BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lv Z, Li W, Yang L, Loh XJ, Chen X. Custom-Made Electrochemical Energy Storage Devices. ACS Energy Lett 2019;4:606-14. [DOI: 10.1021/acsenergylett.8b02408] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 22.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang X, Cao L, Liao Y, Qin Z, Yang Z, Sun R, Zhang W, Li H, Yan G. Design of hierarchical porous carbon nanofibrous membrane for better electrochemical performance in solid-state flexible supercapacitors. Journal of Alloys and Compounds 2022;920:165983. [DOI: 10.1016/j.jallcom.2022.165983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Jia H, Fan J, Huo Z, Wang L, Wang Z, Feng C, Jin H, Liu M. In situ encapsulation hollow FeP spheres into high yield 3D N, P-codoped graphenic framework as advanced anode material for high-performance supercapacitors. Journal of Alloys and Compounds 2022;924:166603. [DOI: 10.1016/j.jallcom.2022.166603] [Reference Citation Analysis]
3 Hu J, Hong C, Zhao C, Si Y, Xing Y, Ling W, Zhang B, Li Z, Wang Y, Feng L, Yang J. Nitrogen self-doped hierarchical porous carbon via penicillin fermentation residue (PR) hydrothermal carbonization (HTC) and activation for supercapacitance. Journal of Alloys and Compounds 2022;918:165452. [DOI: 10.1016/j.jallcom.2022.165452] [Reference Citation Analysis]
4 Liu H, Jin F, Liu D, Zhang J, Jia H, Liu W, Zhao J, Chen P, Cheng Y. Enhanced electrochemical hydrogen storage performance of Ti49Zr26Ni25 quasicrystal alloy by coating with ZIF-8 derived porous carbon/MoS2 composite. Journal of Alloys and Compounds 2022;918:165665. [DOI: 10.1016/j.jallcom.2022.165665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Meng Q, Zhu J, Kang C, Xiao X, Ma Y, Huo H, Zuo P, Du C, Lou S, Yin G. Kirigami-Inspired Flexible Lithium-Ion Batteries via Transformation of Concentrated Stress into Segmented Strain. Small 2022;:e2204745. [PMID: 36148862 DOI: 10.1002/smll.202204745] [Reference Citation Analysis]
6 Ding P, Yan T, Li K, Wu Q, Zhu X, Chen H, Ju A. Freestanding TiO@Heteroatom-doped Hollow multi-channel Carbon Fibers for Lithium-Sulfur Batteries. Journal of Alloys and Compounds 2022. [DOI: 10.1016/j.jallcom.2022.167056] [Reference Citation Analysis]
7 Lv H, Rao H, Liu Z, Zhou Z, Zhao Y, Wei H, Chen Z. NiAl layered double hydroxides with enhanced interlayer spacing via ion-exchange as ultra-high performance supercapacitors electrode materials. Journal of Energy Storage 2022;52:104940. [DOI: 10.1016/j.est.2022.104940] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhu Y, Wang S, Ma J, Das P, Zheng S, Wu Z. Recent Status and Future Perspectives of 2D MXene for Micro-supercapacitors and Micro-batteries. Energy Storage Materials 2022. [DOI: 10.1016/j.ensm.2022.06.044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Meng Q, Kang C, Zhu J, Xiao X, Ma Y, Huo H, Zuo P, Du C, Lou S, Yin G. DNA Helix Structure Inspired Flexible Lithium-Ion Batteries with High Spiral Deformability and Long-Lived Cyclic Stability. Nano Lett 2022. [PMID: 35708317 DOI: 10.1021/acs.nanolett.2c01820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhang R, Shi X, Esan OC, An L. Organic Electrolytes Recycling From Spent Lithium‐Ion Batteries. Global Challenges. [DOI: 10.1002/gch2.202200050] [Reference Citation Analysis]
11 Li H, Wang H, Chan D, Xu Z, Wang K, Ge M, Zhang Y, Chen S, Tang Y. Nature‐inspired materials and designs for flexible lithium‐ion batteries. Carbon Energy. [DOI: 10.1002/cey2.187] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Raman V, Lee J, Kim H. Mechanically flexible multi-stacked ITO/PEDOT:PSS hybrid superlattice films for transparent conductive electrodes. Journal of Alloys and Compounds 2022;903:163799. [DOI: 10.1016/j.jallcom.2022.163799] [Reference Citation Analysis]
13 Ahn DB, Lee K, Lee S. Printed solid-state electrolytes for form factor-free Li-metal batteries. Current Opinion in Electrochemistry 2022;32:100889. [DOI: 10.1016/j.coelec.2021.100889] [Reference Citation Analysis]
14 Thakur A, Devi P. Paper-based flexible devices for energy harvesting, conversion and storage applications: A review. Nano Energy 2022;94:106927. [DOI: 10.1016/j.nanoen.2022.106927] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
