BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH. A Supramolecular Vaccine Platform Based on α-Helical Peptide Nanofibers. ACS Biomater Sci Eng 2017;3:3128-32. [PMID: 30740520 DOI: 10.1021/acsbiomaterials.7b00561] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Rosa E, de Mello L, Castelletto V, Dallas ML, Accardo A, Seitsonen J, Hamley IW. Cell Adhesion Motif-Functionalized Lipopeptides: Nanostructure and Selective Myoblast Cytocompatibility. Biomacromolecules 2023;24:213-24. [PMID: 36520063 DOI: 10.1021/acs.biomac.2c01068] [Reference Citation Analysis]
2 Ou BS, Picece VC, Baillet J, Gale EC, Powelll AE, Saouaf OM, Yan J, Hernandez HL, Appel EA. Nanoparticle-Conjugated TLR9 Agonists Improve the Potency, Durability, and Breadth of COVID-19 Vaccines.. [DOI: 10.1101/2023.01.02.522505] [Reference Citation Analysis]
3 Files MA, Kristjansson KM, Rudra JS, Endsley JJ. Nanomaterials-based vaccines to target intracellular bacterial pathogens. Front Microbiol 2022;13:1040105. [PMID: 36466676 DOI: 10.3389/fmicb.2022.1040105] [Reference Citation Analysis]
4 Jorgensen MD, Chmielewski J. Recent advances in coiled-coil peptide materials and their biomedical applications. