cancer Conceivable Activity. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108464] [Reference Citation Analysis]
66 Xiao Z, Wang D, Wang C, Chen Z, Huang C, Yang Y, Xie L, Zhang L, Xu L, Zhang M, Hu K, Li Z, Luo L. PEIGel: A biocompatible and injectable scaffold with innate immune adjuvanticity for synergized local immunotherapy. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Zou B, Xiong Z, He L, Chen T. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 García-soriano D, Milán-rois P, Lafuente-gómez N, Navío C, Gutiérrez L, Cussó L, Desco M, Calle D, Somoza Á, Salas G. Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions. Journal of Colloid and Interface Science 2022;613:447-60. [DOI: 10.1016/j.jcis.2022.01.070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Wei Z, Liu C, Duan H, Luo Q, Huang M, Thanneeru S, Nie M, He J. Self-Assembly of Gold Nanoparticles Grafted with Amphiphilic Supramolecular Block Copolymers. Giant 2022. [DOI: 10.1016/j.giant.2022.100102] [Reference Citation Analysis]
70 Maccuaig WM, Samykutty A, Foote J, Luo W, Filatenkov A, Li M, Houchen C, Grizzle WE, Mcnally LR. Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics 2022;14:969. [DOI: 10.3390/pharmaceutics14050969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ermakov AV, Volovetsky AB, Zvyagintcev AO, Trushina DB, Zvyagin AV. In vivo study of polyelectrolyte microcarriers loaded with zinc phthalocyanine for image-guided photodynamic therapy. Computational Biophysics and Nanobiophotonics 2022. [DOI: 10.1117/12.2626960] [Reference Citation Analysis]
72 Coene A, Leliaert J. Magnetic nanoparticles in theranostic applications. Journal of Applied Physics 2022;131:160902. [DOI: 10.1063/5.0085202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Liao H, Niu C. Role of CD47-SIRPα Checkpoint in Nanomedicine-Based Anti-Cancer Treatment. Front Bioeng Biotechnol 2022;10:887463. [DOI: 10.3389/fbioe.2022.887463] [Reference Citation Analysis]
74 Ceballos M, Cedrún-Morales M, Rodríguez-Pérez M, Funes-Hernando S, Vila-Fungueiriño JM, Zampini G, Navarro Poupard MF, Polo E, Del Pino P, Pelaz B. High-yield halide-assisted synthesis of metal-organic framework UiO-based nanocarriers. Nanoscale 2022. [PMID: 35467684 DOI: 10.1039/d1nr08305h] [Reference Citation Analysis]
75 Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard-and-Soft Drug Delivery Carriers Based on CaCO3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022;14:909. [DOI: 10.3390/pharmaceutics14050909] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
76 Song M, Dong S, An X, Zhang W, Shen L, Li Y, Guo C, Liu C, Li X, Chen S. Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.060] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Akhtar H, Pourmadadi M, Yazdian F, Rashedi H. Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation. Journal of Molecular Structure 2022;1253:132016. [DOI: 10.1016/j.molstruc.2021.132016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Zou H, Li X, Zheng W, Zhou X. Biophysical characterization and in vitro imaging of carbonized MOFs. Biochem Biophys Res Commun 2022;608:116-21. [PMID: 35397423 DOI: 10.1016/j.bbrc.2022.03.095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS Nano 2022. [PMID: 35318848 DOI: 10.1021/acsnano.1c01347] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
80 Ho D. Digital Nanomedicine: A New Frontier for Drug Development. ACS Nano 2022;16:3435-7. [DOI: 10.1021/acsnano.2c01835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
81 Bals J, Loza K, Epple P, Kircher T, Epple M. Automated and manual classification of metallic nanoparticles with respect to size and shape by analysis of scanning electron micrographs. Materialwissenschaft Werkst 2022;53:270-83. [DOI: 10.1002/mawe.202100285] [Reference Citation Analysis]
82 Yabbarov N, Nikolskaya E, Sokol M, Mollaeva M, Chirkina M, Seregina I, Gulyaev M, Pirogov Y, Petrov R. Synergetic Enhancement of Tumor Double-Targeted MRI Nano-Probe. Int J Mol Sci 2022;23:3119. [PMID: 35328540 DOI: 10.3390/ijms23063119] [Reference Citation Analysis]
83 Oliveira C, Coelho C, Teixeira JA, Ferreira-Santos P, Botelho CM. Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022;27:1669. [PMID: 35268769 DOI: 10.3390/molecules27051669] [Reference Citation Analysis]
84 Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. Adv Mater 2022;34:e2106456. [PMID: 35029313 DOI: 10.1002/adma.202106456] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
85 Körnig C, Staufer T, Schmutzler O, Bedke T, Machicote A, Liu B, Liu Y, Gargioni E, Feliu N, Parak WJ, Huber S, Grüner F. In-situ x-ray fluorescence imaging of the endogenous iodine distribution in murine thyroids. Sci Rep 2022;12:2903. [PMID: 35190621 DOI: 10.1038/s41598-022-06786-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Zhu J, Zhang Z, Wang R, Zhong K, Zhang K, Zhang N, Liu W, Feng F, Qu W. Review of Natural Phytochemical-Based Self-Assembled Nanostructures for Applications in Medicine. ACS Appl Nano Mater 2022;5:3146-69. [DOI: 10.1021/acsanm.2c00056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Vennemann A, Breitenstein D, Tallarek E, Mørch Ý, Schmid R, Wiemann M. Subcellular detection of PEBCA particles in macrophages: combining darkfield microscopy, confocal Raman microscopy, and ToF-SIMS analysis. Drug Deliv Transl Res 2022. [PMID: 35182369 DOI: 10.1007/s13346-022-01128-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Villa Nova M, Lin TP, Shanehsazzadeh S, Jain K, Ng SCY, Wacker R, Chichakly K, Wacker MG. Nanomedicine Ex Machina: Between Model-Informed Development and Artificial Intelligence. Front Digit Health 2022;4:799341. [DOI: 10.3389/fdgth.2022.799341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Coral DF, Soto PA, de Sousa E, Brollo MEF, Mera-Córdoba JA, Mendoza Zélis P, Setton-Avruj CP, Roig A, Fernández van Raap MB. Small-angle X-ray scattering to quantify the incorporation and analyze the disposition of magnetic nanoparticles inside cells. J Colloid Interface Sci 2022;608:1-12. [PMID: 34624760 DOI: 10.1016/j.jcis.2021.09.165] [Reference Citation Analysis]
90 Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022. [PMID: 35167255 DOI: 10.1021/acs.bioconjchem.1c00546] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
92 Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
93 Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev 2022;181:114083. [PMID: 34929251 DOI: 10.1016/j.addr.2021.114083] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
94 Li Y, Che J, Chang L, Guo M, Bao X, Mu D, Sun X, Zhang X, Lu W, Xie J. CD47- and Integrin α4/β1-Comodified-Macrophage-Membrane-Coated Nanoparticles Enable Delivery of Colchicine to Atherosclerotic Plaque. Adv Healthc Mater 2022;11:e2101788. [PMID: 34786845 DOI: 10.1002/adhm.202101788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
95 Yan Y, Wang H, Zhao Y. Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
96 Ferrisse TM, de Oliveira AB, Surur AK, Buzo HS, Brighenti FL, Fontana CR. Photodynamic therapy associated with nanomedicine strategies for treatment of human squamous cell carcinoma: A systematic review and meta-analysis. Nanomedicine 2022;40:102505. [PMID: 34902550 DOI: 10.1016/j.nano.2021.102505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
97 Li T, Shi W, Yao J, Hu J, Sun Q, Meng J, Wan J, Song H, Wang H. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomater Res 2022;26. [DOI: 10.1186/s40824-022-00249-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Remya RR, Julius A, Suman TY, Mohanavel V, Karthick A, Pazhanimuthu C, Samrot AV, Muhibbullah M, Tapia Hernández JA. Role of Nanoparticles in Biodegradation and Their Importance in Environmental and Biomedical Applications. Journal of Nanomaterials 2022;2022:1-15. [DOI: 10.1155/2022/6090846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
99 Lin HY, Yen SC, Kang CH, Chung CY, Hsu MC, Wang CY, Lin JH, Huang CC, Lin HJ. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. J Hazard Mater 2022;429:128337. [PMID: 35121295 DOI: 10.1016/j.jhazmat.2022.128337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Hashemi F, Mohajeri N, Radnia F, Zarghami N. Design an Efficient Fluorescent Nanoplatform Carrier for Hydrophobic Drugs Along with Green Carbon Dot: Possible Application in Cancer Cell Image-Guided Drug Therapy. Photodiagnosis Photodyn Ther 2022;:102738. [PMID: 35074467 DOI: 10.1016/j.pdpdt.2022.102738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Lim CL, Raju CS, Mahboob T, Kayesth S, Gupta KK, Jain GK, Dhobi M, Nawaz M, Wilairatana P, de Lourdes Pereira M, Patra JK, Paul AK, Rahmatullah M, Nissapatorn V. Precision and Advanced Nano-Phytopharmaceuticals for Therapeutic Applications. Nanomaterials (Basel) 2022;12:238. [PMID: 35055257 DOI: 10.3390/nano12020238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
102 Saadatpour F, Mohammadipanah F, Zohourian N, Hodjat M. Potential of nanoparticles and nanopolymers in treatment of age-associated diseases. Adv Nat Sci: Nanosci Nanotechnol 2022;12:045008. [DOI: 10.1088/2043-6262/ac42c7] [Reference Citation Analysis]
103 Wang J, Hao K, Yu F, Shen L, Wang F, Yang J, Su C. Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease. J Nanobiotechnology 2022;20:16. [PMID: 34983536 DOI: 10.1186/s12951-021-01223-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
104 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_265] [Reference Citation Analysis]
105 Lee SLJ, Lin S. Advancements in a Zebrafish Model for Toxicity Assessment of Nanomaterials. Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants 2022. [DOI: 10.1007/978-981-16-9116-4_5] [Reference Citation Analysis]
106 Rincón-lópez J, Ramírez-rodríguez NJ, Luviano AS, Costas M, López-cervantes JL, García-figueroa AA, Domínguez H, Mendoza-cruz R, Guadarrama P, López-morales S, Rojas-aguirre Y. Experimental and theoretical studies of pegylated-β-cyclodextrin: A step forward to understand its tunable self-aggregation abilities. Journal of Drug Delivery Science and Technology 2022;67:102975. [DOI: 10.1016/j.jddst.2021.102975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Truong LB, Cruz DM, Barabadi H, Vahidi H, Mostafavi E. Cancer therapeutics with microbial nanotechnology-based approaches. Handbook of Microbial Nanotechnology 2022. [DOI: 10.1016/b978-0-12-823426-6.00004-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
108 Liu Y, Yan X, Wei H. Medical Nanozymes for Therapeutics. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_26-1] [Reference Citation Analysis]
109 Banerjee P, Qamar I. Nanobiomaterials in biomedicine: Designing approaches and critical concepts. Nanobioanalytical Approaches to Medical Diagnostics 2022. [DOI: 10.1016/b978-0-323-85147-3.00010-4] [Reference Citation Analysis]
110 Nahvi I, Nahvi I, Rehman S. Nanotechnology and Multidrug Resistance. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_14] [Reference Citation Analysis]
111 Widatalla HA, Yassin LF, Alrasheid AA, Rahman Ahmed SA, Widdatallah MO, Eltilib SH, Mohamed AA. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv . [DOI: 10.1039/d1na00509j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
112 Alghamdi MA, Mohamad N, Alsobyan FM, Greish K, Amin MCIM. Cellular interaction of polymeric micelles in targeted drug delivery systems: the road from tissue to cell. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00012-4] [Reference Citation Analysis]
113 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_265-1] [Reference Citation Analysis]
114 Cazzagon V, Giubilato E, Pizzol L, Ravagli C, Doumett S, Baldi G, Blosi M, Brunelli A, Fito C, Huertas F, Marcomini A, Semenzin E, Zabeo A, Zanoni I, Hristozov D. Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System. NanoImpact 2022;25:100373. [DOI: 10.1016/j.impact.2021.100373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
115 Valdeperez D, Wutke N, Ackermann L, Parak WJ, Klapper M, Pelaz B. Colloidal stability of polymer coated zwitterionic Au nanoparticles in biological media. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.120820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Stoika R. Principal Trends in Nanobiotechnology. Biomedical Nanomaterials 2022. [DOI: 10.1007/978-3-030-76235-3_1] [Reference Citation Analysis]
117 Dwivedi N, Saha P. Uncovering the limitation of nanodrug delivery system: Backdrop to the game changer. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00006-5] [Reference Citation Analysis]
118 Danquah MK, Jeevanandam J. Future of nanoparticles, nanomaterials, and nanomedicines in diabetes treatment. Emerging Nanomedicines for Diabetes Mellitus Theranostics 2022. [DOI: 10.1016/b978-0-323-85396-5.00013-0] [Reference Citation Analysis]
119 He X, Chen S, Mao X. Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv 2022;12:6540-51. [DOI: 10.1039/d1ra08335j] [Reference Citation Analysis]
120 Mehra A, Chauhan S, Verma P, Kumar N. Latest advances of phytomedicine in drug delivery systems for targeting metabolic disorders. Drug Delivery Systems for Metabolic Disorders 2022. [DOI: 10.1016/b978-0-323-99616-7.00029-3] [Reference Citation Analysis]
121 Ianiski LB, Rodrigues FDS, Stibbe PC, Weiblen C, Pereira DIB, Santurio JM, Silva CDBD, Sangioni LA, Vogel FSF, Costa MMD, Dutra V, Nakazato L, Botton SDA. Nanotechnology in veterinary medicine: a review. Cienc Rural 2022;52:e20210195. [DOI: 10.1590/0103-8478cr20210195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Bertuit E, Neveu S, Abou-Hassan A. High Temperature Continuous Flow Syntheses of Iron Oxide Nanoflowers Using the Polyol Route in a Multi-Parametric Millifluidic Device. Nanomaterials (Basel) 2021;12:119. [PMID: 35010070 DOI: 10.3390/nano12010119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Bertuit E, Benassai E, Mériguet G, Greneche JM, Baptiste B, Neveu S, Wilhelm C, Abou-Hassan A. Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia. ACS Nano 2021. [PMID: 34963049 DOI: 10.1021/acsnano.1c06212] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
124 Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, Maine E, Malloy T, Nathwani J, Nazar L, Sips A, Sone J, van den Berg A, Weiss PS, Mitra S. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano 2021;15:18608-23. [PMID: 34910476 DOI: 10.1021/acsnano.1c10919] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
125 Safer AM, Leporatti S. Chitosan Nanoparticles for Antiviral Drug Delivery: A Novel Route for COVID-19 Treatment. Int J Nanomedicine 2021;16:8141-58. [PMID: 34949922 DOI: 10.2147/IJN.S332385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Lin G, Jin D. Responsive Sensors of Upconversion Nanoparticles. ACS Sens 2021;6:4272-82. [PMID: 34878259 DOI: 10.1021/acssensors.1c02101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
127 Belić D, Fragueiro O, Salah D, Beckett A, Volk M, Brust M. Imaging of Nanoscale Gold in “Intact” Biological Cells by Environmental Electron Microscopy. J Phys Chem C 2021;125:27865-27875. [DOI: 10.1021/acs.jpcc.1c09104] [Reference Citation Analysis]
128 Zhang K, Li D, Zhou B, Liu J, Luo X, Wei R, Wang L, Hu X, Su Z, Lin H, Gao J, Shan H. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater Sci 2021;10:243-57. [PMID: 34846385 DOI: 10.1039/d1bm01374b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Yu Q, Peng T, Zhang J, Liu X, Pan Y, Ge D, Zhao L, Rosei F, Zhang J. Cu2- x Sx Capped AuCu Nanostars for Efficient Plasmonic Photothermal Tumor Treatment in the Second Near-Infrared Window. Small 2021;:e2103174. [PMID: 34914183 DOI: 10.1002/smll.202103174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Qin Y, Lao YH, Wang H, Zhang J, Yi K, Chen Z, Han J, Song W, Tao Y, Li M. Combatting Helicobacter pylori with oral nanomedicines. J Mater Chem B 2021;9:9826-38. [PMID: 34854456 DOI: 10.1039/d1tb02038b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021;9:749381. [PMID: 34869261 DOI: 10.3389/fbioe.2021.749381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Patel M, Patel R, Rai M. Nanomedicines. Nanotechnology in Medicine 2021. [DOI: 10.1002/9781119769897.ch1] [Reference Citation Analysis]
134 Mallick S, Sabui P. Green Synthesis of Copper and Copper‐Based Nanoparticles for Their Use in Medicine. Nanotechnology in Medicine 2021. [DOI: 10.1002/9781119769897.ch8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Liu L, Bi M, Wang Y, Liu J, Jiang X, Xu Z, Zhang X. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 2021;13:19352-66. [PMID: 34812823 DOI: 10.1039/d1nr06195j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
136 Gao L, Yan H, Zhu S, Wang X, Tan Y, Du J, Feng D, Zhang H, Gu Z. Targeted delivery of Bi2Se3 Nanoflowers to orthotopic liver tumor via transarterial infusion for enhanced microwave ablation sensibilization. Nano Today 2021;41:101314. [DOI: 10.1016/j.nantod.2021.101314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
137 MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol 2021;:101536. [PMID: 34862118 DOI: 10.1016/j.smim.2021.101536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
138 Hafeez MN, d'Avanzo N, Russo V, Di Marzio L, Cilurzo F, Paolino D, Fresta M, Barboni B, Santos HA, Celia C. Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells Int 2021;2021:1488829. [PMID: 34824586 DOI: 10.1155/2021/1488829] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
139 Wang Y, Wang W, Kong F, Zhang Q, Xiao J, Zhang Y, Yan B. Tango of dual nanoparticles: Interplays between exosomes and nanomedicine. Bioeng Transl Med. [DOI: 10.1002/btm2.10269] [Reference Citation Analysis]
140 Yang H, Zheng X, Zheng Z, He J, Kong D, Ding K, Zhou S. Precise Control of Shape-Variable Nanomicelles in Nanofibers Reveals the Enhancement Mechanism of Passive Delivery. ACS Appl Mater Interfaces 2021;13:54715-26. [PMID: 34757716 DOI: 10.1021/acsami.1c15858] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Castellanos-Rubio I, Arriortua O, Iglesias-Rojas D, Barón A, Rodrigo I, Marcano L, Garitaonandia JS, Orue I, Fdez-Gubieda ML, Insausti M. A Milestone in the Chemical Synthesis of Fe3O4 Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia. Chem Mater 2021;33:8693-704. [PMID: 34853492 DOI: 10.1021/acs.chemmater.1c02654] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
142 Christenson PR, Li M, Rowden G, Schwabenlander M, Wolf TM, Oh S, Larsen PA. A Field-Deployable Diagnostic Assay for the Visual Detection of Misfolded Prions.. [DOI: 10.1101/2021.11.22.469560] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Li Y, Han W, He C, Jiang X, Fan Y, Lin W. Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer. Bioconjug Chem 2021;32:2318-26. [PMID: 34607430 DOI: 10.1021/acs.bioconjchem.1c00362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Lozano Chamizo L, Luengo Morato Y, Ovejero Paredes K, Contreras Caceres R, Filice M, Marciello M. Ionotropic Gelation-Based Synthesis of Chitosan-Metal Hybrid Nanoparticles Showing Combined Antimicrobial and Tissue Regenerative Activities. Polymers (Basel) 2021;13:3910. [PMID: 34833209 DOI: 10.3390/polym13223910] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Gu G, Chen C, Zhang S, Yin B, Wang J. Self-Assembly Dual-Responsive NO Donor Nanoparticles for Effective Cancer Therapy. ACS Appl Mater Interfaces 2021;13:50682-94. [PMID: 34668695 DOI: 10.1021/acsami.1c12646] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
146 Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021;50:12037-69. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 29.0] [Reference Citation Analysis]
147 Rathore A, Mahesh G. Public perception of nanotechnology: A contrast between developed and developing countries. Technology in Society 2021;67:101751. [DOI: 10.1016/j.techsoc.2021.101751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Heidari F, Mohajeri N, Zarghami N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys 2021. [PMID: 34716880 DOI: 10.1007/s12013-021-01034-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
149 Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021;9:1554. [PMID: 34829783 DOI: 10.3390/biomedicines9111554] [Reference Citation Analysis]
150 Kharlamova MV, Kramberger C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials (Basel) 2021;11:2863. [PMID: 34835628 DOI: 10.3390/nano11112863] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
151 Parak WJ, Weil T, Weiss PS. A Virtual Issue on Nanomedicine. ACS Nano 2021;15:15397-401. [DOI: 10.1021/acsnano.1c09106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
152 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
153 Gómez Flores V, Martínez-Martínez A, Roacho Pérez JA, Acosta Bezada J, Aguirre-Tostado FS, García Casillas PE. Biointeraction of Erythrocyte Ghost Membranes with Gold Nanoparticles Fluorescents. Materials (Basel) 2021;14:6390. [PMID: 34771916 DOI: 10.3390/ma14216390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Adv Mater Interfaces 2021;8:2100809. [DOI: 10.1002/admi.202100809] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
155 Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021;13:1757. [PMID: 34834172 DOI: 10.3390/pharmaceutics13111757] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
156 Galdino FE, Picco AS, Capeletti LB, Bettini J, Cardoso MB. Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization. Nano Lett 2021;21:8250-7. [PMID: 34554750 DOI: 10.1021/acs.nanolett.1c02416] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
157 Xu W, Wang J, Li Q, Wu C, Wu L, Li K, Li Q, Han Q, Zhu J, Bai Y, Deng J, Lyu J, Wang Z. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem B 2021;9:8031-7. [PMID: 34486010 DOI: 10.1039/d1tb00788b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
158 Smolková B, MacCulloch T, Rockwood TF, Liu M, Henry SJW, Frtús A, Uzhytchak M, Lunova M, Hof M, Jurkiewicz P, Dejneka A, Stephanopoulos N, Lunov O. Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells. ACS Appl Mater Interfaces 2021;13:46375-90. [PMID: 34569777 DOI: 10.1021/acsami.1c14401] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
159 Zhu J, Weng H, Xie S, Cheng J, Zhu J. A novel CT contrast agent for intestinal-targeted imaging through rectal administration. e-Polymers 2021;21:754-62. [DOI: 10.1515/epoly-2021-0076] [Reference Citation Analysis]
160 Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N, Kumar P. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines (Basel) 2021;9:1129. [PMID: 34696237 DOI: 10.3390/vaccines9101129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
161 Tan X, Welsher K. Particle‐by‐Particle In Situ Characterization of the Protein Corona via Real‐Time 3D Single‐Particle‐Tracking Spectroscopy**. Angewandte Chemie 2021;133:22533-22541. [DOI: 10.1002/ange.202105741] [Reference Citation Analysis]