15 Lin Q, Qian Z, Dai X, Sun Y, Wang R. Regulation of electronic structure of monolayer MoS2 by pressure. Rare Met . [DOI: 10.1007/s12598-021-01888-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Lu Z, Liu J, Kong L. Construction of MoSe2 nanoparticles anchored on layered microporous carbon heterostructure anode for high-performance and low-cost lithium-ion capacitors. Solid State Ionics 2022;374:115815. [DOI: 10.1016/j.ssi.2021.115815] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Jiang D, Liu Z, Xiao Z, Qian Z, Sun Y, Zeng Z, Wang R. Flexible electronics based on 2D transition metal dichalcogenides. J Mater Chem A 2021;10:89-121. [DOI: 10.1039/d1ta06741a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
18 Shi X, Das P, Wu Z. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Lett 2022;7:267-81. [DOI: 10.1021/acsenergylett.1c01854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ur-rehman H, Shuja A, Ali M, Khan MS, Murtaza I, Meng H. Investigation of charge and current dynamics in PVA–KOH gel electrolyte-based supercapacitor. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-021-07432-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Marriam I, Tebyetekerwa M, Xu Z, Chathuranga H, Chen S, Chen H, Zheng J, Du A, Yan C. Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials 2021;43:62-84. [DOI: 10.1016/j.ensm.2021.08.039] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc‐ion storage. Carbon Energy 2022;4:60-76. [DOI: 10.1002/cey2.154] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
22 Chen X, Lian H, Mo D, Ma X, Gong M, Sun D. Self-supporting 3D printed flexible liquid metal electrodes for electrostatically microfluidic valves. J Micromech Microeng 2021;31:115005. [DOI: 10.1088/1361-6439/ac2baf] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Shi Y, Xu C, Weng L, Wei Y, Chen B, Wang Y, Zhou J, Cai R. The effect of bending deformation on flexible electrodes during charging and discharging. Mechanics of Materials 2021;161:104024. [DOI: 10.1016/j.mechmat.2021.104024] [Reference Citation Analysis]
24 Zhao X, Li W, Li F, Hou Y, Lu T, Pan Y, Li J, Xu Y, He J. Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres. J Mater Sci 2021;56:18147-61. [DOI: 10.1007/s10853-021-06500-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhou Z, Luo Z, He Z, Zheng J, Li Y, Yan C, Mao J. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. Journal of Energy Chemistry 2021;60:591-8. [DOI: 10.1016/j.jechem.2021.01.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
26 Xu X, Zhang Y, Sun H, Zhou J, Liu Z, Qiu Z, Wang D, Yang C, Zeng Q, Peng Z, Guo S. Orthorhombic Cobalt Ditelluride with Te Vacancy Defects Anchoring on Elastic MXene Enables Efficient Potassium-Ion Storage. Adv Mater 2021;33:e2100272. [PMID: 34165842 DOI: 10.1002/adma.202100272] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 16.0] [Reference Citation Analysis]
27 Kwon M, Nam D, Lee S, Kim Y, Yeom B, Moon JH, Lee SW, Ko Y, Cho J. Textile‐Type Lithium‐Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reaction‐Mediated Assembly. Adv Energy Mater 2021;11:2101631. [DOI: 10.1002/aenm.202101631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Luo W, Zeng W, Quan H, Pan M, Wang Y, Chen D. Carbon dots decorated NiCo hydroxycarbonate hierarchical nanoarrays on carbon cloth with high areal capacitance as pseudocapacitor electrode. Journal of Alloys and Compounds 2021;868:159048. [DOI: 10.1016/j.jallcom.2021.159048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
29 Xu X, Tan YH, Ding J, Guan C. 3D Printing of Next‐generation Electrochemical Energy Storage Devices: from Multiscale to Multimaterial. Energy & Environ Materials 2022;5:427-38. [DOI: 10.1002/eem2.12175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Dai F, Wang X, Zheng S, Sun J, Huang Z, Xu B, Fan L, Wang R, Sun D, Wu Z. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. Chemical Engineering Journal 2021;413:127520. [DOI: 10.1016/j.cej.2020.127520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
