BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arab HH, Safar MM, Shahin NN. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson's Disease Rat Model. ACS Chem Neurosci 2021;12:689-703. [PMID: 33543924 DOI: 10.1021/acschemneuro.0c00722] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Kamel AS, Wahid A, Abdelkader NF, Ibrahim WW. Boosting amygdaloid GABAergic and neurotrophic machinery via dapagliflozin-enhanced LKB1/AMPK signaling in anxious demented rats. Life Sci 2022;:121002. [PMID: 36191679 DOI: 10.1016/j.lfs.2022.121002] [Reference Citation Analysis]
2 Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022;13:1023999. [DOI: 10.3389/fimmu.2022.1023999] [Reference Citation Analysis]
3 Arab HH, Eid AH, El-Sheikh AAK, Arafa EA, Ashour AM. Irbesartan reprofiling for the amelioration of ethanol-induced gastric mucosal injury in rats: Role of inflammation, apoptosis, and autophagy. Life Sci 2022;308:120939. [PMID: 36115582 DOI: 10.1016/j.lfs.2022.120939] [Reference Citation Analysis]
4 Hsieh PL, Chu PM, Cheng HC, Huang YT, Chou WC, Tsai KL, Chan SH. Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int J Mol Sci 2022;23:10146. [PMID: 36077544 DOI: 10.3390/ijms231710146] [Reference Citation Analysis]
5 Qu X, Wen Y, Jiao J, Zhao J, Sun X, Wang F, Gao Y, Tan W, Xia Q, Wu H, Kong X. PARK7 deficiency inhibits fatty acid β-oxidation via PTEN to delay liver regeneration after hepatectomy. Clin Transl Med 2022;12:e1061. [PMID: 36149763 DOI: 10.1002/ctm2.1061] [Reference Citation Analysis]
6 Haas J, Berg D, Bosy-Westphal A, Schaeffer E. Parkinson's Disease and Sugar Intake-Reasons for and Consequences of a Still Unclear Craving. Nutrients 2022;14:3240. [PMID: 35956417 DOI: 10.3390/nu14153240] [Reference Citation Analysis]
7 Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Reference Citation Analysis]
8 Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022;:101549. [PMID: 35863639 DOI: 10.1016/j.molmet.2022.101549] [Reference Citation Analysis]
9 Zhou Y, Zhen Y, Wang G, Liu B. Deconvoluting the Complexity of Reactive Oxygen Species (ROS) in Neurodegenerative Diseases. Front Neuroanat 2022;16:910427. [PMID: 35756499 DOI: 10.3389/fnana.2022.910427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Arab HH, Abd El-Aal SA, Ashour AM, El-Sheikh AAK, Al Khabbaz HJ, Arafa EA, Mahmoud AM, Kabel AM. Targeting inflammation and redox perturbations by lisinopril mitigates Freund's adjuvant-induced arthritis in rats: role of JAK-2/STAT-3/RANKL axis, MMPs, and VEGF. Inflammopharmacology 2022. [PMID: 35764864 DOI: 10.1007/s10787-022-00998-w] [Reference Citation Analysis]
11 Motawi TK, Al-kady RH, Abdelraouf SM, Senousy MA. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.110002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, Efentakis P, Kampoukos S, Kostomitsopoulos N, Vilskersts R, Ikonomidis I, Lambadiari V, Zuurbier CJ, Latosinska A, Vlahou A, Dimitriadis G, Iliodromitis EK, Andreadou I. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol 2022;117:27. [PMID: 35581445 DOI: 10.1007/s00395-022-00934-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tharmaraja T, Ho JS, Sia C, Lim N, Chong YF, Lim AY, Rathakrishnan RR, Yeo LL, Sharma VK, Tan BY. Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Therapeutic Advances in Chronic Disease 2022;13:204062232210869. [DOI: 10.1177/20406223221086996] [Reference Citation Analysis]
14 Ibrahim WW, Kamel AS, Wahid A, Abdelkader NF. Dapagliflozin as an autophagic enhancer via LKB1/AMPK/SIRT1 pathway in ovariectomized/D-galactose Alzheimer's rat model. Inflammopharmacology 2022. [PMID: 35364737 DOI: 10.1007/s10787-022-00973-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Ahmed S, El-sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates Neurodegeneration through Antioxidant, Anti-inflammatory, and Modulation of α-synuclein and Parkin Levels in Rotenone-Induced Parkinson’s Disease in Rats. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.03.005] [Reference Citation Analysis]
16 Yang L, Liu D, Yan H, Chen K. Dapagliflozin attenuates cholesterol overloading-induced injury in mice hepatocytes with type 2 diabetes mellitus (T2DM) via eliminating oxidative damages. Cell Cycle 2022;:1-14. [PMID: 35100086 DOI: 10.1080/15384101.2022.2031429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Arciniegas Ruiz SM, Eldar-finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022;14:792364. [DOI: 10.3389/fnmol.2021.792364] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
18 Rizzo MR, Di Meo I, Polito R, Auriemma MC, Gambardella A, di Mauro G, Capuano A, Paolisso G. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res 2022;176:106062. [PMID: 35017046 DOI: 10.1016/j.phrs.2022.106062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021;12:757161. [PMID: 34887759 DOI: 10.3389/fphar.2021.757161] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
20 Lin KJ, Wang TJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Chuang JH, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Two Birds One Stone: The Neuroprotective Effect of Antidiabetic Agents on Parkinson Disease-Focus on Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors. Antioxidants (Basel) 2021;10:1935. [PMID: 34943038 DOI: 10.3390/antiox10121935] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Tsai KF, Chen YL, Chiou TT, Chu TH, Li LC, Ng HY, Lee WC, Lee CT. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel) 2021;10:1166. [PMID: 34439414 DOI: 10.3390/antiox10081166] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
22 Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021;155:112433. [PMID: 34302886 DOI: 10.1016/j.fct.2021.112433] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Arab HH, Ashour AM, Gad AM, Mahmoud AM, Kabel AM. Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage. Life Sci 2021;280:119743. [PMID: 34166711 DOI: 10.1016/j.lfs.2021.119743] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
24 Arab HH, Ashour AM, Alqarni AM, Arafa EA, Kabel AM. Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases. Biology (Basel) 2021;10:442. [PMID: 34067576 DOI: 10.3390/biology10050442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
25 Arab HH, Eid AH, Gad AM, Yahia R, Mahmoud AM, Kabel AM. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways. Food Sci Nutr 2021;9:3177-90. [PMID: 34136182 DOI: 10.1002/fsn3.2277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]