162 Tan X, Welsher K. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*. Angew Chem Int Ed Engl 2021;60:22359-67. [PMID: 34015174 DOI: 10.1002/anie.202105741] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
163 Fakhri S, Gravandi MM, Abdian S, Akkol EK, Farzaei MH, Sobarzo-Sánchez E. The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021;26:5985. [PMID: 34641529 DOI: 10.3390/molecules26195985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
164 Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv Mater 2021;33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
165 Agarwal S, Kumar DS. Surface Functionalization of Nanoparticles for Stability in Biological Systems. Microbial Interactions at Nanobiotechnology Interfaces 2021. [DOI: 10.1002/9781119617181.ch4] [Reference Citation Analysis]
166 Pan Y, Ma X, Liu C, Xing J, Zhou S, Parshad B, Schwerdtle T, Li W, Wu A, Haag R. Retinoic Acid-Loaded Dendritic Polyglycerol-Conjugated Gold Nanostars for Targeted Photothermal Therapy in Breast Cancer Stem Cells. ACS Nano 2021;15:15069-84. [PMID: 34420298 DOI: 10.1021/acsnano.1c05452] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
167 Zhang H, Song F, Dong C, Yu L, Chang C, Chen Y. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. J Nanobiotechnology 2021;19:290. [PMID: 34579711 DOI: 10.1186/s12951-021-01025-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
168 Moldovan CS, Onaciu A, Toma V, Marginean R, Moldovan A, Tigu AB, Stiufiuc GF, Lucaciu CM, Stiufiuc RI. Quantifying Cytosolic Cytochrome c Concentration Using Carbon Quantum Dots as a Powerful Method for Apoptosis Detection. Pharmaceutics 2021;13:1556. [PMID: 34683849 DOI: 10.3390/pharmaceutics13101556] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
169 Food Application and Processing: Nanotechniques and Bioactive Delivery Systems. Nano‐Technological Intervention in Agricultural Productivity 2021. [DOI: 10.1002/9781119714897.ch9] [Reference Citation Analysis]
170 Firestein R, Marcinkiewicz C, Nie L, Chua HK, Velazquez Quesada I, Torelli M, Sternberg M, Gligorijevic B, Shenderova O, Schirhagl R, Feuerstein GZ. Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnol Sci Appl 2021;14:139-59. [PMID: 34522092 DOI: 10.2147/NSA.S321725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Elkefi S, Asan O, Mnasouri M. Change management and continuous improvement for Smarter Care: A Systems Viewpoint. 2021 IEEE International Symposium on Systems Engineering (ISSE) 2021. [DOI: 10.1109/isse51541.2021.9582529] [Reference Citation Analysis]
172 Xu JX, Alom MS, Fitzkee NC. Quantitative Measurement of Multiprotein Nanoparticle Interactions Using NMR Spectroscopy. Anal Chem 2021;93:11982-90. [PMID: 34432422 DOI: 10.1021/acs.analchem.1c01911] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
173 Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021;188:321. [PMID: 34482449 DOI: 10.1007/s00604-021-04960-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
174 Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2022;7:47-72. [PMID: 34466716 DOI: 10.1016/j.bioactmat.2021.06.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 60.0] [Reference Citation Analysis]
175 Shin Y, Cho S, Han S, Jung GY. Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film. Nano Converg 2021;8:25. [PMID: 34473311 DOI: 10.1186/s40580-021-00276-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
176 Beck-broichsitter M. Solvent impact on polymer nanoparticles prepared nanoprecipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;625:126928. [DOI: 10.1016/j.colsurfa.2021.126928] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
177 Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021;230:124024. [DOI: 10.1016/j.polymer.2021.124024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
178 Valero A, Mery A, Gaboriau D, Dietrich M, Fox M, Chretien J, Pauc N, Jouan PY, Gentile P, Sadki S. Redefining high-k dielectric materials vision at nanoscale for energy storage: A new electrochemically active protection barrier. Electrochimica Acta 2021;389:138727. [DOI: 10.1016/j.electacta.2021.138727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 2021;204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
180 Zamora-Perez P, Pelaz B, Tsoutsi D, Soliman MG, Parak WJ, Rivera-Gil P. Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold-copper sulfide nanoparticles. Nanoscale 2021;13:13256-72. [PMID: 34477734 DOI: 10.1039/d0nr08256b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
181 Xia X, Shi B, Wang L, Liu Y, Zou Y, Zhou Y, Chen Y, Zheng M, Zhu Y, Duan J, Guo S, Jang HW, Miao Y, Fan K, Bai F, Tao W, Zhao Y, Yan Q, Cheng G, Liu H, Jiao Y, Liu S, Huang Y, Ling D, Kang W, Xue X, Cui D, Huang Y, Cui Z, Sun X, Qian Z, Gu Z, Han G, Yang Z, Leong DT, Wu A, Liu G, Qu X, Shen Y, Wang Q, Lowry GV, Wang E, Liang X, Gardea‐torresdey J, Chen G, Parak WJ, Weiss PS, Zhang L, Stenzel MM, Fan C, Bush AI, Zhang G, Grof CPL, Wang X, Galbraith DW, Tang BZ, Offler CE, Patrick JW, Song C. From mouse to mouse‐ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration 2021;1:9-20. [DOI: 10.1002/exp.20210002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
182 Zhang W, Sheng T, Gu Z, Zhang Y. Strategies for Browning Agent Delivery. Pharm Res 2021;38:1327-34. [PMID: 34398404 DOI: 10.1007/s11095-021-03081-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
183 Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L. Design, synthesis and application of near-infrared fluorescence probe IR-780-Crizotinib in detection of ALK positive tumors. Protein Expr Purif 2021;187:105952. [PMID: 34375729 DOI: 10.1016/j.pep.2021.105952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Sun L, Cheng C, Wang S, Tang J, Xie R, Wang D. Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics. ACS Nano 2021. [PMID: 34355573 DOI: 10.1021/acsnano.1c03614] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
185 Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021;9:6770-801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
186 Lin C, Gao H, Ouyang L. Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. J Control Release 2021;337:494-504. [PMID: 34358590 DOI: 10.1016/j.jconrel.2021.08.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
187 Bondarenko O, Mortimer M, Kahru A, Feliu N, Javed I, Kakinen A, Lin S, Xia T, Song Y, Davis TP, Lynch I, Parak WJ, Leong DT, Ke PC, Chen C, Zhao Y. Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today 2021;39:101184. [DOI: 10.1016/j.nantod.2021.101184] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 26.0] [Reference Citation Analysis]
188 Wang H, Zhang L, Miao Z, Zhang M, Liu H, He Q, Meng J, Wen L, Ke Z, Zha Z, Lin R, Liang C. PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization. Mater Horiz 2021;8:2216-29. [PMID: 34846426 DOI: 10.1039/d0mh01992e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
189 Mora-Raimundo P, Lozano D, Benito M, Mulero F, Manzano M, Vallet-Regí M. Osteoporosis Remission and New Bone Formation with Mesoporous Silica Nanoparticles. Adv Sci (Weinh) 2021;8:e2101107. [PMID: 34096198 DOI: 10.1002/advs.202101107] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
190 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
191 Ghahari A, Raissi H, Farzad F. Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. Journal of the Taiwan Institute of Chemical Engineers 2021;125:15-22. [DOI: 10.1016/j.jtice.2021.05.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
192 Marchetti A, Yin J, Su Y, Kong X. Solid-state NMR in the field of drug delivery: State of the art and new perspectives. Magnetic Resonance Letters 2021;1:28-70. [DOI: 10.1016/j.mrl.2021.100003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
193 d'Orlyé F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan BT, Varenne A. Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021;26:4587. [PMID: 34361740 DOI: 10.3390/molecules26154587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
194 Zhang S, Lu Q, Wang F, Xiao Z, He L, He D, Deng L. Gold-Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy. ACS Appl Mater Interfaces 2021;13:37535-44. [PMID: 34324300 DOI: 10.1021/acsami.1c10600] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 16.0] [Reference Citation Analysis]
195 Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine 2021;91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
196 Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. Adv Therap 2021;4:2100067. [DOI: 10.1002/adtp.202100067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
197 Kundu S, Ghosh M, Sarkar N. State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir 2021;37:9281-301. [PMID: 34297580 DOI: 10.1021/acs.langmuir.1c00732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
198 Escudero A, Carrillo-carrión C, Romero-ben E, Franco A, Rosales-barrios C, Castillejos MC, Khiar N. Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics 2021;9:58. [DOI: 10.3390/inorganics9070058] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
199 Deng Y, Huang R, Huang S, Xiong M. Nanoparticles Enable Efficient Delivery of Antimicrobial Peptides for the Treatment of Deep Infections. BIO Integration 2021;2:50-6. [DOI: 10.15212/bioi-2021-0003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
200 He G, Tao Q, Liu C, Zhang D, Zhou Y, Liu R. [Mn2+-doped Prussian blue nanoparticles for T1-T2 dual-mode magnetic resonance imaging and photothermal therapy in vitro]. Nan Fang Yi Ke Da Xue Xue Bao 2021;41:909-15. [PMID: 34238744 DOI: 10.12122/j.issn.1673-4254.2021.06.14] [Reference Citation Analysis]
201 Du BW, Lin CC, Ko FH. Trivalent Cations Detection of Magnetic-Sensitive Microcapsules by Controlled-Release Fluorescence Off-On Sensor. Nanomaterials (Basel) 2021;11:1801. [PMID: 34361186 DOI: 10.3390/nano11071801] [Reference Citation Analysis]
202 Calderon I, Guerrini L, Alvarez-Puebla RA. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. Biosensors (Basel) 2021;11:230. [PMID: 34356701 DOI: 10.3390/bios11070230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
203 Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. Nanomaterials (Basel) 2021;11:1784. [PMID: 34361170 DOI: 10.3390/nano11071784] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
204 Białas N, Müller EK, Epple M, Hilger I. Silica-coated calcium phosphate nanoparticles for gene silencing of NF-κB p65 by siRNA and their impact on cellular players of inflammation. Biomaterials 2021;276:121013. [PMID: 34252802 DOI: 10.1016/j.biomaterials.2021.121013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
205 Nath R, Roy R, Barai G, Bairagi S, Manna S, Chakraborty R. Modern Developments of Nano Based Drug Delivery System by Combined with Phytochemicals- Presenting New Aspects. IJSRST. [DOI: 10.32628/ijsrst218422] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
206 Zhang X, Jia D, Wang Y, Wen F, Zhang X. Engineering glutathione-responsive near-infrared polymeric prodrug system for fluorescence imaging in tumor therapy. Colloids Surf B Biointerfaces 2021;206:111966. [PMID: 34293577 DOI: 10.1016/j.colsurfb.2021.111966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
207 Singh G, Ddungu JLZ, Licciardello N, Bergmann R, De Cola L, Stephan H. Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging. Faraday Discuss 2020;222:362-83. [PMID: 32108214 DOI: 10.1039/c9fd00091g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
208 Yang K, Reker-Smit C, Stuart MCA, Salvati A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv Healthc Mater 2021;10:e2100370. [PMID: 34050634 DOI: 10.1002/adhm.202100370] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
209 Gordillo-galeano A, Mora-huertas CE. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;620:126610. [DOI: 10.1016/j.colsurfa.2021.126610] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
210 Yao W, Liu C, Wang N, Zhou H, Chen H, Qiao W. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy. J Colloid Interface Sci 2021;603:783-98. [PMID: 34246838 DOI: 10.1016/j.jcis.2021.06.151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
211 Amos JD, Tian Y, Zhang Z, Lowry GV, Wiesner MR, Hendren CO. The NanoInformatics Knowledge Commons: Capturing spatial and temporal nanomaterial transformations in diverse systems. NanoImpact 2021;23:100331. [DOI: 10.1016/j.impact.2021.100331] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
212 Sun J, Tan H, Lan S, Peng F, Tu Y. Progress on the fabrication strategies of self-propelled micro/nanomotors. JCIS Open 2021;2:100011. [DOI: 10.1016/j.jciso.2021.100011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
213 Shehu IA, Auwal NM, Musa MK, Mukhtar A, Yusuf MS, Yau AA, Muhammad M, Baba Dala Y, Sani SA, Ahmad MS, Islam M. Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. Front Nanotechnol 2021;3. [DOI: 10.3389/fnano.2021.651308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
214 Curcio A, de Walle AV, Benassai E, Serrano A, Luciani N, Menguy N, Manshian BB, Sargsian A, Soenen S, Espinosa A, Abou-Hassan A, Wilhelm C. Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential. ACS Nano 2021;15:9782-95. [PMID: 34032115 DOI: 10.1021/acsnano.1c00567] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
215 Xie Y, Chen X, Zheng X, Li L, Li J, Xu Y, He J, Lin Y. Beta1-integrin/Hedgehog-Gli1 signaling pathway fuels the diameter-dependent osteoblast differentiation on different TiO2 nanotubes: The optimal-diameter nanotubes for osteoblast differentiation. Int J Biochem Cell Biol 2021;137:106026. [PMID: 34147653 DOI: 10.1016/j.biocel.2021.106026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem 2021;133:13948-53. [DOI: 10.1002/ange.202101609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
217 Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021;60:13829-34. [PMID: 33755292 DOI: 10.1002/anie.202101609] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
218 Ali A, Ovais M, Zhou H, Rui Y, Chen C. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021;275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
219 Braatz D, Dimde M, Ma G, Zhong Y, Tully M, Grötzinger C, Zhang Y, Mavroskoufis A, Schirner M, Zhong Z, Ballauff M, Haag R. Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)-SS-poly(ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting. Biomacromolecules 2021;22:2625-40. [PMID: 34076415 DOI: 10.1021/acs.biomac.1c00333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
220 Johnson ME, Bennett J, Montoro Bustos AR, Hanna SK, Kolmakov A, Sharp N, Petersen EJ, Lapasset PE, Sims CM, Murphy KE, Nelson BC. Combining secondary ion mass spectrometry image depth profiling and single particle inductively coupled plasma mass spectrometry to investigate the uptake and biodistribution of gold nanoparticles in Caenorhabditis elegans. Anal Chim Acta 2021;1175:338671. [PMID: 34330435 DOI: 10.1016/j.aca.2021.338671] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
221 Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y. Nanotechnology: Breaking the Current Treatment Limits of Lung Cancer. Adv Healthc Mater 2021;10:e2100078. [PMID: 34019739 DOI: 10.1002/adhm.202100078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
222 Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology 2021;63:102487. [DOI: 10.1016/j.jddst.2021.102487] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
223 Noskov RE, Machnev A, Shishkin II, Novoselova MV, Gayer AV, Ezhov AA, Shirshin EA, German SV, Rukhlenko ID, Fleming S, Khlebtsov BN, Gorin DA, Ginzburg P. Golden Vaterite as a Mesoscopic Metamaterial for Biophotonic Applications. Adv Mater 2021;33:e2008484. [PMID: 33984163 DOI: 10.1002/adma.202008484] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
224 Goerlitzer ESA, Puri AS, Moses JJ, Poulikakos LV, Vogel N. The Beginner's Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large‐Area Substrates. Advanced Optical Materials 2021;9:2100378. [DOI: 10.1002/adom.202100378] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
225 Al-Zubeidi A, Stein F, Flatebo C, Rehbock C, Hosseini Jebeli SA, Landes CF, Barcikowski S, Link S. Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles. ACS Nano 2021;15:8363-75. [PMID: 33886276 DOI: 10.1021/acsnano.0c10150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
226 Yan X, Lin W, Liu H, Pu W, Li J, Wu P, Ding J, Luo G, Zhang J. Wavelength-Tunable, Long Lifetime, and Biocompatible Luminescent Nanoparticles Based on a Vitamin E-Derived Material for Inflammation and Tumor Imaging. Small 2021;17:e2100045. [PMID: 34031977 DOI: 10.1002/smll.202100045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
227 Venkatas J, Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond) 2021;16:1311-28. [PMID: 34027672 DOI: 10.2217/nnm-2021-0044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
228 Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021;13:770. [PMID: 34064155 DOI: 10.3390/pharmaceutics13060770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
229 Correa-Paz C, da Silva-Candal A, Polo E, Parcq J, Vivien D, Maysinger D, Pelaz B, Campos F. New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics 2021;13:757. [PMID: 34065179 DOI: 10.3390/pharmaceutics13050757] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
230 Liu S, Chen D, Li X, Guan M, Zhou Y, Li L, Jia W, Zhou C, Shu C, Wang C, Bai C. Fullerene nanoparticles: a promising candidate for the alleviation of silicosis-associated pulmonary inflammation. Nanoscale 2020;12:17470-9. [PMID: 32808001 DOI: 10.1039/d0nr04401f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
231 Zhang M, Zou Y, Zuo C, Ao H, Guo Y, Wang X, Han M. Targeted antitumor comparison study between dopamine self-polymerization and traditional synthesis for nanoparticle surface modification in drug delivery. Nanotechnology 2021;32. [PMID: 33862617 DOI: 10.1088/1361-6528/abf8dd] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
232 Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021;10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
233 Zhang B, Wan S, Peng X, Zhao M, Li S, Pu Y, He B. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B 2020;8:3939-48. [PMID: 32236239 DOI: 10.1039/d0tb00327a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
234 Selianitis D, Pispas S. P( MMA‐ co ‐HPMA )‐ b ‐POEGMA copolymers: synthesis, micelle formation in aqueous media and drug encapsulation. Polym Int 2021;70:1508-22. [DOI: 10.1002/pi.6229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
235 Torres-Martínez A, Bedrina B, Falomir E, Marín MJ, Angulo-Pachón CA, Galindo F, Miravet JF. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. ACS Appl Bio Mater 2021;4:3658-69. [PMID: 35014451 DOI: 10.1021/acsabm.1c00139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
236 Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021;28:752-66. [PMID: 33860719 DOI: 10.1080/10717544.2021.1909175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
237 Ke L, Li Z, Fan X, Loh XJ, Cheng H, Wu YL, Li Z. Cyclodextrin-Based Hybrid Polymeric Complex to Overcome Dual Drug Resistance Mechanisms for Cancer Therapy. Polymers (Basel) 2021;13:1254. [PMID: 33924348 DOI: 10.3390/polym13081254] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
238 Li X, Yu H, Wang B, Chen W, Zhu M, Liang S, Chu R, Zhou S, Chen H, Wang M, Zheng L, Feng W. Multiscale Synchrotron-Based Imaging Analysis for the Transfer of PEGylated Gold Nanoparticles In Vivo. ACS Biomater Sci Eng 2021;7:1462-74. [PMID: 33764757 DOI: 10.1021/acsbiomaterials.0c01764] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
239 Joo J. Diagnostic and Therapeutic Nanomedicine. Adv Exp Med Biol 2021;1310:401-47. [PMID: 33834444 DOI: 10.1007/978-981-33-6064-8_15] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
240 Borin D, Müller R, Odenbach S. Magnetoviscosity of a Magnetic Fluid Based on Barium Hexaferrite Nanoplates. Materials (Basel) 2021;14:1870. [PMID: 33918744 DOI: 10.3390/ma14081870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
241 Craparo EF, Cabibbo M, Conigliaro A, Barreca MM, Musumeci T, Giammona G, Cavallaro G. Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis. Pharmaceutics 2021;13:503. [PMID: 33916918 DOI: 10.3390/pharmaceutics13040503] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
242 Ji Y, Han Z, Ding H, Xu X, Wang D, Zhu Y, An F, Tang S, Zhang H, Deng J, Zhou Q. Enhanced Eradication of Bacterial/Fungi Biofilms by Glucose Oxidase-Modified Magnetic Nanoparticles as a Potential Treatment for Persistent Endodontic Infections. ACS Appl Mater Interfaces 2021;13:17289-99. [PMID: 33827209 DOI: 10.1021/acsami.1c01748] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
243 Pshenichnikov S, Omelyanchik A, Efremova M, Lunova M, Gazatova N, Malashchenko V, Khaziakhmatova O, Litvinova L, Perov N, Panina L, Peddis D, Lunov O, Rodionova V, Levada K. Control of oxidative stress in Jurkat cells as a model of leukemia treatment. Journal of Magnetism and Magnetic Materials 2021;523:167623. [DOI: 10.1016/j.jmmm.2020.167623] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
244 Lai L, Jiang Y, Su G, Wu M, Lu X, Fu S, Yang L, Shu J. Gadolinium-chelate functionalized magnetic CuFeSe 2 ternary nanocrystals for T1-T2 dual MRI and CT imaging in vitro and in vivo. Mater Res Express 2021;8:045001. [DOI: 10.1088/2053-1591/abf1a2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
245 Schmutzler O, Graf S, Behm N, Mansour WY, Blumendorf F, Staufer T, Körnig C, Salah D, Kang Y, Peters JN, Liu Y, Feliu N, Parak WJ, Burkhardt A, Gargioni E, Gennis S, Chandralingam S, Höeg F, Maison W, Rothkamm K, Schulz F, Grüner F. X-ray Fluorescence Uptake Measurement of Functionalized Gold Nanoparticles in Tumor Cell Microsamples. Int J Mol Sci 2021;22:3691. [PMID: 33916283 DOI: 10.3390/ijms22073691] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
246 Bai X, Wang J, Mu Q, Su G. In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles' Biobehaviors, and Applications. Front Bioeng Biotechnol 2021;9:646708. [PMID: 33869157 DOI: 10.3389/fbioe.2021.646708] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
247 Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021;23:225-48. [PMID: 33788581 DOI: 10.1146/annurev-bioeng-121219-024239] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
248 Cong X, Chen J, Xu R. Tumor-Acidity Responsive Polymeric Nanoparticles for Targeting Delivery of Angiogenesis Inhibitor for Enhanced Antitumor Efficacy With Decreased Toxicity. Front Bioeng Biotechnol 2021;9:664051. [PMID: 33842451 DOI: 10.3389/fbioe.2021.664051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