31 Kong L, Liu M, Huang H, Xu Y, Bu X. Metal/Covalent‐Organic Framework Based Cathodes for Metal‐Ion Batteries. Advanced Energy Materials. [DOI: 10.1002/aenm.202100172] [Cited by in Crossref: 15] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
32 Wang J, Yu J, Wang T, Li C, Wei Y, Deng X, Chen X. Emerging intraoral biosensors. J Mater Chem B 2020;8:3341-56. [PMID: 31904075 DOI: 10.1039/c9tb02352f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
33 Qi Y, Xiao F, Wang H, Yan Y, Bao S, Xu M. A new polyanionic cathode with stable structure and superior kinetics for Na-ion batteries. Chemical Engineering Journal 2021;405:127035. [DOI: 10.1016/j.cej.2020.127035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
34 Yan Y, Liu X, Yan J, Guan C, Wang J. Electrospun Nanofibers for New Generation Flexible Energy Storage. Energy Environ Mater 2021;4:502-21. [DOI: 10.1002/eem2.12146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Cao J, Zhang X. Modulating the percolation network of polymer nanocomposites for flexible sensors. Journal of Applied Physics 2020;128:220901. [DOI: 10.1063/5.0033652] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Bao Y, Liu Y, Kuang Y, Fang D, Li T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Materials 2020;33:55-61. [DOI: 10.1016/j.ensm.2020.07.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
37 Luo X, Liang Y, Weng W, Hu Z, Zhang Y, Yang J, Yang L, Zhu M. Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Materials 2020;33:11-7. [DOI: 10.1016/j.ensm.2020.07.036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
38 Simon R, Chakraborty S, Darshini KS, Mary NL. Electrolyte dependent performance of graphene–mixed metal oxide composites for enhanced supercapacitor applications. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03708-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
39 Wang R, Sun Y, Yang K, Zheng J, Li Y, Qian Z, He Z, Zhong S. One-time sintering process to modify xLi2MnO3 (-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. Journal of Energy Chemistry 2020;50:271-9. [DOI: 10.1016/j.jechem.2020.03.042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
40 Shui Z, Liao X, Lei Y, Ni J, Liu Y, Dan Y, Zhao W, Chen X. MnO 2 Synergized with N/S Codoped Graphene as a Flexible Cathode Efficient Electrocatalyst for Advanced Honeycomb-Shaped Stretchable Aluminum–Air Batteries. Langmuir 2020;36:12954-62. [DOI: 10.1021/acs.langmuir.0c02246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
41 Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Adv Sci (Weinh) 2020;7:2001116. [PMID: 33101851 DOI: 10.1002/advs.202001116] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 31.0] [Reference Citation Analysis]
42 Simsek M, Hoecherl K, Schlosser M, Baeumner AJ, Wongkaew N. Printable 3D Carbon Nanofiber Networks with Embedded Metal Nanocatalysts. ACS Appl Mater Interfaces 2020;12:39533-40. [PMID: 32805926 DOI: 10.1021/acsami.0c08926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
43 Ahn DB, Lee S, Lee K, Kim J, Lee J, Lee S. Form factor-free, printed power sources. Energy Storage Materials 2020;29:92-112. [DOI: 10.1016/j.ensm.2020.04.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
44 Wan L, Chen D, Liu J, Zhang Y, Chen J, Xie M, Du C. Construction of FeNiP@CoNi-layered double hydroxide hybrid nanosheets on carbon cloth for high energy asymmetric supercapacitors. Journal of Power Sources 2020;465:228293. [DOI: 10.1016/j.jpowsour.2020.228293] [Cited by in Crossref: 26] [Cited by in F6Publishing: 49] [Article Influence: 13.0] [Reference Citation Analysis]
45 Wang R, Dai X, Qian Z, Zhong S, Chen S, Fan S, Zhang H, Wu F. Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. ACS Appl Mater Interfaces 2020;12:31628-36. [PMID: 32539327 DOI: 10.1021/acsami.0c08346] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 9.5] [Reference Citation Analysis]
46 Zhang P, Wang F, Yang S, Wang G, Yu M, Feng X. Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials 2020;28:160-87. [DOI: 10.1016/j.ensm.2020.02.029] [Cited by in Crossref: 38] [Cited by in F6Publishing: 55] [Article Influence: 19.0] [Reference Citation Analysis]
47 Bao Y, Chen H, Fang D. Mechanical analysis and design of flexible beads-and-thread lithium-ion battery. Extreme Mechanics Letters 2020;37:100717. [DOI: 10.1016/j.eml.2020.100717] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
48 He X, Hu Y, Tian H, Li Z, Huang P, Jiang J, Wang C. In-situ growth of flexible 3D hollow tubular Cu2S nanorods on Cu foam for high electrochemical performance supercapacitor. Journal of Materiomics 2020;6:192-9. [DOI: 10.1016/j.jmat.2020.01.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
49 Zeng W, Chen Q, Li Y, Chen C, Liu X, Yuan M, Wang R, Chen S, Xiao S. Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 by synergistic modification of sodium ion doping and silica coating. Solid State Ionics 2020;346:115214. [DOI: 10.1016/j.ssi.2019.115214] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
50 Wang R, Dai X, Qian Z, Sun Y, Fan S, Xiong K, Zhang H, Wu F. In Situ Surface Protection for Enhancing Stability and Performance of LiNi 0.5 Mn 0.3 Co 0.2 O 2 at 4.8 V: The Working Mechanisms. ACS Materials Lett 2020;2:280-90. [DOI: 10.1021/acsmaterialslett.9b00476] [Cited by in Crossref: 19] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
51 Lee K, Ahn DB, Kim J, Lee J, Lee S. Printed Built-In Power Sources. Matter 2020;2:345-59. [DOI: 10.1016/j.matt.2019.11.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
52 Lee Y, Chae S, Park H, Kim J, Jeong S. Stretchable and transparent supercapacitors based on extremely long MnO2/Au nanofiber networks. Chemical Engineering Journal 2020;382:122798. [DOI: 10.1016/j.cej.2019.122798] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
53 Wang T, Wang M, Yang L, Li Z, Loh XJ, Chen X. Cyber-Physiochemical Interfaces. Adv Mater 2020;32:e1905522. [PMID: 31944425 DOI: 10.1002/adma.201905522] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 17.0] [Reference Citation Analysis]
54 Wang Y, Zhang Y, Gao Y, Sheng G, ten Elshof JE. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy 2020;68:104306. [DOI: 10.1016/j.nanoen.2019.104306] [Cited by in Crossref: 33] [Cited by in F6Publishing: 48] [Article Influence: 16.5] [Reference Citation Analysis]
55 Bao Y, Hong G, Chen Y, Chen J, Chen H, Song W, Fang D. Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries. ACS Appl Mater Interfaces 2020;12:780-8. [DOI: 10.1021/acsami.9b18232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
56 Huang S, Zhu X, Sarkar S, Zhao Y. Challenges and opportunities for supercapacitors. APL Materials 2019;7:100901. [DOI: 10.1063/1.5116146] [Cited by in Crossref: 33] [Cited by in F6Publishing: 64] [Article Influence: 11.0] [Reference Citation Analysis]
57 Zhang N, Li Y, Xu J, Li J, Wei B, Ding Y, Amorim I, Thomas R, Thalluri SM, Liu Y, Yu G, Liu L. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano 2019;13:10612-21. [PMID: 31461617 DOI: 10.1021/acsnano.9b04810] [Cited by in Crossref: 124] [Cited by in F6Publishing: 121] [Article Influence: 41.3] [Reference Citation Analysis]
58 Huai J, Ma K, Lu Y, Chen T, Zhao Z. In‐situ One‐Step Preparation of Nickel‐Tipped N‐doped Carbon Nanotubes for Oxygen Reduction. ChemCatChem 2019;11:4818-21. [DOI: 10.1002/cctc.201901239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zhang Y, Wen G, Fan S, Ma W, Li S, Wu T, Yu Z, Zhao B. Alcoholic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with long-term cycle stability. Electrochimica Acta 2019;313:59-69. [DOI: 10.1016/j.electacta.2019.05.021] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
60 Miller NC, Grimm HM, Horne WS, Hutchison GR. Accurate electromechanical characterization of soft molecular monolayers using piezo force microscopy. Nanoscale Adv 2019;1:4834-43. [DOI: 10.1039/c9na00638a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
61 Yao L, Lin J, Yang H, Wu Q, Wang D, Li X, Deng L, Zheng Z. Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale 2019;11:11086-92. [DOI: 10.1039/c9nr02476j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]
62 Dong L, Yang W, Yang W, Li Y, Wu W, Wang G. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J Mater Chem A 2019;7:13810-32. [DOI: 10.1039/c9ta02678a] [Cited by in Crossref: 106] [Cited by in F6Publishing: 152] [Article Influence: 35.3] [Reference Citation Analysis]