249 Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano 2021;15:4710-27. [PMID: 33626869 DOI: 10.1021/acsnano.0c09278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
250 Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano 2021;15:3754-807. [PMID: 33650433 DOI: 10.1021/acsnano.0c09563] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 26.0] [Reference Citation Analysis]
251 Perez-Potti A, Lopez H, Pelaz B, Abdelmonem A, Soliman MG, Schoen I, Kelly PM, Dawson KA, Parak WJ, Krpetic Z, Monopoli MP. In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Sci Rep 2021;11:6443. [PMID: 33742032 DOI: 10.1038/s41598-021-84029-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
252 Gerosa M, Grande MD, Busato A, Vurro F, Cisterna B, Forlin E, Gherlinzoni F, Morana G, Gottardi M, Matteazzi P, Speghini A, Marzola P. Nanoparticles exhibiting self-regulating temperature as innovative agents for Magnetic Fluid Hyperthermia. Nanotheranostics 2021;5:333-47. [PMID: 33732604 DOI: 10.7150/ntno.55695] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
253 Unal MA, Bayrakdar F, Fusco L, Besbinar O, Shuck CE, Yalcin S, Erken MT, Ozkul A, Gurcan C, Panatli O, Summak GY, Gokce C, Orecchioni M, Gazzi A, Vitale F, Somers J, Demir E, Yildiz SS, Nazir H, Grivel JC, Bedognetti D, Crisanti A, Akcali KC, Gogotsi Y, Delogu LG, Yilmazer A. 2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. Nano Today 2021;38:101136. [PMID: 33753982 DOI: 10.1016/j.nantod.2021.101136] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 32.0] [Reference Citation Analysis]
254 Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021;22:3087. [PMID: 33802993 DOI: 10.3390/ijms22063087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
255 Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. Nanomicro Lett 2021;13:92. [PMID: 34138315 DOI: 10.1007/s40820-021-00622-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
256 Sokolova V, Epple M. Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry 2021;27:7471-88. [PMID: 33577710 DOI: 10.1002/chem.202005257] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
257 Brueckl H, Shoshi A, Schrittwieser S, Schmid B, Schneeweiss P, Mitteramskogler T, Haslinger MJ, Muehlberger M, Schotter J. Nanoimprinted multifunctional nanoprobes for a homogeneous immunoassay in a top-down fabrication approach. Sci Rep 2021;11:6039. [PMID: 33727602 DOI: 10.1038/s41598-021-85524-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
258 Agudelo W, Montoya Y, Garcia-garcia A, Bustamante J. Functionalization of Electrospun Scaffolds with Gold or Silver Nanoparticles for Applications in Cardiovascular Tissue Engineering. 2021 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE) 2021. [DOI: 10.1109/gmepe/pahce50215.2021.9434846] [Reference Citation Analysis]
259 Le H, Arnoult C, Dé E, Schapman D, Galas L, Le Cerf D, Karakasyan C. Antibody-Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilms. Biomacromolecules 2021;22:1639-53. [PMID: 33709706 DOI: 10.1021/acs.biomac.1c00082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
260 Kvakova M, Stroffekova K, Stofilova J, Girman V, Bomba A, Antalik M. Toxicological evaluation of fluorescent 11-mercaptoundecanoic gold nanoclusters as promising label-free bioimaging probes in different cancer cell lines. Toxicol In Vitro 2021;73:105140. [PMID: 33705896 DOI: 10.1016/j.tiv.2021.105140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
261 Calderon I, Alvarez-Puebla RA, Pazos-Perez N. Gold-spiked coating of silver particles through cold nanowelding. Nanoscale 2021;13:4530-6. [PMID: 33599657 DOI: 10.1039/d0nr08517k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
262 Ma LJ, Niu R, Wu X, Wu J, Zhou E, Xiao XP, Chen J. Quantitative evaluation of cellular internalization of polymeric nanoparticles within laryngeal cancer cells and immune cells for enhanced drug delivery. Nanoscale Res Lett 2021;16:40. [PMID: 33651256 DOI: 10.1186/s11671-021-03498-y] [Reference Citation Analysis]
263 Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. Chinese Chemical Letters 2021;32:1010-6. [DOI: 10.1016/j.cclet.2020.09.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
264 Gresing LJ, Radon P, Friedrich RP, Zahn D, Raasch M, Mosig AS, Dutz S, Alexiou C, Wiekhorst F, Hochhaus A, Clement JH. Negatively charged magnetic nanoparticles pass the blood-placenta barrier under continuous flow conditions in a time-dependent manner. Journal of Magnetism and Magnetic Materials 2021;521:167535. [DOI: 10.1016/j.jmmm.2020.167535] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
265 Costa da Silva M, Vieira Rocha C, Bañobre-lópez M, Gallo J. Stimulation and Suppression of the Innate Immune System through Nanotechnology. ACS Appl Nano Mater 2021;4:2303-16. [DOI: 10.1021/acsanm.0c03424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
266 Kasala D, Hong J, Yun CO. Overcoming the barriers to optimization of adenovirus delivery using biomaterials: Current status and future perspective. J Control Release 2021;332:285-300. [PMID: 33626335 DOI: 10.1016/j.jconrel.2021.02.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
267 Cheng F, Peng X, Meng G, Pu Y, Luo K, He B. Poly(ester-thioether) microspheres co-loaded with erlotinib and α-tocopheryl succinate for combinational therapy of non-small cell lung cancer. J Mater Chem B 2020;8:1728-38. [PMID: 32022097 DOI: 10.1039/c9tb02840d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
268 Wang ZH, Liu JM, Yang FE, Hu Y, Lv H, Wang S. Tailor-Made Cell-Based Biomimetic Nanoprobes for Fluorescence Imaging Guided Colorectal Cancer Chemo-immunotherapy. ACS Appl Bio Mater 2021;4:1920-31. [PMID: 35014461 DOI: 10.1021/acsabm.0c01553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
269 Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 2021;:1-25. [PMID: 33615140 DOI: 10.1007/s42247-021-00168-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 40.0] [Reference Citation Analysis]
270 Baruah P, Das A, Paul D, Chakrabarty S, Aguan K, Mitra S. Sulfonylurea Class of Antidiabetic Drugs Inhibit Acetylcholinesterase Activity: Unexplored Auxiliary Pharmacological Benefit toward Alzheimer's Disease. ACS Pharmacol Transl Sci 2021;4:193-205. [PMID: 33615172 DOI: 10.1021/acsptsci.0c00168] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
271 Gorbachevskii MV, Filatova SV, Filimonova AV, Kopitsyn DS, Panchenko AA, Vinokurov VA, Novikov AA. Detection of bacterial colonization by the spectral changes of surface-enhanced Raman reporters. Biochem Biophys Res Commun 2021;546:145-9. [PMID: 33582557 DOI: 10.1016/j.bbrc.2021.01.099] [Reference Citation Analysis]
272 Giram PS, Wang JT, Walters AA, Rade PP, Akhtar M, Han S, Faruqu FN, Abdel-Bar HM, Garnaik B, Al-Jamal KT. Green synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo. Biomater Sci 2021;9:795-806. [PMID: 33206082 DOI: 10.1039/d0bm01421d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
273 Raviraj V, Pham BTT, Kim BJ, Pham NTH, Kok LF, Painter N, Delic NC, Jones SK, Hawkett BS, Lyons JG. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00079-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
274 Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021;169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
275 Hasan M, Altaf M, Zafar A, Hassan SG, Ali Z, Mustafa G, Munawar T, Saif MS, Tariq T, Iqbal F, Khan MW, Mahmood A, Mahmood N, Shu X. Bioinspired synthesis of zinc oxide nano-flowers: A surface enhanced antibacterial and harvesting efficiency. Materials Science and Engineering: C 2021;119:111280. [DOI: 10.1016/j.msec.2020.111280] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 45.0] [Reference Citation Analysis]
276 Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021;26:748. [PMID: 33535493 DOI: 10.3390/molecules26030748] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 57.0] [Reference Citation Analysis]
277 Zhang C, He W, Liu C, Jiao D, Liu Z. Cutting‐edge advancements of nanomaterials for medi‐translatable noninvasive theranostic modalities. VIEW 2021;2:20200144. [DOI: 10.1002/viw.20200144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
278 Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo GS, Zhang X, Lou L, Grierson PM, Greco S, Ruzinova M, Laforest R, Dehdashti F, Lim KH, Liu Y. CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano 2021;15:1186-98. [PMID: 33406361 DOI: 10.1021/acsnano.0c08185] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
279 Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 50.0] [Reference Citation Analysis]
280 Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2020;20:915-62. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
281 Phan TTV, Phan DT, Cao XT, Huynh TC, Oh J. Roles of Chitosan in Green Synthesis of Metal Nanoparticles for Biomedical Applications. Nanomaterials (Basel) 2021;11:273. [PMID: 33494225 DOI: 10.3390/nano11020273] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
282 Thirumalai SKJ, Kuppusamy G, Radhakrishnan A, Karri VVSR. Nanotools in Customized Drug Delivery System. Nanopharmaceutical Advanced Delivery Systems 2021. [DOI: 10.1002/9781119711698.ch3] [Reference Citation Analysis]
283 Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res 2021;:1-23. [PMID: 33456721 DOI: 10.1007/s12274-020-3180-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
284 Sahai N, Gogoi M, Ahmad N. Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review. Curr Pathobiol Rep 2021;9:1-8. [DOI: 10.1007/s40139-020-00219-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
285 Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021;10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 26.0] [Reference Citation Analysis]
286 Karpavičius A, Coene A, Bender P, Leliaert J. Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine. Nanoscale Adv 2021;3:1633-45. [DOI: 10.1039/d0na00966k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
287 Santos-rebelo A, Mota AH, Fonseca L, Figueira M, Bastos A, Macedo J, Pinto JF, Rijo P, Molpeceres J, Reis CP. Natural Products and Nanopharmaceuticals. Nanopharmaceuticals: Principles and Applications Vol. 2 2021. [DOI: 10.1007/978-3-030-44921-6_4] [Reference Citation Analysis]
288 Jiang M, Lin Y, Fang X, Liu M, Ma L, Liu J, Chen M, Yang Y, Wang C. Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J Mater Chem B 2021;9:4895-905. [PMID: 34095942 DOI: 10.1039/d1tb00276g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
289 Yao W, Liu C, Wang N, Zhou H, Chen H, Qiao W. Triple-responsive targeted hybrid liposomes with high MRI performance for tumor diagnosis and therapy. Mater Chem Front 2021;5:6226-43. [DOI: 10.1039/d1qm00788b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
290 Li Y, Jiang L, Qiao Y, Wan D, Huang Y. Yolk–shell magnetic composite Fe3O4@Co/Zn-ZIF for MR imaging-guided chemotherapy of tumors in vivo. New J Chem 2021;45:4326-4334. [DOI: 10.1039/d0nj05723a] [Reference Citation Analysis]
291 Tavares Luiz M, Delello Di Filippo L, Carolina Alves R, Sousa Araújo VH, Lobato Duarte J, Maldonado Marchetti J, Chorilli M. The use of TPGS in drug delivery systems to overcome biological barriers. European Polymer Journal 2021;142:110129. [DOI: 10.1016/j.eurpolymj.2020.110129] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
292 Minocha S, Khadgawat P, Bhattacharjee A, Kumar A, Tripathi T, Pandey S, Tripathi D. Role of Microbial Nanotechnology in Diagnostics. Microbial Nanotechnology: Green Synthesis and Applications 2021. [DOI: 10.1007/978-981-16-1923-6_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
293 Yin H, Xing K, Zhang Y, Dissanayake DMAS, Lu Z, Zhao H, Zeng Z, Yun JH, Qi DC, Yin Z. Periodic nanostructures: preparation, properties and applications. Chem Soc Rev 2021;50:6423-82. [PMID: 34100047 DOI: 10.1039/d0cs01146k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
294 Gupta P, Gupta H, Poluri KM. Biomedical applications of polysaccharide-based nanocomposites from fungal origin. Microbial and Natural Macromolecules 2021. [DOI: 10.1016/b978-0-12-820084-1.00010-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
295 Singh S. Concluding Remarks and Future of Nanomedicines. Emerging Trends in Nanomedicine 2021. [DOI: 10.1007/978-981-15-9920-0_8] [Reference Citation Analysis]
296 Behera A, Pan J, Behera A. Temperature nanosensors for smart manufacturing. Nanosensors for Smart Manufacturing 2021. [DOI: 10.1016/b978-0-12-823358-0.00013-7] [Reference Citation Analysis]
297 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate Modified Non-Metallic Nanomaterials and Their Application Against Infectious Diseases. Comprehensive Glycoscience 2021. [DOI: 10.1016/b978-0-12-819475-1.00096-1] [Reference Citation Analysis]
298 de Julián Fernández C, Pineider F. Magneto-Plasmonic Nanoparticles. New Trends in Nanoparticle Magnetism 2021. [DOI: 10.1007/978-3-030-60473-8_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
299 Vergallo C, Hafeez MN, Iannotta D, Santos HA, D'Avanzo N, Dini L, Cilurzo F, Fresta M, Di Marzio L, Christian C. Conventional Nanosized Drug Delivery Systems for Cancer Applications. Adv Exp Med Biol 2021;1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
300 Saleh HM, Hassan AI. Nanomaterials fabrication: bacteria-assisted synthesis. Handbook of Greener Synthesis of Nanomaterials and Compounds 2021. [DOI: 10.1016/b978-0-12-821938-6.00021-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
301 Traub H. Imaging of metal-based nanoparticles in tissue and cell samples by laser ablation inductively coupled plasma mass spectrometry. Analysis and Characterisation of Metal-Based Nanomaterials 2021. [DOI: 10.1016/bs.coac.2021.01.006] [Reference Citation Analysis]
302 Escudero A, Carrillo-carrión C, Castillejos MC, Romero-ben E, Rosales-barrios C, Khiar N. Photodynamic therapy: photosensitizers and nanostructures. Mater Chem Front 2021;5:3788-812. [DOI: 10.1039/d0qm00922a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 28.0] [Reference Citation Analysis]
303 González-alonso D, Espeso JI, Gavilán H, Zeng LJ, Fernández-díaz MT, Subías G, de Pedro I, Fernández JR, Bender P, Barquín LF, Johansson C. Identifying the presence of magnetite in an ensemble of iron-oxide nanoparticles: a comparative neutron diffraction study between bulk and nanoscale. Nanoscale Adv 2021;3:3491-6. [DOI: 10.1039/d0na00830c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
304 Dehshahri A, Kumar A, Madamsetty VS, Uzieliene I, Tavakol S, Azedi F, Fekri HS, Zarrabi A, Mohammadinejad R, Thakur VK. New Horizons in Hydrogels for Methotrexate Delivery. Gels 2020;7:2. [PMID: 33396629 DOI: 10.3390/gels7010002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
305 Hao H, Chen Y, Wu M. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res 2021;14:2491-511. [DOI: 10.1007/s12274-020-3265-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
306 Xia C, Pedrazo-Tardajos A, Wang D, Meeldijk JD, Gerritsen HC, Bals S, de Mello Donega C. Seeded Growth Combined with Cation Exchange for the Synthesis of Anisotropic Cu2-x S/ZnS, Cu2-x S, and CuInS2 Nanorods. Chem Mater 2021;33:102-16. [PMID: 33456135 DOI: 10.1021/acs.chemmater.0c02817] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
307 Mikhnavets LA, Tkach AN, Fiadosenka US, Radziuk DV. Effect of ultrasound on nonsteroidal anti-inflammatory drugs complexed with copper, iron, zinc and graphene oxides. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki 2020;18:69-76. [DOI: 10.35596/1729-7648-2020-18-8-69-76] [Reference Citation Analysis]
308 Aranda P, Wicklein B, Ruiz-garcia C, Martín-sampedro R, Darder M, del Real G, Ruiz-hitzky E. Research and Patents on Coronavirus and COVID-19: A Review. NANOTEC 2020;14:328-50. [DOI: 10.2174/1872210514666201021145735] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
309 González-Alonso D, González J, Gavilán H, Fock J, Zeng L, Witte K, Bender P, Barquín LF, Johansson C. Revealing a masked Verwey transition in nanoparticles of coexisting Fe-oxide phases. RSC Adv 2020;11:390-6. [PMID: 35423016 DOI: 10.1039/d0ra09226f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
310 Lin G, Cortez-Jugo C, Ju Y, Besford QA, Ryan TM, Pan S, Richardson JJ, Caruso F. Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules 2021;22:612-9. [PMID: 33337863 DOI: 10.1021/acs.biomac.0c01463] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
311 Lv X, Guo Q, Xu L, Li D. Study on the Chemotherapeutic Effect and Mechanism of Doxorubicin Hydrochloride on Drug-Resistant Gastric Cancer Cell Lines Using Metal-Organic Framework Fluorescent Nanoparticles as Carriers. Journal of Nanomaterials 2020;2020:1-14. [DOI: 10.1155/2020/6681749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
312 Abbasi BA, Iqbal J, Khan Z, Ahmad R, Uddin S, Shahbaz A, Zahra SA, Shaukat M, Kiran F, Kanwal S, Mahmood T. Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc Res Tech 2021;84:192-201. [PMID: 33332709 DOI: 10.1002/jemt.23577] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
313 Lang T, Zheng Z, Huang X, Liu Y, Zhai Y, Zhang P, Li Y, Yin Q. Ternary Regulation of Tumor Microenvironment by Heparanase‐Sensitive Micelle‐Loaded Monocytes Improves Chemo‐Immunotherapy of Metastatic Breast Cancer. Adv Funct Mater 2021;31:2007402. [DOI: 10.1002/adfm.202007402] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
314 Zhang Y, Han X, Nie G. Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nat Protoc 2021;16:405-30. [PMID: 33311713 DOI: 10.1038/s41596-020-00421-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
315 Kersting M, Olejnik M, Rosenkranz N, Loza K, Breisch M, Rostek A, Westphal G, Bünger J, Ziegler N, Ludwig A, Köller M, Sengstock C, Epple M. Subtoxic cell responses to silica particles with different size and shape. Sci Rep 2020;10:21591. [PMID: 33299057 DOI: 10.1038/s41598-020-78550-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
316 Gräfe C, Müller EK, Gresing L, Weidner A, Radon P, Friedrich RP, Alexiou C, Wiekhorst F, Dutz S, Clement JH. Magnetic hybrid materials interact with biological matrices. Physical Sciences Reviews 2020;0. [DOI: 10.1515/psr-2019-0114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
317 Ortiz-castillo JE, Gallo-villanueva RC, Madou MJ, Perez-gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coordination Chemistry Reviews 2020;425:213489. [DOI: 10.1016/j.ccr.2020.213489] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
318 Lei P, Feng J, Zhang H. Emerging biomaterials: Taking full advantage of the intrinsic properties of rare earth elements. Nano Today 2020;35:100952. [DOI: 10.1016/j.nantod.2020.100952] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
319 Thalhauser S, Breunig M. Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci 2020;155:105520. [PMID: 32822809 DOI: 10.1016/j.ejps.2020.105520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
320 Ouyang J, Tang Z, Farokhzad N, Kong N, Kim NY, Feng C, Blake S, Xiao Y, Liu C, Xie T, Tao W. Ultrasound mediated therapy: Recent progress and challenges in nanoscience. Nano Today 2020;35:100949. [DOI: 10.1016/j.nantod.2020.100949] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 33.0] [Reference Citation Analysis]
321 Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020;35:100972. [DOI: 10.1016/j.nantod.2020.100972] [Cited by in Crossref: 63] [Cited by in F6Publishing: 73] [Article Influence: 31.5] [Reference Citation Analysis]
322 De Alvarenga G, Hryniewicz BM, Jasper I, Silva RJ, Klobukoski V, Costa FS, Cervantes TN, Amaral CD, Schneider JT, Bach-toledo L, Peralta-zamora P, Valerio TL, Soares F, Silva BJ, Vidotti M. Recent trends of micro and nanostructured conducting polymers in health and environmental applications. Journal of Electroanalytical Chemistry 2020;879:114754. [DOI: 10.1016/j.jelechem.2020.114754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
323 Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020;15:9447-67. [PMID: 33268987 DOI: 10.2147/IJN.S274289] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
324 Zhao Y, Ye F, Brismar TB, Li X, He R, Heuchel R, El-Sayed R, Feliu N, Zheng W, Oerther S, Dutta J, Parak WJ, Muhammed M, Hassan M. Multimodal Imaging of Pancreatic Ductal Adenocarcinoma Using Multifunctional Nanoparticles as Contrast Agents. ACS Appl Mater Interfaces 2020. [PMID: 33201660 DOI: 10.1021/acsami.0c15430] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
325 Jesus S, Bernardi N, da Silva J, Colaço M, Panão Costa J, Fonte P, Borges O. Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles-Effects of Polymer Molecular Weight, Hydrolysis, and Blends. Chem Res Toxicol 2020;33:2819-33. [PMID: 33050694 DOI: 10.1021/acs.chemrestox.0c00208] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
326 Zhang J, Zhang Z, Jiang M, Li S, Yuan H, Sun H, Yang F, Liang H. Developing a Novel Gold(III) Agent to Treat Glioma Based on the Unique Properties of Apoferritin Nanoparticles: Inducing Lethal Autophagy and Apoptosis. J Med Chem 2020;63:13695-708. [PMID: 33185442 DOI: 10.1021/acs.jmedchem.0c01257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
327 Bucci R, Bossi A, Erba E, Vaghi F, Saha A, Yuran S, Maggioni D, Gelmi ML, Reches M, Pellegrino S. Nucleobase morpholino β amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Sci Rep 2020;10:19331. [PMID: 33168883 DOI: 10.1038/s41598-020-76297-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
328 Wang L, Zhang Y, Li Y, Chen J, Lin W. Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res 2021;14:920-33. [DOI: 10.1007/s12274-020-3067-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
329 Monteiro PF, Travanut A, Conte C, Alexander C. Reduction-responsive polymers for drug delivery in cancer therapy-Is there anything new to discover? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1678. [PMID: 33155421 DOI: 10.1002/wnan.1678] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
330 Krasia-Christoforou T, Socoliuc V, Knudsen KD, Tombácz E, Turcu R, Vékás L. From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior. Nanomaterials (Basel) 2020;10:E2178. [PMID: 33142887 DOI: 10.3390/nano10112178] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
331 Zhang H, Ba S, Lee JY, Xie J, Loh T, Li T. Cancer Biomarker-Triggered Disintegrable DNA Nanogels for Intelligent Drug Delivery. Nano Lett 2020;20:8399-407. [DOI: 10.1021/acs.nanolett.0c03671] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
332 Sokolova V, Mekky G, van der Meer SB, Seeds MC, Atala AJ, Epple M. Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020;10:18033. [PMID: 33093563 DOI: 10.1038/s41598-020-75125-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
333 Pershina AG, Brikunova OY, Demin AM, Abakumov MA, Vaneev AN, Naumenko VA, Erofeev AS, Gorelkin PV, Nizamov TR, Muslimov AR, Timin AS, Malkeyeva D, Kiseleva E, Vtorushin SV, Larionova IV, Gereng EA, Minin AS, Murzakaev AM, Krasnov VP, Majouga AG, Ogorodova LM. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine 2021;32:102317. [PMID: 33096245 DOI: 10.1016/j.nano.2020.102317] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
334 Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A3 Adenosine Receptor. ChemMedChem 2020;15:1909-20. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
335 Tang Q, Rossner C, Vana P, Müller M. Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules 2020;21:5008-20. [PMID: 33076657 DOI: 10.1021/acs.biomac.0c01184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
336 Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem 2021;133:2800-28. [DOI: 10.1002/ange.201916380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
337 Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed 2021;60:2768-94. [DOI: 10.1002/anie.201916380] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 38.0] [Reference Citation Analysis]
338 Colone M, Calcabrini A, Stringaro A. Drug Delivery Systems of Natural Products in Oncology. Molecules 2020;25:E4560. [PMID: 33036240 DOI: 10.3390/molecules25194560] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
339 Bobde Y, Biswas S, Ghosh B. Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. European Polymer Journal 2020;139:110018. [DOI: 10.1016/j.eurpolymj.2020.110018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
340 Sousa-Castillo A, Couceiro JR, Tomás-Gamasa M, Mariño-López A, López F, Baaziz W, Ersen O, Comesaña-Hermo M, Mascareñas JL, Correa-Duarte MA. Remote Activation of Hollow Nanoreactors for Heterogeneous Photocatalysis in Biorelevant Media. Nano Lett 2020;20:7068-76. [PMID: 32991175 DOI: 10.1021/acs.nanolett.0c02180] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
341 Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Adv Mater 2020;32:e2002054. [PMID: 32856350 DOI: 10.1002/adma.202002054] [Cited by in Crossref: 176] [Cited by in F6Publishing: 194] [Article Influence: 88.0] [Reference Citation Analysis]
342 Wijetunga I, McVeigh LE, Charalambous A, Antanaviciute A, Carr IM, Nair A, Prasad KR, Ingram N, Coletta PL. Translating Biomarkers of Cholangiocarcinoma for Theranosis: A Systematic Review. Cancers (Basel) 2020;12:E2817. [PMID: 33007872 DOI: 10.3390/cancers12102817] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
343 Lu T, Ling C, Hu M, Meng X, Deng Y, An H, Li L, Hu Y, Wang H, Song G, Guo S. Effect of Nano-Titanium Dioxide on Blood-Testis Barrier and MAPK Signaling Pathway in Male Mice. Biol Trace Elem Res 2021;199:2961-71. [PMID: 32990870 DOI: 10.1007/s12011-020-02404-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
344 Rauwel E, Al-Arag S, Salehi H, Amorim CO, Cuisinier F, Guha M, Rosario MS, Rauwel P. Assessing Cobalt Metal Nanoparticles Uptake by Cancer Cells Using Live Raman Spectroscopy. Int J Nanomedicine 2020;15:7051-62. [PMID: 33061367 DOI: 10.2147/IJN.S258060] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
345 Park JH, Jackman JA, Ferhan AR, Belling JN, Mokrzecka N, Weiss PS, Cho NJ. Cloaking Silica Nanoparticles with Functional Protein Coatings for Reduced Complement Activation and Cellular Uptake. ACS Nano 2020;14:11950-61. [PMID: 32845615 DOI: 10.1021/acsnano.0c05097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
346 Tao H, Guo J, Ma Y, Zhao Y, Jin T, Gu L, Dou Y, Liu J, Hu H, Xiong X, Zhang J. Luminescence Imaging of Acute Liver Injury by Biodegradable and Biocompatible Nanoprobes. ACS Nano 2020;14:11083-99. [PMID: 32790342 DOI: 10.1021/acsnano.0c00539] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
347 Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS Appl Bio Mater 2020;3:6571-97. [DOI: 10.1021/acsabm.0c00953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
348 Baranwal M, Magner A, Saldinger J, Turali-emre ES, Elvati P, Kozarekar S, Vanepps JS, Kotov NA, Violi A, Hero AO. Struct2Graph: A graph attention network for structure based predictions of protein-protein interactions.. [DOI: 10.1101/2020.09.17.301200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
349 Montizaan D, Yang K, Reker-Smit C, Salvati A. Comparison of the uptake mechanisms of zwitterionic and negatively charged liposomes by HeLa cells. Nanomedicine 2020;30:102300. [PMID: 32931929 DOI: 10.1016/j.nano.2020.102300] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
350 Liu X, Zhou Y, Xie W, Liu S, Zhao Q, Huang W. Construction of Smart Manganese Dioxide‐Based All‐in‐One Nanoplatform for Cancer Diagnosis and Therapy. Small Methods 2020;4:2000566. [DOI: 10.1002/smtd.202000566] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
351 Sobol NB, Korsen JA, Younes A, Edwards KJ, Lewis JS. ImmunoPET Imaging of Pancreatic Tumors with 89Zr-Labeled Gold Nanoparticle-Antibody Conjugates. Mol Imaging Biol 2021;23:84-94. [PMID: 32909244 DOI: 10.1007/s11307-020-01535-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
352 Li Z, Luo G, Hu W, Hua J, Geng S, Chu PK, Zhang J, Wang H, Yu X. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem 2020;132:20749-57. [DOI: 10.1002/ange.202008379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
353 Li Z, Luo G, Hu WP, Hua JL, Geng S, Chu PK, Zhang J, Wang H, Yu XF. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew Chem Int Ed Engl 2020;59:20568-76. [PMID: 32666703 DOI: 10.1002/anie.202008379] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
354 Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. Applied Materials Today 2020;20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
355 Sanadgol N, Wackerlig J. Developments of Smart Drug-Delivery Systems Based on Magnetic Molecularly Imprinted Polymers for Targeted Cancer Therapy: A Short Review. Pharmaceutics 2020;12:E831. [PMID: 32878127 DOI: 10.3390/pharmaceutics12090831] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
356 S. R, I. FB, I. K. T, N. SK, S. H. Silver decorated green nanocolloids as potent antibacterial and antibiofilm agent against antibiotic resistant organisms isolated from tannery effluent. Inorganic and Nano-Metal Chemistry 2021;51:823-31. [DOI: 10.1080/24701556.2020.1811326] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
357 Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. Int J Nanomedicine 2020;15:5719-43. [PMID: 32821098 DOI: 10.2147/IJN.S254774] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
358 Eleamen Oliveira E, Barendji M, Vauthier C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes? Pharm Res 2020;37. [DOI: 10.1007/s11095-020-02869-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
359 Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. Journal of Photochemistry and Photobiology B: Biology 2020;209:111944. [DOI: 10.1016/j.jphotobiol.2020.111944] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
360 Rositch AF, Loffredo C, Bourlon MT, Pearlman PC, Adebamowo C. Creative Approaches to Global Cancer Research and Control. JCO Glob Oncol 2020;6:4-7. [PMID: 32716656 DOI: 10.1200/GO.20.00237] [Reference Citation Analysis]
361 Vazquez-munoz R, Lopez-ribot JL. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020;11:15. [DOI: 10.3390/challe11020015] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 21.5] [Reference Citation Analysis]
362 Hassan G, Forsman N, Wan X, Keurulainen L, Bimbo LM, Stehl S, van Charante F, Chrubasik M, Prakash AS, Johansson LS, Mullen DC, Johnston BF, Zimmermann R, Werner C, Yli-Kauhaluoma J, Coenye T, Saris PEJ, Österberg M, Moreira VM. Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model. ACS Appl Bio Mater 2020;3:4095-108. [PMID: 35025484 DOI: 10.1021/acsabm.0c00203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
363 Wang J, Dong J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors (Basel) 2020;20:E3981. [PMID: 32709072 DOI: 10.3390/s20143981] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
364 Marichal L, Degrouard J, Gatin A, Raffray N, Aude JC, Boulard Y, Combet S, Cousin F, Hourdez S, Mary J, Renault JP, Pin S. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions. Langmuir 2020;36:8218-30. [PMID: 32585107 DOI: 10.1021/acs.langmuir.0c01334] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
365 Bony BA, Miller HA, Tarudji AW, Gee CC, Sarella A, Nichols MG, Kievit FM. Ultrasmall Mixed Eu-Gd Oxide Nanoparticles for Multimodal Fluorescence and Magnetic Resonance Imaging of Passive Accumulation and Retention in TBI. ACS Omega 2020;5:16220-7. [PMID: 32656444 DOI: 10.1021/acsomega.0c01890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
366 Pyne A, Nandi S, Ghosh M, Roy T, Dhara S, Sarkar N. Denaturant-Mediated Modulation of the Formation and Drug Encapsulation Responses of Gold Nanoparticles. Langmuir 2020;36:7634-47. [PMID: 32525679 DOI: 10.1021/acs.langmuir.0c01293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
367 Donahue ND, Francek ER, Kiyotake E, Thomas EE, Yang W, Wang L, Detamore MS, Wilhelm S. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Anal Bioanal Chem 2020;412:5205-16. [DOI: 10.1007/s00216-020-02783-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
368 Zhang Y, Liu AT, Cornejo YR, Van Haute D, Berlin JM. A Systematic comparison of in vitro cell uptake and in vivo biodistribution for three classes of gold nanoparticles with saturated PEG coatings. PLoS One 2020;15:e0234916. [PMID: 32614882 DOI: 10.1371/journal.pone.0234916] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
369 Luo M, Yu Y, Jin Z, Dong H, Li Y. Multi-scale simulations on biocompatibility of boron nitride nanomaterials with different curvatures: A comparative study. Applied Surface Science 2020;517:146181. [DOI: 10.1016/j.apsusc.2020.146181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
370 Cui N, Wang F, Ding H. Graphene-Based Hall Effect Biosensor for Improved Specificity and Sensitivity of Label-Free DNA Detection. NANO 2020;15:2050088. [DOI: 10.1142/s1793292020500885] [Reference Citation Analysis]
371 Qiao R, Fu C, Li Y, Qi X, Ni D, Nandakumar A, Siddiqui G, Wang H, Zhang Z, Wu T, Zhong J, Tang SY, Pan S, Zhang C, Whittaker MR, Engle JW, Creek DJ, Caruso F, Ke PC, Cai W, Whittaker AK, Davis TP. Sulfoxide-Containing Polymer-Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Adv Sci (Weinh) 2020;7:2000406. [PMID: 32670765 DOI: 10.1002/advs.202000406] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
372 Acebes-Fernández V, Landeria-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. Nanomaterials (Basel) 2020;10:E1274. [PMID: 32610601 DOI: 10.3390/nano10071274] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
373 Dirisala A, Uchida S, Toh K, Li J, Osawa S, Tockary TA, Liu X, Abbasi S, Hayashi K, Mochida Y, Fukushima S, Kinoh H, Osada K, Kataoka K. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci Adv 2020;6:eabb8133. [PMID: 32637625 DOI: 10.1126/sciadv.abb8133] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
374 Liu B, Wu R, Gong S, Xiao H, Thayumanavan S. In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angew Chem 2020;132:15247-52. [DOI: 10.1002/ange.202004017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
375 Liu B, Wu R, Gong S, Xiao H, Thayumanavan S. In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angew Chem Int Ed Engl 2020;59:15135-40. [PMID: 32410309 DOI: 10.1002/anie.202004017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
376 Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020;157:142-60. [PMID: 32553783 DOI: 10.1016/j.addr.2020.06.005] [Cited by in Crossref: 191] [Cited by in F6Publishing: 209] [Article Influence: 95.5] [Reference Citation Analysis]
377 Prasad R, Jain NK, Yadav AS, Chauhan DS, Devrukhkar J, Kumawat MK, Shinde S, Gorain M, Thakor AS, Kundu GC, Conde J, Srivastava R. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy. Commun Biol 2020;3:284. [PMID: 32504032 DOI: 10.1038/s42003-020-1016-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
378 Jiang YY, Wang ZQ, Chen JT, Li J, Zhu YJ, Liu LJ, Guo XX, Hu YF, He SS, Wu J, Chen F, Sham TK. Tracking the interaction of drug molecules with individual mesoporous amorphous calcium phosphate/ATP nanocomposites - an X-ray spectromicroscopy study. Phys Chem Chem Phys 2020;22:13108-17. [PMID: 32490501 DOI: 10.1039/d0cp00797h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
379 Adibnia V, Mirbagheri M, Salimi S, De Crescenzo G, Banquy X. Nonspecific interactions in biomedical applications. Current Opinion in Colloid & Interface Science 2020;47:70-83. [DOI: 10.1016/j.cocis.2019.12.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
380 Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release 2020;322:64-80. [DOI: 10.1016/j.jconrel.2020.03.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
381 Samson AAS, Hong S, Purushothaman B, Lee J, Song JM. Transparent tumor microenvironment: Are liposomal nanoparticles sufficient for drug delivery to hypoxic regions and clonogenic cells? Applied Materials Today 2020;19:100561. [DOI: 10.1016/j.apmt.2020.100561] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
382 An H, Fei Y, Yan T, Lu C, Wang M, Ma T, Zhao B, Nie J, Tseng H, Li L, Wang H. Gram‐Positive Bacteria Cell Wall Driven Self‐Disassembled Nanovesicles against Methicillin‐Resistant Staphylococcus Aureus. Adv Therap 2020;3:1900217. [DOI: 10.1002/adtp.201900217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
383 Al-Ansari DE, Mohamed NA, Marei I, Zekri A, Kameno Y, Davies RP, Lickiss PD, Rahman MM, Abou-Saleh H. Internalization of Metal-Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy. Nanomaterials (Basel) 2020;10:E1028. [PMID: 32471187 DOI: 10.3390/nano10061028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
384 De Caro L, Scattarella F, Altamura D, Arciniegas MP, Siliqi D, Manna L, Giannini C. X-ray ptychographic mode of self-assembled CdSe/CdS octapod-shaped nanocrystals in thick polymers. J Appl Crystallogr 2020;53:741-7. [PMID: 32684889 DOI: 10.1107/S160057672000583X] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
385 Mosquera J, García I, Henriksen-Lacey M, Martínez-Calvo M, Dhanjani M, Mascareñas JL, Liz-Marzán LM. Reversible Control of Protein Corona Formation on Gold Nanoparticles Using Host-Guest Interactions. ACS Nano 2020;14:5382-91. [PMID: 32105057 DOI: 10.1021/acsnano.9b08752] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
386 Osterrieth JWM, Fairen-Jimenez D. Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol J 2021;16:e2000005. [PMID: 32330358 DOI: 10.1002/biot.202000005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 50] [Article Influence: 22.0] [Reference Citation Analysis]
387 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 22.0] [Reference Citation Analysis]
388 Wu L, Rodríguez-Rodríguez C, Cun D, Yang M, Saatchi K, Häfeli UO. Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles. Eur J Pharm Biopharm 2020;152:108-15. [PMID: 32437751 DOI: 10.1016/j.ejpb.2020.05.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
389 Li C, Feng K, Xie N, Zhao W, Ye L, Chen B, Tung C, Wu L. Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Appl Nano Mater 2020;3:5070-8. [DOI: 10.1021/acsanm.0c00311] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
390 Antarnusa G, Suharyadi E. A synthesis of polyethylene glycol (PEG)-coated magnetite Fe 3 O 4 nanoparticles and their characteristics for enhancement of biosensor. Mater Res Express 2020;7:056103. [DOI: 10.1088/2053-1591/ab8bef] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
391 Zhang G, Oh JK. Reactive Multidentate Block Copolymer Stabilization to Carbon Nanotubes for Thermoreversible Cross-Linked Network Gels. ACS Appl Polym Mater 2020;2:2319-26. [DOI: 10.1021/acsapm.0c00278] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
392 Feng L, Wang H, Xue X. Recent Progress of Nanomedicine in the Treatment of Central Nervous System Diseases. Adv Therap 2020;3:1900159. [DOI: 10.1002/adtp.201900159] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
393 Zhang S, Pei X, Gao H, Chen S, Wang J. Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters 2020;31:1060-70. [DOI: 10.1016/j.cclet.2019.11.036] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 31.5] [Reference Citation Analysis]
394 Debasu M, Oliveira H, Rocha J, Carlos L. Colloidal (Gd0.98Nd0.02)2O3 nanothermometers operating in a cell culture medium within the first and second biological windows. Journal of Rare Earths 2020;38:483-91. [DOI: 10.1016/j.jre.2019.12.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
395 Billing AM, Knudsen KB, Chetwynd AJ, Ellis LA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS Nano 2020;14:4096-110. [PMID: 32167280 DOI: 10.1021/acsnano.9b08818] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
396 Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020;8:323. [PMID: 32391340 DOI: 10.3389/fbioe.2020.00323] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
397 Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small 2020;16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 22.5] [Reference Citation Analysis]
398 Zhang Y, Wu JLY, Lazarovits J, Chan WCW. An Analysis of the Binding Function and Structural Organization of the Protein Corona. J Am Chem Soc 2020;142:8827-36. [DOI: 10.1021/jacs.0c01853] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 25.5] [Reference Citation Analysis]
399 Liu N, Tang M, Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere 2020;245:125624. [DOI: 10.1016/j.chemosphere.2019.125624] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 30.0] [Reference Citation Analysis]
400 Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials (Basel) 2020;10:E656. [PMID: 32244653 DOI: 10.3390/nano10040656] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 47.5] [Reference Citation Analysis]
401 Carvalho IC, Mansur HS, Mansur AA, Carvalho SM, de Oliveira LCA, de Fatima Leite M. Luminescent switch of polysaccharide-peptide-quantum dot nanostructures for targeted-intracellular imaging of glioblastoma cells. Journal of Molecular Liquids 2020;304:112759. [DOI: 10.1016/j.molliq.2020.112759] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
402 Lammers T, Ferrari M. The success of nanomedicine. Nano Today 2020;31:100853. [DOI: 10.1016/j.nantod.2020.100853] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 21.5] [Reference Citation Analysis]
403 Montané X, Bajek A, Roszkowski K, Montornés JM, Giamberini M, Roszkowski S, Kowalczyk O, Garcia-Valls R, Tylkowski B. Encapsulation for Cancer Therapy. Molecules 2020;25:E1605. [PMID: 32244513 DOI: 10.3390/molecules25071605] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
404 Ambrosone A, Matteis LD, Serrano-sevilla I, Tortiglione C, De La Fuente JM. Glycogen Synthase Kinase 3β Inhibitor Delivered by Chitosan Nanocapsules Promotes Safe, Fast, and Efficient Activation of Wnt Signaling In Vivo. ACS Biomater Sci Eng 2020;6:2893-903. [DOI: 10.1021/acsbiomaterials.9b01820] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
405 Sun X, Cui Z. Virus‐Like Particles as Theranostic Platforms. Adv Therap 2020;3:1900194. [DOI: 10.1002/adtp.201900194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
406 Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, Ramirez JT. Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. Int J Environ Res Public Health 2020;17:E2078. [PMID: 32245065 DOI: 10.3390/ijerph17062078] [Cited by in Crossref: 77] [Cited by in F6Publishing: 86] [Article Influence: 38.5] [Reference Citation Analysis]
407 He H, Xiao S, Xu G, Wang B, Zou Z, Qin X, Yu C, Zhang J. The NADPH oxidase 4 protects vascular endothelial cells from copper oxide nanoparticles-induced oxidative stress and cell death. Life Sci 2020;252:117571. [PMID: 32201278 DOI: 10.1016/j.lfs.2020.117571] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
408 Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 2020;8:36. [PMID: 32169105 DOI: 10.1186/s40168-020-00821-0] [Cited by in Crossref: 126] [Cited by in F6Publishing: 140] [Article Influence: 63.0] [Reference Citation Analysis]
409 Hirschle P, Hirschle C, Böll K, Döblinger M, Höhn M, Tuffnell JM, Ashling CW, Keen DA, Bennett TD, Rädler JO, Wagner E, Peller M, Lächelt U, Wuttke S. Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility. Chem Mater 2020;32:2253-63. [DOI: 10.1021/acs.chemmater.9b03662] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
410 Wang T, Nanda SS, Papaefthymiou GC, Yi DK. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior. ChemBioChem 2020;21:1254-64. [DOI: 10.1002/cbic.201900686] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
411 Wu S, Zhang H, Wang J, Li X, Gao X, Fang Z, Qu J, Wu Y, Ren Y, Rui W, Zhang J, Yao Z. Iron Sucrose as MRI Contrast Agent in Ischemic Stroke Model. J Magn Reson Imaging 2020;52:836-49. [PMID: 32112623 DOI: 10.1002/jmri.27109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
412 Nienhaus K, Wang H, Nienhaus G. Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Materials Today Advances 2020;5:100036. [DOI: 10.1016/j.mtadv.2019.100036] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
413 Dai C, Hu R, Wang C, Liu Z, Zhang S, Yu L, Chen Y, Zhang B. Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horiz 2020;5:857-68. [PMID: 32100765 DOI: 10.1039/c9nh00707e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
414 Ploetz E, Engelke H, Lächelt U, Wuttke S. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Adv Funct Mater 2020;30:1909062. [DOI: 10.1002/adfm.201909062] [Cited by in Crossref: 96] [Cited by in F6Publishing: 99] [Article Influence: 48.0] [Reference Citation Analysis]
415 Nelson BC, Minelli C, Doak SH, Roesslein M. Emerging Standards and Analytical Science for Nanoenabled Medical Products. Annu Rev Anal Chem (Palo Alto Calif) 2020;13:431-52. [PMID: 32084321 DOI: 10.1146/annurev-anchem-091619-102216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
416 Morillas-Becerril L, Peta E, Gabrielli L, Russo V, Lubian E, Nodari L, Ferlin MG, Scrimin P, Palù G, Barzon L, Castagliuolo I, Mancin F, Trevisan M. Multifunctional, CD44v6-Targeted ORMOSIL Nanoparticles Enhance Drugs Toxicity in Cancer Cells. Nanomaterials (Basel) 2020;10:E298. [PMID: 32050605 DOI: 10.3390/nano10020298] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
417 Shen H, Huang X, Min J, Le S, Wang Q, Wang X, Dogan AA, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Curr Top Med Chem 2019;19:2507-23. [PMID: 31775591 DOI: 10.2174/1568026619666191024170212] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
418 Liu Y, Sun D, Fan Q, Ma Q, Dong Z, Tao W, Tao H, Liu Z, Wang C. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res 2020;13:564-9. [DOI: 10.1007/s12274-020-2655-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
419 Raval N, Kumawat A, Kalyane D, Kalia K, Tekade RK. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. Drug Discov Today. 2020;25:862-878. [PMID: 31981791 DOI: 10.1016/j.drudis.2020.01.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
420 Zhao M, Wan S, Peng X, Zhang B, Pan Q, Li S, He B, Pu Y. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. J Mater Chem B 2020;8:1235-44. [PMID: 31957757 DOI: 10.1039/c9tb02400j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
421 Xia Y, Xu C, Zhang X, Gao J, Wu Y, Li C, Wang Z. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging. Colloids Surf B Biointerfaces 2020;188:110789. [PMID: 31955018 DOI: 10.1016/j.colsurfb.2020.110789] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
422 Yakovliev A, Ohulchanskyy TY, Ziniuk R, Dias T, Wang X, Xu H, Chen G, Qu J, Gomes ASL. Noninvasive Temperature Measurement in Dental Materials Using Nd 3+ , Yb 3+ Doped Nanoparticles Emitting in the Near Infrared Region. Part Part Syst Charact 2020;37:1900445. [DOI: 10.1002/ppsc.201900445] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
423 Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J Mater Chem B 2020;8:655-65. [PMID: 31904073 DOI: 10.1039/c9tb02284h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
424 Shi C, Li M, Zhang Z, Yao Q, Shao K, Xu F, Xu N, Li H, Fan J, Sun W, Du J, Long S, Wang J, Peng X. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020;233:119755. [PMID: 31927233 DOI: 10.1016/j.biomaterials.2020.119755] [Cited by in Crossref: 85] [Cited by in F6Publishing: 93] [Article Influence: 42.5] [Reference Citation Analysis]
425 Socoliuc V, Peddis D, Petrenko VI, Avdeev MV, Susan-resiga D, Szabó T, Turcu R, Tombácz E, Vékás L. Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective. Magnetochemistry 2020;6:2. [DOI: 10.3390/magnetochemistry6010002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 21.0] [Reference Citation Analysis]
426 Matai I, Garg D, Gupta U, Sachdev A. Nanopharmacology Intervention in Human Pathological Diseases. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00007-2] [Reference Citation Analysis]
427 Feliu N, Parak WJ. Colloids for nanobiotechnology: An introduction. Frontiers of Nanoscience 2020. [DOI: 10.1016/b978-0-08-102828-5.00001-2] [Reference Citation Analysis]
428 Pulakkat S, Patravale VB. Marine Resources for Biosynthesis and Surface Modification of Anticancer Nanoparticles. Green Synthesis of Nanoparticles: Applications and Prospects 2020. [DOI: 10.1007/978-981-15-5179-6_7] [Reference Citation Analysis]
429 Das S, Das MK, Deka T, Singha LR, Das P. Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
430 Zhu S, Wen L, Xiao Y, Lang M. Poly( ε -caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polym Chem 2020;11:5173-80. [DOI: 10.1039/d0py00865f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
431 Escudero A, Carregal-romero S, Miguel-coello AB, Ruíz-cabello J. Engineered polymeric nanovehicles for drug delivery. Frontiers of Nanoscience 2020. [DOI: 10.1016/b978-0-08-102828-5.00008-5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
432 Khare V, Sonkaria S. Biomimicry as a design tool for nanocontainers: The “shape of things to come” in drug delivery. Smart Nanocontainers 2020. [DOI: 10.1016/b978-0-12-816770-0.00020-4] [Reference Citation Analysis]
433 Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X, Mei L. Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration. Adv Sci (Weinh) 2020;8:2002589. [PMID: 33437580 DOI: 10.1002/advs.202002589] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 30.0] [Reference Citation Analysis]
434 Xu F, Li X, Chen H, Jian M, Sun Y, Liu G, Ma L, Wang Z. Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy. J Mater Chem B 2020;8:10136-45. [DOI: 10.1039/d0tb02136a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
435 Shaw Z, Patel A, Butcher T, Banerjee T, Bean R, Santra S. Pseudo-branched polyester copolymer: an efficient drug delivery system to treat cancer. Biomater Sci 2020;8:1592-603. [DOI: 10.1039/c9bm01475f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
436 Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-43855-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
437 Ahamad N, Bhardwaj P, Bhatia E, Banerjee R. Clinical Toxicity of Nanomedicines. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_20] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
438 Kumar D, Sharma-walia N, Kapoor S, Tandon S. Antibody-Targeted Nanoparticles for Cancer Treatment. NanoBioMedicine 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
439 Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00004-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
440 Zhao X, Li S, Huang T, Sun H, Zhu H, Guo H, Liu M. Synthesis of Au/Bi 2 S 3 nanoflowers for efficient photothermal therapy. New J Chem 2020;44:18724-31. [DOI: 10.1039/d0nj04313c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
441 Saxena SK, Nyodu R, Kumar S, Maurya VK. Nanotoxicology in Medicine. NanoBioMedicine 2020. [DOI: 10.1007/978-981-32-9898-9_20] [Reference Citation Analysis]
442 Jagtap JM, Parchur AK, Sharma G. Smart Nanomaterials for Tumor Targeted Hyperthermia. Intelligent Nanomaterials for Drug Delivery Applications 2020. [DOI: 10.1016/b978-0-12-817830-0.00003-5] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
443 Almeida DB, de Thomaz AA. Measuring the Hydrodynamic Radius of Colloidal Quantum Dots by Fluorescence Correlation Spectroscopy. Quantum Dots 2020. [DOI: 10.1007/978-1-0716-0463-2_4] [Reference Citation Analysis]
444 Pérez-Medina C, Teunissen AJP, Kluza E, Mulder WJM, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020;154-155:123-41. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
445 El-shibiny A, Dawoud A. Bacteriophage Applications for Food Safety. Biocommunication of Phages 2020. [DOI: 10.1007/978-3-030-45885-0_21] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
446 Vauthier C. Issues related with the analysis of nanomaterials. Handbook of Nanomaterials in Analytical Chemistry 2020. [DOI: 10.1016/b978-0-12-816699-4.00019-0] [Reference Citation Analysis]
447 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
448 Verma ML, Kumar P, Sharma S, Dhiman K, Sharma D, Verma A. Gold Nanoparticle-Mediated Delivery of Therapeutic Enzymes for Biomedical Applications. Environmental Chemistry for a Sustainable World 2020. [DOI: 10.1007/978-3-030-29207-2_3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
449 Guerrini L, Alvarez-puebla RA. Surface-enhanced Raman scattering (SERS) sensing of nucleic acids. Frontiers of Nanoscience 2020. [DOI: 10.1016/b978-0-08-102828-5.00002-4] [Reference Citation Analysis]
450 Cheng B, Xu P. Nanoparticle-based formulation for drug repurposing in cancer treatment. Drug Repurposing in Cancer Therapy 2020. [DOI: 10.1016/b978-0-12-819668-7.00013-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
451 Haseeb Q, Hamdani SDA, Akram A, Khan DA, Rajput TA, Babar MM. Nanobiotechnology: Paving the Way to Personalized Medicine. NanoBioMedicine 2020. [DOI: 10.1007/978-981-32-9898-9_2] [Reference Citation Analysis]
452 Chacko JV. Nanobiophotonics and fluorescence nanoscopy in 2020. Nano-Optics 2020. [DOI: 10.1016/b978-0-12-818392-2.00006-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
453 Nour S, Bolandi B, Imani R. Nanotechnology in gene therapy for musculoskeletal regeneration. Nanoengineering in Musculoskeletal Regeneration 2020. [DOI: 10.1016/b978-0-12-820262-3.00004-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
454 Bai X, Li M, Hu G. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers. Nanoscale 2020;12:3931-40. [DOI: 10.1039/c9nr09251j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
455 Guerrini L, Alvarez-puebla RA. Surface-enhanced Raman scattering chemosensing of proteins. Vibrational Spectroscopy in Protein Research 2020. [DOI: 10.1016/b978-0-12-818610-7.00019-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
456 Needham D. Development of clinically effective formulations for anticancer applications: why it is so difficult? Biomaterials for Cancer Therapeutics 2020. [DOI: 10.1016/b978-0-08-102983-1.00022-3] [Reference Citation Analysis]
457 Zheng Z, Chen Q, Rong S, Dai R, Jia Z, Peng X, Zhang R. Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation. Nanoscale 2020;12:15845-56. [DOI: 10.1039/d0nr03661g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
458 Prairna, Paramanya A, Sharma S, Bagdat RB, Ali A. Recent practices of medicinal and aromatic plants in nanotechnology. Nanomaterials for Agriculture and Forestry Applications 2020. [DOI: 10.1016/b978-0-12-817852-2.00018-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
459 Martínez R, Navarro Poupard MF, Álvarez A, Soprano E, Migliavacca M, Carrillo-carrión C, Polo E, Pelaz B, Pino PD. Nanoparticle behavior and stability in biological environments. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00002-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
460 Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. Nanoscale 2019;11:13458-68. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
461 Zhang K, Lin H, Mao J, Luo X, Wei R, Su Z, Zhou B, Li D, Gao J, Shan H. An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomater Sci 2019;7:2480-90. [PMID: 30957825 DOI: 10.1039/c9bm00216b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
462 Zhupanyn P, Ewe A, Büch T, Malek A, Rademacher P, Müller C, Reinert A, Jaimes Y, Aigner A. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release 2020;319:63-76. [PMID: 31866504 DOI: 10.1016/j.jconrel.2019.12.032] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 17.7] [Reference Citation Analysis]
463 Schrittwieser S, Haslinger MJ, Mitteramskogler T, Mühlberger M, Shoshi A, Brückl H, Bauch M, Dimopoulos T, Schmid B, Schotter J. Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography. Nanomaterials (Basel) 2019;9:E1790. [PMID: 31888231 DOI: 10.3390/nano9121790] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
464 Bragazzi NL. Nanomedicine: Insights from a Bibliometrics-Based Analysis of Emerging Publishing and Research Trends. Medicina (Kaunas) 2019;55:E785. [PMID: 31847454 DOI: 10.3390/medicina55120785] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
465 Wang Y, Qiu M, Won M, Jung E, Fan T, Xie N, Chi S, Zhang H, Kim JS. Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coordination Chemistry Reviews 2019;400:213041. [DOI: 10.1016/j.ccr.2019.213041] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 21.7] [Reference Citation Analysis]
466 Liu B, Thayumanavan S. Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. Chem 2019;5:3166-83. [DOI: 10.1016/j.chempr.2019.09.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
467 Liao H, Liang Z, Wang N, Wei M, Chen Y, Li F, Ling D. Dynamic supraparticles for the treatment of age-related diseases. Science Bulletin 2019;64:1850-74. [DOI: 10.1016/j.scib.2019.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
468 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 26.7] [Reference Citation Analysis]
469 Suo Y, Wu F, Xu P, Shi H, Wang T, Liu H, Cheng Z. NIR-II Fluorescence Endoscopy for Targeted Imaging of Colorectal Cancer. Adv Healthc Mater 2019;8:e1900974. [PMID: 31697035 DOI: 10.1002/adhm.201900974] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
470 Muraca F, Alahmari A, Giannone VA, Adumeau L, Yan Y, McCafferty MM, Dawson KA. A Three-Dimensional Cell Culture Platform for Long Time-Scale Observations of Bio-Nano Interactions. ACS Nano 2019;13:13524-36. [PMID: 31682422 DOI: 10.1021/acsnano.9b07453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
471 Naziris N, Saitta F, Chrysostomou V, Libera M, Trzebicka B, Fessas D, Pispas S, Demetzos C. pH-responsive chimeric liposomes: From nanotechnology to biological assessment. Int J Pharm 2020;574:118849. [PMID: 31759108 DOI: 10.1016/j.ijpharm.2019.118849] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
472 Teng C, Chai Z, Yuan Z, Ren L, Lin C, Yan Z, He W, Qin C, Yang L, Han X, Yin L. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. Nanomedicine 2020;24:102105. [PMID: 31740406 DOI: 10.1016/j.nano.2019.102105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
473 Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. Adv Mater 2019;31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Cited by in Crossref: 68] [Cited by in F6Publishing: 77] [Article Influence: 22.7] [Reference Citation Analysis]
474 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019;151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 13.7] [Reference Citation Analysis]
475 Rojas-Aguirre Y, Torres-Mena MA, López-Méndez LJ, Alcaraz-Estrada SL, Guadarrama P, Urucha-Ortíz JM. PEGylated β-cyclodextrins: Click synthesis and in vitro biological insights. Carbohydr Polym 2019;223:115113. [PMID: 31427016 DOI: 10.1016/j.carbpol.2019.115113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
476 Clasen A, Wenderoth S, Tavernaro I, Fleddermann J, Kraegeloh A, Jung G. Kinetic and spectroscopic responses of pH-sensitive nanoparticles: influence of the silica matrix. RSC Adv 2019;9:35695-705. [PMID: 35528098 DOI: 10.1039/c9ra06047b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
477 Hua S, Yang L, Gao T, Jiang P, Jiang F, Liu Y. Graphene Quantum Dots Induce Autophagy and Reveal Protection Against Hydrogen Peroxide-Induced Oxidative Stress Injury. ACS Appl Bio Mater 2019;2:5760-8. [DOI: 10.1021/acsabm.9b00784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
478 Khanyile S, Masamba P, Oyinloye BE, Mbatha LS, Kappo AP. Current Biochemical Applications and Future Prospects of Chlorotoxin in Cancer Diagnostics and Therapeutics. Adv Pharm Bull 2019;9:510-20. [PMID: 31857956 DOI: 10.15171/apb.2019.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
479 Yang L, Gradl R, Dierolf M, Möller W, Kutschke D, Feuchtinger A, Hehn L, Donnelley M, Günther B, Achterhold K, Walch A, Stoeger T, Razansky D, Pfeiffer F, Morgan KS, Schmid O. Multimodal Precision Imaging of Pulmonary Nanoparticle Delivery in Mice: Dynamics of Application, Spatial Distribution, and Dosimetry. Small 2019;15:1904112. [DOI: 10.1002/smll.201904112] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
480 Böll K, Zimpel A, Dietrich O, Wuttke S, Peller M. Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron‐Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. Adv Therap 2020;3:1900126. [DOI: 10.1002/adtp.201900126] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
481 Wolf MP, Liu K, Horn TFW, Hunziker P. FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS. Biomacromolecules 2019;20:4065-74. [DOI: 10.1021/acs.biomac.9b00823] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
482 Li G, Yang B, Gu C. Drug self-gating fluorescent nanoparticles for pH-responsive doxorubicin delivery. J Mater Sci 2020;55:738-47. [DOI: 10.1007/s10853-019-04020-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
483 Teixeira RA, Costa LAS, Sant'ana AC. A proposal for the adsorption of anastrozole anticancer drug on gold nanoparticle surfaces. J Raman Spectrosc 2019;50:1462-1467. [DOI: 10.1002/jrs.5641] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
484 Li C, Yang G, Lin L, Xuan Y, Yan S, Ji X, Song F, Lu M, Lan T. Slit2 signaling contributes to cholestatic fibrosis in mice by activation of hepatic stellate cells. Exp Cell Res 2019;385:111626. [PMID: 31545977 DOI: 10.1016/j.yexcr.2019.111626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
485 Latreille PL, Adibnia V, Nour A, Rabanel JM, Lalloz A, Arlt J, Poon WCK, Hildgen P, Martinez VA, Banquy X. Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nat Commun 2019;10:4294. [PMID: 31541104 DOI: 10.1038/s41467-019-12246-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
486 Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019;20:3786-97. [PMID: 31535846 DOI: 10.1021/acs.biomac.9b00868] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
487 Bai S, Ma X, Shi X, Shao J, Zhang T, Wang Y, Cheng Y, Xue P, Kang Y, Xu Z. Smart Unimolecular Micelle-Based Polyprodrug with Dual-Redox Stimuli Response for Tumor Microenvironment: Enhanced in Vivo Delivery Efficiency and Tumor Penetration. ACS Appl Mater Interfaces 2019;11:36130-40. [PMID: 31490659 DOI: 10.1021/acsami.9b13214] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
488 Ðorđević L, Arcudi F, Prato M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat Protoc 2019;14:2931-53. [PMID: 31534230 DOI: 10.1038/s41596-019-0207-x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 19.7] [Reference Citation Analysis]
489 Alam Bony B, Kievit FM. A Role for Nanoparticles in Treating Traumatic Brain Injury. Pharmaceutics 2019;11:E473. [PMID: 31540234 DOI: 10.3390/pharmaceutics11090473] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
490 Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Kamali Shahri SM, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019;119:11352-90. [PMID: 31490059 DOI: 10.1021/acs.chemrev.8b00323] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
491 Pem B, Pongrac IM, Ulm L, Pavičić I, Vrček V, Domazet Jurašin D, Ljubojević M, Krivohlavek A, Vinković Vrček I. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J Nanotechnol 2019;10:1802-17. [PMID: 31579097 DOI: 10.3762/bjnano.10.175] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
492 Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. Journal of Colloid and Interface Science 2019;552:439-47. [DOI: 10.1016/j.jcis.2019.05.074] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
493 Dickinson AM, Godden JM, Lanovyk K, Ahmed SS. Assessing the Safety of Nanomedicines: A Mini Review. Applied In Vitro Toxicology 2019;5:114-22. [DOI: 10.1089/aivt.2019.0009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
494 Yang SC, Chen CY, Wan HY, Huang SY, Yang TI. Electroactive Composites with Block Copolymer-Templated Iron Oxide Nanoparticles for Magnetic Hyperthermia Application. Polymers (Basel) 2019;11:E1430. [PMID: 31480428 DOI: 10.3390/polym11091430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
495 Naidoo C, Kruger CA, Abrahamse H. Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules 2019;24:E3153. [PMID: 31470637 DOI: 10.3390/molecules24173153] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
496 Yang L, Zhou Z, Song J, Chen X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 2019;48:5140-76. [PMID: 31464313 DOI: 10.1039/c9cs00011a] [Cited by in Crossref: 102] [Cited by in F6Publishing: 107] [Article Influence: 34.0] [Reference Citation Analysis]
497 Palomba F, Genovese D, Rampazzo E, Zaccheroni N, Prodi L, Morbidelli L. PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS Omega 2019;4:13962-71. [PMID: 31497714 DOI: 10.1021/acsomega.9b01699] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
498 Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, Tewari AK, Schwartz JA, Canfield SE, George AK, West JL, Halas NJ. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA. 2019;116:18590-18596. [PMID: 31451630 DOI: 10.1073/pnas.1906929116] [Cited by in Crossref: 380] [Cited by in F6Publishing: 404] [Article Influence: 126.7] [Reference Citation Analysis]
499 Lee SH, Park OK, Kim J, Shin K, Pack CG, Kim K, Ko G, Lee N, Kwon SH, Hyeon T. Deep Tumor Penetration of Drug-Loaded Nanoparticles by Click Reaction-Assisted Immune Cell Targeting Strategy. J Am Chem Soc 2019;141:13829-40. [PMID: 31382746 DOI: 10.1021/jacs.9b04621] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
500 Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. 2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. Small Methods 2020;4:1900343. [DOI: 10.1002/smtd.201900343] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 21.3] [Reference Citation Analysis]
501 Lu Y, Dai J, Kong N, Liu J, Gong J, Yao Y. Internalization Characterization of Si Nanorod with Camouflaged Cell Membrane Proteins Reveals ATXN2 as a Negative Regulator. Cells 2019;8:E931. [PMID: 31430912 DOI: 10.3390/cells8080931] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
502 Shoval A, Markus A, Zhou Z, Liu X, Cazelles R, Willner I, Mandel Y. Anti-VEGF-Aptamer Modified C-Dots-A Hybrid Nanocomposite for Topical Treatment of Ocular Vascular Disorders. Small 2019;15:e1902776. [PMID: 31402576 DOI: 10.1002/smll.201902776] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
503 Ozlu B, Kabay G, Bocek I, Yilmaz M, Piskin AK, Shim BS, Mutlu M. Controlled release of doxorubicin from polyethylene glycol functionalized melanin nanoparticles for breast cancer therapy: Part I. Production and drug release performance of the melanin nanoparticles. Int J Pharm 2019;570:118613. [PMID: 31415880 DOI: 10.1016/j.ijpharm.2019.118613] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
504 Brancolini G, Lopez H, Corni S, Tozzini V. Low-Resolution Models for the Interaction Dynamics of Coated Gold Nanoparticles with β2-microglobulin. Int J Mol Sci 2019;20:E3866. [PMID: 31398866 DOI: 10.3390/ijms20163866] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
505 Yan H, Shao D, Lao YH, Li M, Hu H, Leong KW. Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation. Adv Sci (Weinh) 2019;6:1900605. [PMID: 31406672 DOI: 10.1002/advs.201900605] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 28.0] [Reference Citation Analysis]
506 Liu C, Ewert KK, Wang N, Li Y, Safinya CR, Qiao W. A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019;221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 13.0] [Reference Citation Analysis]
507 Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics 2019;138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Cited by in Crossref: 92] [Cited by in F6Publishing: 99] [Article Influence: 30.7] [Reference Citation Analysis]
508 Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA, Chellappan DK, Dua K, Satija S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chemico-Biological Interactions 2019;309:108720. [DOI: 10.1016/j.cbi.2019.06.033] [Cited by in Crossref: 105] [Cited by in F6Publishing: 113] [Article Influence: 35.0] [Reference Citation Analysis]
509 Wang C, Xue R, Gulzar A, Kuang Y, Shao H, Gai S, Yang D, He F, Yang P. Targeted and imaging-guided chemo-photothermal ablation achieved by combining upconversion nanoparticles and protein-capped gold nanodots. Chemical Engineering Journal 2019;370:1239-50. [DOI: 10.1016/j.cej.2019.03.219] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
510 Chen K, Tao J, Shi W, Su X, Cao X, Peng X, Bao L, Feng Z, Zhao Y, Mai X, Wang L, Lu G, Teng Z. Soft mesoporous organosilica nanorods with gold plasmonic core for significantly enhanced cellular uptake. Journal of Colloid and Interface Science 2019;550:81-9. [DOI: 10.1016/j.jcis.2019.04.086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
511 Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle Characterization: What to Measure? Adv Mater 2019;31:e1901556. [PMID: 31148285 DOI: 10.1002/adma.201901556] [Cited by in Crossref: 115] [Cited by in F6Publishing: 121] [Article Influence: 38.3] [Reference Citation Analysis]
512 Wang F, Fan Z, Zhu Q, Tian H, Yao J, Jiang B, Zhu F, Su G, Hou Z, Ye S, Li Y. Tumor Microenvironment-Activated and Viral-Mimicking Nanodrugs Driven by Molecular Precise Recognition for dNTP Inhibition-Induced Synergistic Cancer Therapy. ACS Biomater Sci Eng 2019;5:4442-54. [PMID: 33438410 DOI: 10.1021/acsbiomaterials.9b00840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
513 Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 2020;40:16-36. [PMID: 31294482 DOI: 10.1002/jat.3817] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 20.0] [Reference Citation Analysis]
514 Zhang Y, Zhang Q, Zhang A, Pan S, Cheng J, Zhi X, Ding X, Hong L, Zi M, Cui D, He J. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. Nanomedicine 2019;21:102047. [PMID: 31271877 DOI: 10.1016/j.nano.2019.102047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
515 Bian F, Sun L, Cai L, Wang Y, Zhao Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1567. [PMID: 31257723 DOI: 10.1002/wnan.1567] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
516 Zingg R, Fischer M. The consolidation of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1569. [PMID: 31240855 DOI: 10.1002/wnan.1569] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
517 Kim H, Shin M, Han S, Kwon W, Hahn SK. Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules 2019;20:2889-903. [DOI: 10.1021/acs.biomac.9b00564] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 14.0] [Reference Citation Analysis]
518 Sun X, Gamal M, Nold P, Said A, Chakraborty I, Pelaz B, Schmied F, von Pückler K, Figiel J, Zhao Y, Brendel C, Hassan M, Parak WJ, Feliu N. Tracking stem cells and macrophages with gold and iron oxide nanoparticles – The choice of the best suited particles. Applied Materials Today 2019;15:267-79. [DOI: 10.1016/j.apmt.2018.12.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
519 Nienhaus K, Nienhaus GU. Towards a molecular-level understanding of the protein corona around nanoparticles – Recent advances and persisting challenges. Current Opinion in Biomedical Engineering 2019;10:11-22. [DOI: 10.1016/j.cobme.2019.01.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
520 Polo E, Araban V, Pelaz B, Alvarez A, Taboada P, Mahmoudi M, del Pino P. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods. Applied Materials Today 2019;15:599-604. [DOI: 10.1016/j.apmt.2019.04.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
521 Singh S, Kaur J, Tovstolytkin A, Singh G. Superparamagnetic β -NaFeO 2 : A novel, efficient and biocompatible nanoparticles for treatment of cancer by nanohyperthermia. Mater Res Express 2019;6:0850a6. [DOI: 10.1088/2053-1591/ab243e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
522 Zhang D, Liu J, Sun S, Liu C, Fang G, Wang S. Construction of Persistent Luminescence-Plastic Antibody Hybrid Nanoprobe for In Vivo Recognition and Clearance of Pesticide Using Background-Free Nanobioimaging. J Agric Food Chem 2019;67:6874-83. [DOI: 10.1021/acs.jafc.9b02712] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
523 Zheng Z, Geng W, Xu Z, Guo D. Macrocyclic Amphiphiles for Drug Delivery. Isr J Chem 2019;59:913-27. [DOI: 10.1002/ijch.201900032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
524 Chu C, Su M, Zhu J, Li D, Cheng H, Chen X, Liu G. Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics 2019;9:3134-49. [PMID: 31244946 DOI: 10.7150/thno.33539] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 18.0] [Reference Citation Analysis]
525 Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-Activatable Prodrug and AIEgen Copolymer Nanoparticle for Dual-Drug Monitoring and Combination Therapy. ACS Appl Mater Interfaces 2019;11:18691-700. [PMID: 31038909 DOI: 10.1021/acsami.9b02346] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
526 Bandyopadhyay A, Yadav P, Sarkar K, Bhattacharyya S. The destructive spontaneous ingression of tunable silica nanosheets through cancer cell membranes. Chem Sci 2019;10:6184-92. [PMID: 31360425 DOI: 10.1039/c9sc00076c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
527 Wang H, Ma R, Nienhaus K, Nienhaus GU. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration. Small 2019;15:1900974. [DOI: 10.1002/smll.201900974] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
528 Violatto MB, Casarin E, Talamini L, Russo L, Baldan S, Tondello C, Messmer M, Hintermann E, Rossi A, Passoni A, Bagnati R, Biffi S, Toffanin C, Gimondi S, Fumagalli S, De Simoni MG, Barisani D, Salmona M, Christen U, Invernizzi P, Bigini P, Morpurgo M. Dexamethasone Conjugation to Biodegradable Avidin-Nucleic-Acid-Nano-Assemblies Promotes Selective Liver Targeting and Improves Therapeutic Efficacy in an Autoimmune Hepatitis Murine Model. ACS Nano 2019;13:4410-23. [PMID: 30883091 DOI: 10.1021/acsnano.8b09655] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
529 Song J, Zhang N, Zhang L, Yi H, Liu Y, Li Y, Li X, Wu M, Hao L, Yang Z, Wang Z. IR780-loaded folate-targeted nanoparticles for near-infrared fluorescence image-guided surgery and photothermal therapy in ovarian cancer. Int J Nanomedicine 2019;14:2757-72. [PMID: 31118609 DOI: 10.2147/IJN.S203108] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
530 Glancy D, Zhang Y, Wu JLY, Ouyang B, Ohta S, Chan WCW. Characterizing the protein corona of sub-10 nm nanoparticles. J Control Release 2019;304:102-10. [PMID: 31004667 DOI: 10.1016/j.jconrel.2019.04.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
531 Rothen-rutishauser B, Bourquin J, Petri-fink A. Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses. In: Gehr P, Zellner R, editors. Biological Responses to Nanoscale Particles. Cham: Springer International Publishing; 2019. pp. 153-70. [DOI: 10.1007/978-3-030-12461-8_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
532 Wang Y, Wang L, Yan M, Feng L, Dong S, Hao J. Drug Implants of Hydrogels via Collective Behavior of Microgel Colloids for On-Demand Cancer Therapy. ACS Appl Bio Mater 2019;2:1531-1541. [DOI: 10.1021/acsabm.8b00823] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
533 Parakhonskiy BV, Parak WJ, Volodkin D, Skirtach AG. Hybrids of Polymeric Capsules, Lipids, and Nanoparticles: Thermodynamics and Temperature Rise at the Nanoscale and Emerging Applications. Langmuir 2019;35:8574-83. [DOI: 10.1021/acs.langmuir.8b04331] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
534 Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of Nanomaterials in Wound Healing. Curr Drug Deliv 2019;16:26-41. [PMID: 30227817 DOI: 10.2174/1567201815666180918110134] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
535 Radziuk D, Mikhnavets L, Vorokhta M, Matolín V, Tabulina L, Labunov V. Sonochemical Formation of Copper/Iron‐Modified Graphene Oxide Nanocomposites for Ketorolac Delivery. Chem Eur J 2019;25:6233-45. [DOI: 10.1002/chem.201900662] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
536 Kopitsyn DS, Gorbachevskii MV, Botchkova EA, Bychenko MA, Novikov AA. Identification of Bacteria by Surface-Enhanced Raman Spectra after Peroxide Treatment. Appl Biochem Microbiol 2019;55:78-82. [DOI: 10.1134/s0003683819010095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
537 Huang Y, Lin D, Li M, Yin D, Wang S, Wang J. Ag@Au Core⁻Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay. Sensors (Basel) 2019;19:E1554. [PMID: 30935114 DOI: 10.3390/s19071554] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
538 Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev 2019;119:4819-80. [PMID: 30920815 DOI: 10.1021/acs.chemrev.8b00733] [Cited by in Crossref: 405] [Cited by in F6Publishing: 442] [Article Influence: 135.0] [Reference Citation Analysis]
539 Kennedy A, Brame J, Rycroft T, Wood M, Zemba V, Weiss C Jr, Hull M, Hill C, Geraci C, Linkov I. A Definition and Categorization System for Advanced Materials: The Foundation for Risk-Informed Environmental Health and Safety Testing. Risk Anal 2019;39:1783-95. [PMID: 30908695 DOI: 10.1111/risa.13304] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
540 Berends AC, Mangnus MJJ, Xia C, Rabouw FT, de Mello Donega C. Optoelectronic Properties of Ternary I-III-VI2 Semiconductor Nanocrystals: Bright Prospects with Elusive Origins. J Phys Chem Lett 2019;10:1600-16. [PMID: 30883139 DOI: 10.1021/acs.jpclett.8b03653] [Cited by in Crossref: 79] [Cited by in F6Publishing: 84] [Article Influence: 26.3] [Reference Citation Analysis]
541 Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019;27:502-24. [PMID: 30889991 DOI: 10.1080/1061186X.2019.1588280] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
542 Lavorato G, Alzamora M, Contreras C, Burlandy G, Litterst FJ, Baggio‐saitovitch E. Internal Structure and Magnetic Properties in Cobalt Ferrite Nanoparticles: Influence of the Synthesis Method. Part Part Syst Charact 2019;36:1900061. [DOI: 10.1002/ppsc.201900061] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
543 Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N. Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019;143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 25.0] [Reference Citation Analysis]
544 Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Cited by in Crossref: 302] [Cited by in F6Publishing: 330] [Article Influence: 100.7] [Reference Citation Analysis]
545 Hua Q, Qiang Z, Chu M, Shi D, Ren J. Polymeric Drug Delivery System with Actively Targeted Cell Penetration and Nuclear Targeting for Cancer Therapy. ACS Appl Bio Mater 2019;2:1724-31. [DOI: 10.1021/acsabm.9b00097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
546 Ognenovska K, Klemm V, Ledger S, Turville S, Symonds G, D. Kelleher A, L. Ahlenstiel C. Mechanisms for Controlling HIV-1 Infection: A Gene Therapy Approach. In Vivo and Ex Vivo Gene Therapy for Inherited and Non-Inherited Disorders 2019. [DOI: 10.5772/intechopen.79669] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
547 Gräfe C, von der Lühe M, Weidner A, Globig P, Clement JH, Dutz S, Schacher FH. Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: effects of charge and incubation conditions. Nanotechnology 2019;30:265707. [PMID: 30861506 DOI: 10.1088/1361-6528/ab0ed0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
548 Pirsaheb M, Mohammadi S, Salimi A, Payandeh M. Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3338-4] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 19.7] [Reference Citation Analysis]
549 Wang X, Anton N, Ashokkumar P, Anton H, Fam TK, Vandamme T, Klymchenko AS, Collot M. Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. ACS Appl Mater Interfaces 2019;11:13079-90. [DOI: 10.1021/acsami.8b22297] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
550 Han S, Raabe M, Hodgson L, Mantell J, Verkade P, Lasser T, Landfester K, Weil T, Lieberwirth I. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Lett 2019;19:2178-85. [PMID: 30810045 DOI: 10.1021/acs.nanolett.9b00752] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
551 Miloh T. Light-induced thermoosmosis about conducting ellipsoidal nanoparticles. Proc R Soc A 2019;475:20180040. [DOI: 10.1098/rspa.2018.0040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
552 Yang L, Feuchtinger A, Möller W, Ding Y, Kutschke D, Möller G, Schittny JC, Burgstaller G, Hofmann W, Stoeger T, Daniel Razansky, Walch A, Schmid O. Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs. ACS Nano 2019;13:1029-41. [PMID: 30566327 DOI: 10.1021/acsnano.8b07524] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
553 Kim YY, Bang Y, Lee AH, Song YK. Multivalent Traptavidin-DNA Conjugates for the Programmable Assembly of Nanostructures. ACS Nano 2019;13:1183-94. [PMID: 30654610 DOI: 10.1021/acsnano.8b06170] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
554 Shao S, Si J, Shen Y. Copper as the Target for Anticancer Nanomedicine. Adv Therap 2019;2:1800147. [DOI: 10.1002/adtp.201800147] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
555 Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, Fan W, Zhu S, Zhang M, Tian R, Lang L, Niu G, Zhang X, Chen X. A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics 2019;9:1358-68. [PMID: 30867836 DOI: 10.7150/thno.32106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
556 Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:85-126. [DOI: 10.1080/00914037.2018.1539990] [Cited by in Crossref: 59] [Cited by in F6Publishing: 32] [Article Influence: 19.7] [Reference Citation Analysis]
557 Huang S, Gu J, Ye J, Fang B, Wan S, Wang C, Ashraf U, Li Q, Wang X, Shao L, Song Y, Zheng X, Cao F, Cao S. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci 2019;542:198-206. [PMID: 30739009 DOI: 10.1016/j.jcis.2019.02.010] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 24.7] [Reference Citation Analysis]
558 Jiang W, Ma L, Xu X. One-dimensional microstructure-assisted intradermal and intracellular delivery. Bio-des Manuf 2019;2:24-30. [DOI: 10.1007/s42242-019-00034-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
559 Calcagno V, Vecchione R, Quagliariello V, Marzola P, Busato A, Giustetto P, Profeta M, Gargiulo S, Cicco CD, Yu H, Cassani M, Maurea N, Mancini M, Pellegrino T, Netti PA. Oil Core-PEG Shell Nanocarriers for In Vivo MRI Imaging. Adv Healthc Mater 2019;8:e1801313. [PMID: 30614638 DOI: 10.1002/adhm.201801313] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
560 Leso V, Fontana L, Iavicoli I. Biomedical nanotechnology: Occupational views. Nano Today 2019;24:10-4. [DOI: 10.1016/j.nantod.2018.11.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
561 Karawacka W, Janko C, Unterweger H, Mühlberger M, Lyer S, Taccardi N, Mokhir A, Jira W, Peukert W, Boccaccini AR, Kolot M, Strauss R, Bogdan C, Alexiou C, Tietze R. SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. Colloids Surf B Biointerfaces 2019;174:95-102. [PMID: 30445255 DOI: 10.1016/j.colsurfb.2018.11.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
562 Li Z, Wu L, Wang H, Zhou W, Liu H, Cui H, Li P, Chu PK, Yu X. Synergistic Antibacterial Activity of Black Phosphorus Nanosheets Modified with Titanium Aminobenzenesulfanato Complexes. ACS Appl Nano Mater 2019;2:1202-9. [DOI: 10.1021/acsanm.8b02065] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
563 Vallet-Regí M. Bioceramics: from bone substitutes to nanoparticles for drug delivery. Pure Appl Chem 2019;91:687-706. [PMID: 31371837 DOI: 10.1515/pac-2018-0505] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
564 Ma BL, Zhai X, Du G, Zhou J. Orthogonal shortwave infrared emission based on rare earth nanoparticles for interference-free logical codes and bio-imaging. Chem Sci 2019;10:3281-8. [PMID: 30996913 DOI: 10.1039/c8sc05044a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
565 Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, Ddungu JLZ, Silvestrini S, Maggini M, De Cola L, Stephan H. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale 2018;10:9880-91. [PMID: 29658023 DOI: 10.1039/c8nr01063c] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 15.7] [Reference Citation Analysis]
566 Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH, Wang X, Tang I, Zheng E, Qiu W, Wainberg ZA, Nel AE, Meng H. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano 2019;13:38-53. [PMID: 30525443 DOI: 10.1021/acsnano.8b06164] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 18.0] [Reference Citation Analysis]
567 Ray P, Alhalhooly L, Ghosh A, Choi Y, Banerjee S, Mallik S, Banerjee S, Quadir M. Size-Transformable, Multifunctional Nanoparticles from Hyperbranched Polymers for Environment-Specific Therapeutic Delivery. ACS Biomater Sci Eng 2019;5:1354-65. [DOI: 10.1021/acsbiomaterials.8b01608] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
568 Rodrigues CF, Jacinto TA, Moreira AF, Costa EC, Miguel SP, Correia IJ. Functionalization of AuMSS nanorods towards more effective cancer therapies. Nano Res 2019;12:719-32. [DOI: 10.1007/s12274-019-2286-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
569 Xu X, An H, Zhang D, Tao H, Dou Y, Li X, Huang J, Zhang J. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci Adv 2019;5:eaat2953. [PMID: 30662940 DOI: 10.1126/sciadv.aat2953] [Cited by in Crossref: 103] [Cited by in F6Publishing: 102] [Article Influence: 34.3] [Reference Citation Analysis]
570 Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020;38:107337. [PMID: 30633954 DOI: 10.1016/j.biotechadv.2019.01.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
571 Marras AE, Vieregg JR, Ting JM, Rubien JD, Tirrell MV. Polyelectrolyte Complexation of Oligonucleotides by Charged Hydrophobic-Neutral Hydrophilic Block Copolymers. Polymers (Basel) 2019;11:E83. [PMID: 30960067 DOI: 10.3390/polym11010083] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
572 Deng J, Jiang X. Advances in Reagents Storage and Release in Self‐Contained Point‐of‐Care Devices. Adv Mater Technol 2019;4:1800625. [DOI: 10.1002/admt.201800625] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
573 Tekinay T. Immunomodulatory Nanomaterials. Stem Cell Biology and Regenerative Medicine 2019. [DOI: 10.1007/978-3-030-31202-2_4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
574 Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019;10:306-24. [DOI: 10.1039/c8py01160e] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 16.3] [Reference Citation Analysis]
575 Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz 2019;4:365-77. [DOI: 10.1039/c8nh00233a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
576 Haverich A, Boyle EC. New Ways to Target Vasa Vasorum for the Prevention and Treatment of Atherosclerosis. Atherosclerosis Pathogenesis and Microvascular Dysfunction 2019. [DOI: 10.1007/978-3-030-20245-3_6] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
577 Basu P, Vadlapatla R, Kumar P, Gray JP. Misc. medical devices and technologies. Side Effects of Drugs Annual 2019. [DOI: 10.1016/bs.seda.2019.08.008] [Reference Citation Analysis]
578 Bharathala S, Sharma P. Biomedical Applications of Nanoparticles. Nanotechnology in Modern Animal Biotechnology 2019. [DOI: 10.1016/b978-0-12-818823-1.00008-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
579 Cheng M, Zhang Y, Zhang X, Wang W, Yuan Z. One-pot synthesis of acid-induced in situ aggregating theranostic gold nanoparticles with enhanced retention in tumor cells. Biomater Sci 2019;7:2009-22. [DOI: 10.1039/c9bm00014c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
580 Kamkaew A, Ehlerding EB, Cai W. Nanoparticles as Radiopharmaceutical Vectors. Radiopharmaceutical Chemistry 2019. [DOI: 10.1007/978-3-319-98947-1_10] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
581 Verma ML, Sharma S, Dhiman K, Jana AK. Microbial Production of Nanoparticles: Mechanisms and Applications. Nanotechnology in the Life Sciences 2019. [DOI: 10.1007/978-3-030-16383-9_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
582 Chude-okonkwo U, Malekian R, Maharaj BT. Communication Engineering Meets Medical Science: The Advanced Targeted Nanomedical Solution. Advanced Targeted Nanomedicine 2019. [DOI: 10.1007/978-3-030-11003-1_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
583 Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MDP. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 2019;138:68-104. [PMID: 30553951 DOI: 10.1016/j.addr.2018.12.008] [Cited by in Crossref: 130] [Cited by in F6Publishing: 138] [Article Influence: 43.3] [Reference Citation Analysis]
584 Goswami N, Bright R, Visalakshan RM, Biswas B, Zilm P, Vasilev K. Core-in-cage structure regulated properties of ultra-small gold nanoparticles. Nanoscale Adv 2019. [DOI: 10.1039/c9na00211a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
585 Tekinay AB, Balusamy B, Senthamizhan A, Uyar T. Neuroregenerative Nanotherapeutics. Stem Cell Biology and Regenerative Medicine 2019. [DOI: 10.1007/978-3-030-31202-2_5] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
586 Parchur AK, Jagtap JM, Sharma G, Gogineni V, Hansen CP, White SB, Joshi A. Nanostructures for Externally Triggered Chemo/Thermal Therapies. Hybrid Nanostructures for Cancer Theranostics 2019. [DOI: 10.1016/b978-0-12-813906-6.00006-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
587 Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019;7:7639-55. [DOI: 10.1039/c9tb01842e] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
588 Sasikala ARK, Unnithan AR, Park CH, Kim CS. Nanofiber-based anticancer drug delivery platform. Biomimetic Nanoengineered Materials for Advanced Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814944-7.00002-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
589 Samadian H, Zakariaee SS, Faridi-majidi R. Evaluation of effective needleless electrospinning parameters controlling polyacrylonitrile nanofibers diameter via modeling artificial neural networks. The Journal of The Textile Institute 2018;110:477-86. [DOI: 10.1080/00405000.2018.1532781] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
590 Weiss PS. Expanding ACS Nano and Our Coverage. ACS Nano 2018;12:11715-6. [PMID: 30995711 DOI: 10.1021/acsnano.8b09443] [Reference Citation Analysis]
591 Naidoo C, Kruger CA, Abrahamse H. Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technol Cancer Res Treat 2018;17:1533033818791795. [PMID: 30099929 DOI: 10.1177/1533033818791795] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 14.5] [Reference Citation Analysis]
592 Sims CM, Hanna SK, Heller DA, Horoszko CP, Johnson ME, Montoro Bustos AR, Reipa V, Riley KR, Nelson BC. Redox-active nanomaterials for nanomedicine applications. Nanoscale 2017;9:15226-51. [PMID: 28991962 DOI: 10.1039/c7nr05429g] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 18.0] [Reference Citation Analysis]
593 Negwer I, Best A, Schinnerer M, Schäfer O, Capeloa L, Wagner M, Schmidt M, Mailänder V, Helm M, Barz M, Butt HJ, Koynov K. Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 2018;9:5306. [PMID: 30546066 DOI: 10.1038/s41467-018-07755-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
594 Yang DP, Liu X, Teng CP, Owh C, Win KY, Lin M, Loh XJ, Wu YL, Li Z, Ye E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 2017;9:15753-9. [PMID: 28994849 DOI: 10.1039/c7nr06286a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 13.0] [Reference Citation Analysis]
595 Wen Y, Zhang W, Gong N, Wang YF, Guo HB, Guo W, Wang PC, Liang XJ. Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. Nanoscale 2017;9:14347-56. [PMID: 28731112 DOI: 10.1039/c7nr03129g] [Cited by in Crossref: 82] [Cited by in F6Publishing: 87] [Article Influence: 20.5] [Reference Citation Analysis]
596 Aires A, Cadenas JF, Guantes R, Cortajarena AL. An experimental and computational framework for engineering multifunctional nanoparticles: designing selective anticancer therapies. Nanoscale 2017;9:13760-71. [PMID: 28884769 DOI: 10.1039/c7nr04475e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
597 Prasad R, Chauhan DS, Yadav AS, Devrukhkar J, Singh B, Gorain M, Temgire M, Bellare J, Kundu GC, Srivastava R. A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale 2018;10:19082-91. [PMID: 30288516 DOI: 10.1039/c8nr05164j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
598 Zhang W, Wen Y, He DX, Wang YF, Liu XL, Li C, Liang XJ. Near-infrared AIEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. Biomaterials 2019;193:12-21. [PMID: 30550999 DOI: 10.1016/j.biomaterials.2018.12.007] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 13.5] [Reference Citation Analysis]
599 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 279] [Cited by in F6Publishing: 227] [Article Influence: 69.8] [Reference Citation Analysis]
600 Alvarez-figueroa MJ, Abarca-riquelme JM, González-aramundiz JV. Influence of protamine shell on nanoemulsions as a carrier for cyclosporine-A skin delivery. Pharmaceutical Development and Technology 2019;24:630-8. [DOI: 10.1080/10837450.2018.1550789] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
601 Alvarez-puebla RA, Pazos-perez N, Guerrini L. SERS-fluorescent encoded particles as dual-mode optical probes. Applied Materials Today 2018;13:1-14. [DOI: 10.1016/j.apmt.2018.07.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
602 Ren K, Zhang Y, Zhang X, Liu Y, Yang M, Ju H. In Situ SiRNA Assembly in Living Cells for Gene Therapy with MicroRNA Triggered Cascade Reactions Templated by Nucleic Acids. ACS Nano 2018;12:10797-806. [PMID: 30354052 DOI: 10.1021/acsnano.8b02403] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
603 . The 15th Anniversary of the U.S. National Nanotechnology Initiative. ACS Nano 2018;12:10567-9. [PMID: 30481971 DOI: 10.1021/acsnano.8b08676] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
604 Li J, Liu H, Ming J, Sun D, Chen X, Liu X, Zheng N. The biobehavior, biocompatibility and theranostic application of SPNS and Pd@Au nanoplates in rats and rabbits. Chem Sci 2019;10:1677-86. [PMID: 30842831 DOI: 10.1039/c8sc04318c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
605 Liao C, Dai X, Chen Y, Liu J, Yao Y, Zhang S. Biogenic ( R )-(+)-Lipoic Acid Only Constructed Cross-Linked Vesicles with Synergistic Anticancer Potency. Adv Funct Mater 2019;29:1806567. [DOI: 10.1002/adfm.201806567] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
606 Sheng J, Wang X, Yan J, Pan D, Yang R, Wang L, Xu Y, Yang M. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J Mater Chem B 2018;6:8163-9. [PMID: 32254935 DOI: 10.1039/c8tb02817f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
607 Arvidsson R, Baun A, Furberg A, Hansen SF, Molander S. Proxy Measures for Simplified Environmental Assessment of Manufactured Nanomaterials. Environ Sci Technol 2018;52:13670-80. [PMID: 30422633 DOI: 10.1021/acs.est.8b05405] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
608 Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 2019;19:1-12. [DOI: 10.1007/s12012-018-9491-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
609 Zhang L, Liu Z, Kong C, Liu C, Yang K, Chen H, Huang J, Qian F. Improving Drug Delivery of Micellar Paclitaxel against Non-Small Cell Lung Cancer by Coloading Itraconazole as a Micelle Stabilizer and a Tumor Vascular Manipulator. Small 2018;14:e1802112. [PMID: 30444572 DOI: 10.1002/smll.201802112] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
610 Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials (Basel) 2018;8:E935. [PMID: 30428608 DOI: 10.3390/nano8110935] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 16.8] [Reference Citation Analysis]
611 Jiang D, Ge Z, Im HJ, England CG, Ni D, Hou J, Zhang L, Kutyreff CJ, Yan Y, Liu Y, Cho SY, Engle JW, Shi J, Huang P, Fan C, Yan H, Cai W. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng 2018;2:865-77. [PMID: 30505626 DOI: 10.1038/s41551-018-0317-8] [Cited by in Crossref: 190] [Cited by in F6Publishing: 198] [Article Influence: 47.5] [Reference Citation Analysis]
612 Chedid G, Yassin A. Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. Nanomaterials (Basel) 2018;8:E916. [PMID: 30405018 DOI: 10.3390/nano8110916] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
613 Cathcart N, Murshid N, Campbell P, Kitaev V. Selective Plasmonic Sensing and Highly Ordered Metallodielectrics via Encapsulation of Plasmonic Metal Nanoparticles with Metal Oxides. ACS Appl Nano Mater 2018;1:6514-24. [DOI: 10.1021/acsanm.8b01964] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
614 Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. Biosensors (Basel) 2018;8:E104. [PMID: 30388865 DOI: 10.3390/bios8040104] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
615 Xue J, Liu H, Chen S, Xiong C, Zhan L, Sun J, Nie Z. Mass spectrometry imaging of the in situ drug release from nanocarriers. Sci Adv 2018;4:eaat9039. [PMID: 30402541 DOI: 10.1126/sciadv.aat9039] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
616 Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2019;190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
617 Guan Q, Li Y, Li W, Dong Y. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chem Asian J 2018;13:3122-49. [DOI: 10.1002/asia.201801221] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
618 Jones RA. Between Promise, Fear and Disillusion: Two Decades of Public Engagement Around Nanotechnology. 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC) 2018. [DOI: 10.1109/nmdc.2018.8605831] [Reference Citation Analysis]
619 DeStefano A, Yin J, Kraus TJ, Parkinson BA, Li-Oakey KD. Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition. ACS Omega 2018;3:10493-502. [PMID: 31459174 DOI: 10.1021/acsomega.8b00864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
620 Wu S, Zhu M, Lian Q, Lu D, Spencer B, Adlam DJ, Hoyland JA, Volk K, Karg M, Saunders BR. Plasmonic and colloidal stability behaviours of Au-acrylic core-shell nanoparticles with thin pH-responsive shells. Nanoscale 2018;10:18565-75. [PMID: 30259044 DOI: 10.1039/c8nr07440b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
621 Weiss PS. Nano in Boston and Beyond. ACS Nano 2018;12:8833-4. [PMID: 30249097 DOI: 10.1021/acsnano.8b07025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
622 Pan J, Lei S, Chang L, Wan D. Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake. J Mater Sci 2019;54:1692-702. [DOI: 10.1007/s10853-018-2931-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
623 Notter T, Aengenheister L, Weber-Stadlbauer U, Naegeli H, Wick P, Meyer U, Buerki-Thurnherr T. Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl Psychiatry 2018;8:193. [PMID: 30237468 DOI: 10.1038/s41398-018-0251-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
624 Murshid N, Smith DS, Kitaev V. Photochemical Formation of Tunable Gold Nanostructures Using Versatile Water-Soluble Thiolate Au(I) Precursor. Part Part Syst Charact 2018;35:1800285. [DOI: 10.1002/ppsc.201800285] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
625 Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71. [PMID: 30231877 DOI: 10.1186/s12951-018-0392-8] [Cited by in Crossref: 2094] [Cited by in F6Publishing: 2191] [Article Influence: 523.5] [Reference Citation Analysis]
626 Ding D, Zhang Y, Sykes EA, Chen L, Chen Z, Tan W. The influence of physiological environment on the targeting effect of aptamer-guided gold nanoparticles. Nano Res 2019;12:129-35. [DOI: 10.1007/s12274-018-2191-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
627 Rodrigues GB, Oliveira EE, Junior FJBM, Santos LAMD, Oliveira WH, França MER, Lós DB, Gabínio BM, Peixoto CA. A new diethylcarbamazine formulation (NANO-DEC) as a therapeutic tool for hepatic fibrosis. Int Immunopharmacol 2018;64:280-8. [PMID: 30219503 DOI: 10.1016/j.intimp.2018.09.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
628 He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. Nanotechnology 2018;29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
629 Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. Nanoscale Horiz 2019;4:117-37. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Cited by in Crossref: 123] [Cited by in F6Publishing: 130] [Article Influence: 30.8] [Reference Citation Analysis]
630 Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F. Minimum information reporting in bio-nano experimental literature. Nat Nanotechnol 2018;13:777-85. [PMID: 30190620 DOI: 10.1038/s41565-018-0246-4] [Cited by in Crossref: 356] [Cited by in F6Publishing: 364] [Article Influence: 89.0] [Reference Citation Analysis]
631 Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2019;13:73-99. [PMID: 30182784 DOI: 10.1080/17435390.2018.1505000] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
632 Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv Mater 2018;30:e1707634. [PMID: 29971835 DOI: 10.1002/adma.201707634] [Cited by in Crossref: 373] [Cited by in F6Publishing: 387] [Article Influence: 93.3] [Reference Citation Analysis]
633 Castillo PM, Jimenez-ruiz A, Carnerero JM, Prado-gotor R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. ChemPhysChem 2018;19:2810-28. [DOI: 10.1002/cphc.201800388] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
634 Zhang H, Liu K, Li S, Xin X, Yuan S, Ma G, Yan X. Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano 2018;12:8266-76. [PMID: 30091901 DOI: 10.1021/acsnano.8b03529] [Cited by in Crossref: 145] [Cited by in F6Publishing: 153] [Article Influence: 36.3] [Reference Citation Analysis]
635 Xia C, Wu W, Yu T, Xie X, van Oversteeg C, Gerritsen HC, de Mello Donega C. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots. ACS Nano 2018;12:8350-61. [PMID: 30085648 DOI: 10.1021/acsnano.8b03641] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 18.8] [Reference Citation Analysis]
636 Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure and Applied Chemistry 2018;90:1325-56. [DOI: 10.1515/pac-2017-0102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
637 Cui J, Björnmalm M, Ju Y, Caruso F. Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. Langmuir 2018;34:10817-27. [DOI: 10.1021/acs.langmuir.8b02117] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
638 Cao B, Xiao F, Xing D, Hu X. Polyprodrug Antimicrobials: Remarkable Membrane Damage and Concurrent Drug Release to Combat Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus. Small 2018;14:e1802008. [PMID: 30118562 DOI: 10.1002/smll.201802008] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
639 Vikesland PJ. Nanosensors for water quality monitoring. Nature Nanotech 2018;13:651-60. [DOI: 10.1038/s41565-018-0209-9] [Cited by in Crossref: 119] [Cited by in F6Publishing: 135] [Article Influence: 29.8] [Reference Citation Analysis]
640 Halawa M, Lai J, Xu G. Gold nanoclusters: synthetic strategies and recent advances in fluorescent sensing. Materials Today Nano 2018;3:9-27. [DOI: 10.1016/j.mtnano.2018.11.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 13.0] [Reference Citation Analysis]
641 Serantes D, Pereiro M, Chantrell R, Baldomir D. Scaling the effect of the dipolar interactions on the ZFC/FC curves of random nanoparticle assemblies. Journal of Magnetism and Magnetic Materials 2018;460:28-33. [DOI: 10.1016/j.jmmm.2018.03.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
642 Ju P, Hu J, Li F, Cao Y, Li L, Shi D, Hao Y, Zhang M, He J, Ni P. A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. J Mater Chem B 2018;6:7263-73. [PMID: 32254638 DOI: 10.1039/c8tb01566j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
643 Huang L, Zhang X, Zhang Z. Sensor array for qualitative and quantitative analysis of metal ions and metal oxyanion based on colorimetric and chemometric methods. Anal Chim Acta 2018;1044:119-30. [PMID: 30442392 DOI: 10.1016/j.aca.2018.07.052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
644 Koniakhin SV, Utesov OI, Terterov IN, Siklitskaya AV, Yashenkin AG, Solnyshkov D. Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model. J Phys Chem C 2018;122:19219-29. [DOI: 10.1021/acs.jpcc.8b05415] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
645 Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 2018;8:11295. [PMID: 30050080 DOI: 10.1038/s41598-018-29618-w] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 13.0] [Reference Citation Analysis]
646 Xu X, Li Y, Cao T, Cheng J, Zhang Y. A novel, chelator-free method for 64Cu labeling of dendrimers. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4291-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
647 Radziuk D, Mikhnavets L, Tkach A, Tabulina L, Labunov V. Sonochemically Assembled Photoluminescent Copper-Modified Graphene Oxide Microspheres. Langmuir 2018;34:8599-610. [PMID: 29961327 DOI: 10.1021/acs.langmuir.8b01557] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
648 Happel P, Waag T, Schimke M, Schweeberg S, Muzha A, Fortak K, Heesch D, Klask L, Pilscheur M, Hoppe F, Lenders T, Meijer J, Lepperdinger G, Krueger A. Intrinsically 32 P-Labeled Diamond Nanoparticles for In Vivo Imaging and Quantification of Their Biodistribution in Chicken Embryos. Adv Funct Mater 2018;28:1802873. [DOI: 10.1002/adfm.201802873] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
649 Zhou Y, Bai Y, Liu H, Jiang X, Tong T, Fang L, Wang D, Ke Q, Liang J, Xiao S. Tellurium/Bovine Serum Albumin Nanocomposites Inducing the Formation of Stress Granules in a Protein Kinase R-Dependent Manner. ACS Appl Mater Interfaces 2018;10:25241-51. [PMID: 29993233 DOI: 10.1021/acsami.8b09402] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
650 Celerino de Moraes Porto IC, Chaves Cardoso de Almeida D, Vasconcelos Calheiros de Oliveira Costa G, Sampaio Donato TS, Moreira Nunes L, Gomes do Nascimento T, Dos Santos Oliveira JM, Batista da Silva C, Barbosa Dos Santos N, de Alencar E Silva Leite ML, Diniz Basílio-Júnior I, Braga Dornelas C, Barnabé Escodro P, da Silva Fonseca EJ, Umeko Kamiya R. Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent. BMC Complement Altern Med 2018;18:219. [PMID: 30021632 DOI: 10.1186/s12906-018-2281-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
651 Jaiswal S, Mishra P. Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. Mater Sci Eng C Mater Biol Appl 2018;92:673-84. [PMID: 30184794 DOI: 10.1016/j.msec.2018.07.025] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
652 Ho D, Frisch S, Biehl A, Terriac E, De Rossi C, Schwarzkopf K, Lautenschläger F, Loretz B, Murgia X, Lehr C. Farnesylated Glycol Chitosan as a Platform for Drug Delivery: Synthesis, Characterization, and Investigation of Mucus–Particle Interactions. Biomacromolecules 2018;19:3489-501. [DOI: 10.1021/acs.biomac.8b00795] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
653 Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials (Basel) 2018;11:E1154. [PMID: 29986436 DOI: 10.3390/ma11071154] [Cited by in Crossref: 242] [Cited by in F6Publishing: 251] [Article Influence: 60.5] [Reference Citation Analysis]
654 Sharma N. Application and limitation of nanomedicine in different cardiovascular disease. Int J Pharma Bio Sci 2018;9. [DOI: 10.22376/ijpbs.2018.9.3.p52-60] [Reference Citation Analysis]
655 Wei Q, Huang C, Zhang Y, Zhao T, Zhao P, Butler P, Zhang S. Mechanotargeting: Mechanics-Dependent Cellular Uptake of Nanoparticles. Adv Mater 2018;30:e1707464. [PMID: 29797358 DOI: 10.1002/adma.201707464] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
656 Carnevale KJF, Riskowski RA, Strouse GF. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH. ACS Nano 2018;12:5956-68. [PMID: 29874043 DOI: 10.1021/acsnano.8b02200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
657 Silva ACA, Correia LIV, Silva MJB, Zóia MAP, Azevedo FVPV, Rodrigues JP, Goulart LR, Ávila VDM, Dantas NO. Biocompatible Magic Sized Quantum Dots: Luminescent Markers and Probes. State of the Art in Nano-bioimaging 2018. [DOI: 10.5772/intechopen.72841] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
658 Chen D, Han S, Zhu Y, Hu F, Wei Y, Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine 2018;13:3507-27. [PMID: 29950832 DOI: 10.2147/IJN.S166445] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
659 Busatto S, Giacomini A, Montis C, Ronca R, Bergese P. Uptake Profiles of Human Serum Exosomes by Murine and Human Tumor Cells through Combined Use of Colloidal Nanoplasmonics and Flow Cytofluorimetric Analysis. Anal Chem 2018;90:7855-61. [PMID: 29870225 DOI: 10.1021/acs.analchem.7b04374] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
660 Ge R, Liu C, Zhang X, Wang W, Li B, Liu J, Liu Y, Sun H, Zhang D, Hou Y, Zhang H, Yang B. Photothermal-Activatable Fe3O4 Superparticle Nanodrug Carriers with PD-L1 Immune Checkpoint Blockade for Anti-metastatic Cancer Immunotherapy. ACS Appl Mater Interfaces 2018;10:20342-55. [PMID: 29878757 DOI: 10.1021/acsami.8b05876] [Cited by in Crossref: 86] [Cited by in F6Publishing: 92] [Article Influence: 21.5] [Reference Citation Analysis]
661 Kapri S, Majee R, Bhattacharyya S. Chemical Modifications of Porous Carbon Nanospheres Obtained from Ubiquitous Precursors for Targeted Drug Delivery and Live Cell Imaging. ACS Sustainable Chem Eng 2018;6:8503-14. [DOI: 10.1021/acssuschemeng.8b00785] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
662 Polo E, del Pino P, Pardo A, Taboada P, Pelaz B. Magnetic Nanoparticles for Cancer Therapy and Bioimaging. In: Gonçalves G, Tobias G, editors. Nanooncology. Cham: Springer International Publishing; 2018. pp. 239-79. [DOI: 10.1007/978-3-319-89878-0_7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
663 Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Adv Mater 2018;30:e1703740. [PMID: 29534311 DOI: 10.1002/adma.201703740] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 24.3] [Reference Citation Analysis]
664 Borri C, Centi S, Ratto F, Pini R. Polylysine as a functional biopolymer to couple gold nanorods to tumor-tropic cells. J Nanobiotechnology 2018;16:50. [PMID: 29855304 DOI: 10.1186/s12951-018-0377-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
665 Zhang H, Zhu Y, Shen Y. Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. Small 2018;14:e1800360. [PMID: 29806174 DOI: 10.1002/smll.201800360] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
666 Hembury M, Beztsinna N, Asadi H, van den Dikkenberg JB, Meeldijk JD, Hennink WE, Vermonden T. Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission. Biomacromolecules 2018;19:2841-8. [PMID: 29750866 DOI: 10.1021/acs.biomac.8b00414] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
667 Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A, Weiss PS, Andrews AM. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano 2018;12:4761-74. [PMID: 29664607 DOI: 10.1021/acsnano.8b01470] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
668 Xu X, Hou S, Wattanatorn N, Wang F, Yang Q, Zhao C, Yu X, Tseng HR, Jonas SJ, Weiss PS. Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery. ACS Nano 2018;12:4503-11. [PMID: 29536729 DOI: 10.1021/acsnano.8b00763] [Cited by in Crossref: 75] [Cited by in F6Publishing: 81] [Article Influence: 18.8] [Reference Citation Analysis]
669 Fan K, Jia X, Zhou M, Wang K, Conde J, He J, Tian J, Yan X. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano 2018;12:4105-15. [PMID: 29608290 DOI: 10.1021/acsnano.7b06969] [Cited by in Crossref: 147] [Cited by in F6Publishing: 160] [Article Influence: 36.8] [Reference Citation Analysis]
670 Lin G, Zhang Y, Zhu C, Chu C, Shi Y, Pang X, Ren E, Wu Y, Mi P, Xia H, Chen X, Liu G. Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials 2018;176:60-70. [PMID: 29860138 DOI: 10.1016/j.biomaterials.2018.05.036] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
671 Kanda P, Alarcon EI, Yeuchyk T, Parent S, de Kemp RA, Variola F, Courtman D, Stewart DJ, Davis DR. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium. ACS Nano 2018;12:4338-50. [PMID: 29660269 DOI: 10.1021/acsnano.7b08881] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
672 Wang W, Lin L, Ma X, Wang B, Liu S, Yan X, Li S, Tian H, Yu X. Light-Induced Hypoxia-Triggered Living Nanocarriers for Synergistic Cancer Therapy. ACS Appl Mater Interfaces 2018;10:19398-407. [DOI: 10.1021/acsami.8b03506] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
673 Sun S, Huang Y, Zhou C, Chen S, Yu M, Liu J, Zheng J. Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. Bioconjugate Chem 2018;29:1841-6. [DOI: 10.1021/acs.bioconjchem.8b00202] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
674 Zhao X, Wang S, Younis MR, Xia X, Wang C. Thermo and pH Dual - Actuating Smart Porous Anodic Aluminum for Controllable Drug Release. Adv Mater Interfaces 2018;5:1800185. [DOI: 10.1002/admi.201800185] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
675 Manzano M, Vallet-regí M. Mesoporous silica nanoparticles in nanomedicine applications. J Mater Sci: Mater Med 2018;29. [DOI: 10.1007/s10856-018-6069-x] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
676 Cao Y, Meng X, Wang D, Zhang K, Dai W, Dong H, Zhang X. Intelligent MnO 2 /Cu 2– x S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. ACS Appl Mater Interfaces 2018;10:17732-41. [DOI: 10.1021/acsami.8b05050] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 18.3] [Reference Citation Analysis]
677 Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018;39:825-44. [PMID: 29698389 DOI: 10.1038/aps.2018.33] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 13.8] [Reference Citation Analysis]
678 Chang Z, Wang Z, Shao D, Yue J, Lu M, Li L, Ge M, Yang D, Li M, Yan H, Xu Q, Dong W. Fluorescent-magnetic Janus nanorods for selective capture and rapid identification of foodborne bacteria. Sensors and Actuators B: Chemical 2018;260:1004-11. [DOI: 10.1016/j.snb.2018.01.123] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
679 Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer Micelles Together with IDO Inhibitor Enhance Cancer Photothermal Therapy and Immunotherapy. Adv Sci (Weinh) 2018;5:1700891. [PMID: 29876215 DOI: 10.1002/advs.201700891] [Cited by in Crossref: 184] [Cited by in F6Publishing: 197] [Article Influence: 46.0] [Reference Citation Analysis]
680 Kucki M, Aengenheister L, Diener L, Rippl AV, Vranic S, Newman L, Vazquez E, Kostarelos K, Wick P, Buerki-thurnherr T. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity. 2D Mater 2018;5:035014. [DOI: 10.1088/2053-1583/aab9e2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
681 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 137] [Cited by in F6Publishing: 150] [Article Influence: 34.3] [Reference Citation Analysis]
682 Freund R, Lächelt U, Gruber T, Rühle B, Wuttke S. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. ACS Nano 2018;12:2094-105. [PMID: 29533060 DOI: 10.1021/acsnano.8b00932] [Cited by in Crossref: 168] [Cited by in F6Publishing: 171] [Article Influence: 42.0] [Reference Citation Analysis]
683 Bortot A, Zanzoni S, D'Onofrio M, Assfalg M. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces. Chemistry 2018;24:5911-9. [PMID: 29446497 DOI: 10.1002/chem.201705994] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
684 Li C, Xu L, Liu Z, Li Z, Quan Z, Al Kheraif AA, Lin J. Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF4 nanoparticles. Dalton Trans 2018;47:8538-56. [PMID: 29527602 DOI: 10.1039/c8dt00258d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
685 Xu L, Liang H, Yang Y, Yu S. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chem Rev 2018;118:3209-50. [DOI: 10.1021/acs.chemrev.7b00208] [Cited by in Crossref: 180] [Cited by in F6Publishing: 189] [Article Influence: 45.0] [Reference Citation Analysis]
686 Ogunyankin MO, Shin JE, Lapotko DO, Ferry VE, Zasadzinski JA. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells. Adv Funct Mater 2018;28:1705272. [PMID: 31467502 DOI: 10.1002/adfm.201705272] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
687 Bossert D, Crippa F, Petri-fink A, Balog S. Hypothesis Test of the Photon Count Distribution for Dust Discrimination in Dynamic Light Scattering. Anal Chem 2018;90:3656-60. [DOI: 10.1021/acs.analchem.7b04908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
688 Jin J, Guo M, Liu J, Liu J, Zhou H, Li J, Wang L, Liu H, Li Y, Zhao Y, Chen C. Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Appl Mater Interfaces 2018;10:8436-42. [PMID: 29457450 DOI: 10.1021/acsami.7b17219] [Cited by in Crossref: 95] [Cited by in F6Publishing: 88] [Article Influence: 23.8] [Reference Citation Analysis]
689 Rycroft T, Trump B, Poinsatte-jones K, Linkov I. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4160-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
690 Lv YB, Chandrasekharan P, Li Y, Liu XL, P Avila J, Yang Y, Chuang KH, Liang XJ, Ding J. Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T1-enhanced contrast. J Mater Chem B 2018;6:1470-8. [PMID: 32254211 DOI: 10.1039/c7tb03129g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
691 Ma J, Wu H, Li Y, Liu Z, Liu G, Guo Y, Hou Z, Zhao Q, Chen D, Zhu X. Novel Core-Interlayer-Shell DOX/ZnPc Co-loaded MSNs@ pH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharm Res 2018;35:57. [PMID: 29423532 DOI: 10.1007/s11095-017-2295-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
692 Xu J, Han W, Cheng Z, Yang P, Bi H, Yang D, Niu N, He F, Gai S, Lin J. Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. Chem Sci 2018;9:3233-47. [PMID: 29844897 DOI: 10.1039/c7sc05414a] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 15.8] [Reference Citation Analysis]
693 Charron DM, Zheng G. Nanomedicine development guided by FRET imaging. Nano Today 2018;18:124-36. [DOI: 10.1016/j.nantod.2017.12.006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
694 Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Zheng X, Li M, He K, Zhang M, Chen L, Dong W. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018;154:147-57. [DOI: 10.1016/j.biomaterials.2017.10.047] [Cited by in Crossref: 86] [Cited by in F6Publishing: 94] [Article Influence: 21.5] [Reference Citation Analysis]
695 Ma J, Li Y, Liu G, Li A, Chen Y, Zhou X, Chen D, Hou Z, Zhu X. Novel theranostic zinc phthalocyanine–phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces 2018;162:76-89. [DOI: 10.1016/j.colsurfb.2017.10.061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
696 Lavorato G, Lima E, Vasquez Mansilla M, Troiani H, Zysler R, Winkler E. Bifunctional CoFe 2 O 4 /ZnO Core/Shell Nanoparticles for Magnetic Fluid Hyperthermia with Controlled Optical Response. J Phys Chem C 2018;122:3047-57. [DOI: 10.1021/acs.jpcc.7b11115] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
697 Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018;9:11-28. [PMID: 29199818 DOI: 10.1021/acschemneuro.7b00388] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
698 de Souza Albernaz M, Toma SH, Clanton J, Araki K, Santos-Oliveira R. Decorated Superparamagnetic Iron Oxide Nanoparticles with Monoclonal Antibody and Diethylene-Triamine-Pentaacetic Acid Labeled with Thechnetium-99m and Galium-68 for Breast Cancer Imaging. Pharm Res 2018;35:24. [PMID: 29305666 DOI: 10.1007/s11095-017-2320-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
699 Cui D. Nanomaterials for Theranostics of Gastric Cancer. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00011-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
700 Thapa RK, Ku SK, Choi H, Yong CS, Byeon JH, Kim JO. Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy. Nanoscale 2018;10:1742-9. [DOI: 10.1039/c7nr07603g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
701 Pérez-nava A, Mota-morales JD, García-carvajal ZY, Herrera-rodríguez SE, Arrevillaga-boni G, Azanza-ricardo CL, Vazquez-lepe MO, Gonzalez-campos JB. Eco-friendly Production of Metallic Nanoparticles in Polymeric Solutions and Their Processing into Biocompatible Composites. Fibers Polym 2018;19:156-169. [DOI: 10.1007/s12221-018-7670-1] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
702 Pan L, Liu J, Shi J. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chem Soc Rev 2018;47:6930-46. [DOI: 10.1039/c8cs00081f] [Cited by in Crossref: 129] [Cited by in F6Publishing: 135] [Article Influence: 32.3] [Reference Citation Analysis]
703 Sun Z, Yi Z, Cui X, Chen X, Su W, Ren X, Li X. Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. Nanoscale 2018;10:12109-22. [DOI: 10.1039/c8nr03265c] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
704 Yu Q, Othman S, Dasgupta S, Auth T, Gompper G. Nanoparticle wrapping at small non-spherical vesicles: curvatures at play. Nanoscale 2018;10:6445-58. [DOI: 10.1039/c7nr08856f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
705 Yang M, Zhang Y, Cui M, Tian Y, Zhang S, Peng K, Xu H, Liao Z, Wang H, Chang J. A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles. Nanoscale 2018;10:15865-74. [DOI: 10.1039/c8nr04138e] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
706 Noskov RE, Shishkin II, Barhom H, Ginzburg P. Non-Mie optical resonances in anisotropic biomineral nanoparticles. Nanoscale 2018;10:21031-40. [DOI: 10.1039/c8nr07561a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
707 Mionić Ebersold M, Bonvin D, Hofmann H. Neglected nano-effects of nanoparticles in the interpretation of their toxicity. Analyst 2018;143:837-42. [DOI: 10.1039/c7an01707c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
708 Garcia-rico E, Alvarez-puebla RA, Guerrini L. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chem Soc Rev 2018;47:4909-23. [DOI: 10.1039/c7cs00809k] [Cited by in Crossref: 127] [Cited by in F6Publishing: 133] [Article Influence: 31.8] [Reference Citation Analysis]
709 Yan S, Chen J, Cai L, Xu P, Zhang Y, Li S, Hu P, Chen X, Huang M, Chen Z. Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics. J Mater Chem B 2018;6:6080-8. [DOI: 10.1039/c8tb01884g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
710 Sanavio B, Librizzi L, Pennacchio P, Beznoussenko GV, Sousa F, Silva PJ, Mironov AA, Frassoni C, Stellacci F, de Curtis M, Krol S. Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. Nanoscale 2018;10:22420-8. [DOI: 10.1039/c8nr07182a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
711 Chen EY, Liu WF, Megido L, Díez P, Fuentes M, Fager C, Olsson E, Gessner I, Mathur S. Understanding and utilizing the biomolecule/nanosystems interface. Nanotechnologies in Preventive and Regenerative Medicine 2018. [DOI: 10.1016/b978-0-323-48063-5.00003-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
712 Song M, Xiang H, Fei M, Lu D, Jiang T, Yu Y, Liu R, Shen Y. Facile fabrication of water-dispersible nanocomposites based on hexa- peri -hexabenzocoronene and Fe 3 O 4 for dual mode imaging (fluorescent/MR) and drug delivery. RSC Adv 2018;8:40554-63. [DOI: 10.1039/c8ra08425d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
713 Gianneli M, Polo E, Lopez H, Castagnola V, Aastrup T, Dawson KA. Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles. Nanoscale 2018;10:5474-81. [DOI: 10.1039/c7nr07887k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
714 Mahapatra I, Clark JRA, Dobson PJ, Owen R, Lynch I, Lead JR. Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment. Environ Sci : Nano 2018;5:1873-89. [DOI: 10.1039/c8en00053k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
715 Zhang D, Liu J, Song N, Liu Y, Dang M, Fang G, Wang S. Fabrication of mesoporous La 3 Ga 5 GeO 14 :Cr 3+ ,Zn 2+ persistent luminescence nanocarriers with super-long afterglow for bioimaging-guided in vivo drug delivery to the gut. J Mater Chem B 2018;6:1479-88. [DOI: 10.1039/c7tb02759a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
716 Carnerero JM, Masuoka S, Baba H, Yoshikawa Y, Prado-gotor R, Yoshikawa K. Decorating a single giant DNA with gold nanoparticles. RSC Adv 2018;8:26571-9. [DOI: 10.1039/c8ra05088k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
717 Peller M, Böll K, Zimpel A, Wuttke S. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front 2018;5:1760-79. [DOI: 10.1039/c8qi00149a] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 18.8] [Reference Citation Analysis]
718 Dai Q, Bertleff-Zieschang N, Braunger JA, Björnmalm M, Cortez-Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018;7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 17.3] [Reference Citation Analysis]
719 Chan WWC, Chhowalla M, Farokhzad O, Glotzer S, Gogotsi Y, Hafner JH, Hammond PT, Hersam MC, Javey A, Kagan CR, Kataoka K, Khademhosseini A, Kotov NA, Lee S, Li Y, Millstone J, Möhwald H, Mulvaney PC, Nel AE, Nordlander PJ, Parak WJ, Penner RM, Rogach AL, Schaak RE, Stevens MM, Wee ATS, Willson CG, Fernandez LE, Weiss PS. A Big Year Ahead for Nano in 2018. ACS Nano 2017;11:11755-7. [DOI: 10.1021/acsnano.7b08851] [Reference Citation Analysis]
720 Hu B, Leow WR, Cai P, Li YQ, Wu YL, Chen X. Nanomechanical Force Mapping of Restricted Cell-To-Cell Collisions Oscillating between Contraction and Relaxation. ACS Nano 2017;11:12302-10. [PMID: 29131936 DOI: 10.1021/acsnano.7b06063] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
721 Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H, Liu Z, Han X, Wu R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano 2017;11:12696-712. [PMID: 29156126 DOI: 10.1021/acsnano.7b07241] [Cited by in Crossref: 235] [Cited by in F6Publishing: 250] [Article Influence: 47.0] [Reference Citation Analysis]
722 Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, Hao Y, Qian Z. Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as H2O2-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS Appl Mater Interfaces 2017;9:44410-22. [PMID: 29210279 DOI: 10.1021/acsami.7b17022] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 16.0] [Reference Citation Analysis]
723 Evans ER, Bugga P, Asthana V, Drezek R. Metallic Nanoparticles for Cancer Immunotherapy. Mater Today (Kidlington) 2018;21:673-85. [PMID: 30197553 DOI: 10.1016/j.mattod.2017.11.022] [Cited by in Crossref: 104] [Cited by in F6Publishing: 113] [Article Influence: 20.8] [Reference Citation Analysis]
724 Ma L, Liu Y, Liu L, Jiang A, Mao F, Liu D, Wang L, Zhou J. Simultaneous Activation of Short‐Wave Infrared (SWIR) Light and Paramagnetism by a Functionalized Shell for High Penetration and Spatial Resolution Theranostics. Adv Funct Mater 2017;28:1705057. [DOI: 10.1002/adfm.201705057] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
725 Jeong HH, Alarcón-Correa M, Mark AG, Son K, Lee TC, Fischer P. Corrosion-Protected Hybrid Nanoparticles. Adv Sci (Weinh) 2017;4:1700234. [PMID: 29270338 DOI: 10.1002/advs.201700234] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
726 Farrera C, Torres Andón F, Feliu N. Carbon Nanotubes as Optical Sensors in Biomedicine. ACS Nano 2017;11:10637-43. [PMID: 29087693 DOI: 10.1021/acsnano.7b06701] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 16.0] [Reference Citation Analysis]
727 Pedrol E, Martínez J, Aguiló M, Garcia-algar M, Nazarenus M, Guerrini L, Garcia-rico E, Álvarez-puebla RA, Díaz F, Massons J. Microfluidic device with dual-channel fluorescence acquisition for quantification/identification of cancer cells. Microfluid Nanofluid 2017;21. [DOI: 10.1007/s10404-017-2015-3] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
728 Carril M, Padro D, Del Pino P, Carrillo-Carrion C, Gallego M, Parak WJ. In situ detection of the protein corona in complex environments. Nat Commun 2017;8:1542. [PMID: 29142258 DOI: 10.1038/s41467-017-01826-4] [Cited by in Crossref: 102] [Cited by in F6Publishing: 103] [Article Influence: 20.4] [Reference Citation Analysis]
729 Guhrenz C, Sayevich V, Weigert F, Hollinger E, Reichhelm A, Resch-genger U, Gaponik N, Eychmüller A. Transfer of Inorganic-Capped Nanocrystals into Aqueous Media. J Phys Chem Lett 2017;8:5573-8. [DOI: 10.1021/acs.jpclett.7b02319] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
730 Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017;6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
731 Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018;6:9-24. [PMID: 29479429 DOI: 10.1039/C7TB01695F] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 8.4] [Reference Citation Analysis]
732 Pérez-Hernández M, Moros M, Stepien G, Del Pino P, Menao S, de Las Heras M, Arias M, Mitchell SG, Pelaz B, Gálvez EM, de la Fuente JM, Pardo J. Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Part Fibre Toxicol 2017;14:41. [PMID: 29073907 DOI: 10.1186/s12989-017-0222-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
733 Liu J, Chen H, Fu Y, Li X, Chen Y, Zhang H, Wang Z. Fabrication of multifunctional ferric oxide nanoparticles for tumor-targeted magnetic resonance imaging and precise photothermal therapy with magnetic field enhancement. J Mater Chem B 2017;5:8554-62. [PMID: 32264523 DOI: 10.1039/c7tb01959a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
734 Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017;11:9594-613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Cited by in Crossref: 232] [Cited by in F6Publishing: 242] [Article Influence: 46.4] [Reference Citation Analysis]
735 Guerrini L, Pazos-perez N, Garcia-rico E, Alvarez-puebla R. Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nano 2017;8. [DOI: 10.1186/s12645-017-0031-3] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
736 Pang L, Dai C, Bi L, Guo Z, Fan J. Biosafety and Antibacterial Ability of Graphene and Graphene Oxide In Vitro and In Vivo. Nanoscale Res Lett 2017;12:564. [PMID: 29027140 DOI: 10.1186/s11671-017-2317-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 64] [Article Influence: 8.8] [Reference Citation Analysis]
737 Fernandez-Carrascal A, Garcia-Algar M, Nazarenus M, Torres-Nuñez A, Guerrini L, Feliu N, Parak WJ, Garcia-Rico E, Alvarez-Puebla RA. Metabolic pathway for the universal fluorescent recognition of tumor cells. Oncotarget 2017;8:76108-15. [PMID: 29100296 DOI: 10.18632/oncotarget.18551] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
738 Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small 2017;13:1702299. [DOI: 10.1002/smll.201702299] [Cited by in Crossref: 181] [Cited by in F6Publishing: 189] [Article Influence: 36.2] [Reference Citation Analysis]
739 Chen G, Xu M, Zhao S, Sun J, Yu Q, Liu J. Pompon-like RuNPs-Based Theranostic Nanocarrier System with Stable Photoacoustic Imaging Characteristic for Accurate Tumor Detection and Efficient Phototherapy Guidance. ACS Appl Mater Interfaces 2017;9:33645-59. [DOI: 10.1021/acsami.7b10553] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
740 Xie W, Gao Q, Guo Z, Wang D, Gao F, Wang X, Wei Y, Zhao L. Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Appl Mater Interfaces 2017;9:33660-73. [PMID: 28901139 DOI: 10.1021/acsami.7b10699] [Cited by in Crossref: 111] [Cited by in F6Publishing: 115] [Article Influence: 22.2] [Reference Citation Analysis]
741 Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ, Allavena P. Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol 2017;34:103-13. [PMID: 28941641 DOI: 10.1016/j.smim.2017.09.004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 82] [Article Influence: 14.8] [Reference Citation Analysis]
742 Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, Mulder WJM. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 2017;119:143-58. [PMID: 28506745 DOI: 10.1016/j.addr.2017.05.009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
743 Feliu N, Hassan M, Garcia Rico E, Cui D, Parak W, Alvarez-puebla R. SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir 2017;33:9711-30. [DOI: 10.1021/acs.langmuir.7b01567] [Cited by in Crossref: 91] [Cited by in F6Publishing: 96] [Article Influence: 18.2] [Reference Citation Analysis]
744 Kinnear C, Moore TL, Rodriguez-lorenzo L, Rothen-rutishauser B, Petri-fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017;117:11476-521. [DOI: 10.1021/acs.chemrev.7b00194] [Cited by in Crossref: 329] [Cited by in F6Publishing: 342] [Article Influence: 65.8] [Reference Citation Analysis]
745 Xu J, He F, Cheng Z, Lv R, Dai Y, Gulzar A, Liu B, Bi H, Yang D, Gai S, Yang P, Lin J. Yolk-Structured Upconversion Nanoparticles with Biodegradable Silica Shell for FRET Sensing of Drug Release and Imaging-Guided Chemotherapy. Chem Mater 2017;29:7615-28. [DOI: 10.1021/acs.chemmater.7b03461] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 17.0] [Reference Citation Analysis]
746 Kim J, Mohamed MAA, Zagorovsky K, Chan WCW. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 2017;146:97-114. [PMID: 28898761 DOI: 10.1016/j.biomaterials.2017.08.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
747 Saveleva MS, Lengert EV, Gorin DA, Parakhonskiy BV, Skirtach AG. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa. Membranes (Basel) 2017;7:E44. [PMID: 28809796 DOI: 10.3390/membranes7030044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
748 Dai Y, Yang D, Yu D, Cao C, Wang Q, Xie S, Shen L, Feng W, Li F. Mussel-Inspired Polydopamine-Coated Lanthanide Nanoparticles for NIR-II/CT Dual Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2017;9:26674-83. [PMID: 28726368 DOI: 10.1021/acsami.7b06109] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 15.6] [Reference Citation Analysis]
749 He X, Cao H, Wang H, Tan T, Yu H, Zhang P, Yin Q, Zhang Z, Li Y. Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting and Intelligent Drug Release for Anti-Metastasis Therapy. Nano Lett 2017;17:5546-54. [DOI: 10.1021/acs.nanolett.7b02330] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 17.4] [Reference Citation Analysis]
750 Wu YL, Engl W, Hu B, Cai P, Leow WR, Tan NS, Lim CT, Chen X. Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. ACS Nano 2017;11:6996-7005. [PMID: 28530823 DOI: 10.1021/acsnano.7b02376] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
751 Guerrini L, Garcia-Rico E, Pazos-Perez N, Alvarez-Puebla RA. Smelling, Seeing, Tasting-Old Senses for New Sensing. ACS Nano 2017;11:5217-22. [PMID: 28616959 DOI: 10.1021/acsnano.7b03176] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
752 Weiss PS. Upcoming Tenth Anniversary at ACS Nano. ACS Nano 2017;11:5189-90. [DOI: 10.1021/acsnano.7b04198] [Reference Citation Analysis]
753 Vismara E, Bongio C, Coletti A, Edelman R, Serafini A, Mauri M, Simonutti R, Bertini S, Urso E, Assaraf YG, Livney YD. Albumin and Hyaluronic Acid-Coated Superparamagnetic Iron Oxide Nanoparticles Loaded with Paclitaxel for Biomedical Applications. Molecules 2017;22:E1030. [PMID: 28640222 DOI: 10.3390/molecules22071030] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
754 Pedrol E, Garcia-Algar M, Massons J, Nazarenus M, Guerrini L, Martínez J, Rodenas A, Fernandez-Carrascal A, Aguiló M, Estevez LG, Calvo I, Olano-Daza A, Garcia-Rico E, Díaz F, Alvarez-Puebla RA. Optofluidic device for the quantification of circulating tumor cells in breast cancer. Sci Rep 2017;7:3677. [PMID: 28623262 DOI: 10.1038/s41598-017-04033-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
755 Goltsev AN, Babenko NN, Gaevskaya YA, Bondarovich NA, Dubrava TG, Ostankov MV, Chelombitko OV, Malyukin YV, Klochkov VK, Kavok NS. Nanotechniques Inactivate Cancer Stem Cells. Nanoscale Res Lett 2017;12:415. [PMID: 28622715 DOI: 10.1186/s11671-017-2175-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
756 Chan WCW, Khademhosseini A, Parak WJ, Weiss PS. Cancer: Approaches from Nanoscience and Technology Approaches. ACS Nano 2017;11:4375-6. [PMID: 28532157 DOI: 10.1021/acsnano.7b03308] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
757 Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017;256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
758 Bai T, Du J, Chen J, Duan X, Zhuang Q, Chen H, Kong J. Reduction-responsive dithiomaleimide-based polymeric micelles for controlled anti-cancer drug delivery and bioimaging. Polym Chem 2017;8:7160-8. [DOI: 10.1039/c7py01675a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
759 Zhou Q, Wu S, Gong N, Li X, Dou J, Mu M, Yu X, Yu J, Liang P. Liposomes loading sodium chloride as effective thermo-seeds for microwave ablation of hepatocellular carcinoma. Nanoscale 2017;9:11068-76. [DOI: 10.1039/c7nr02955a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [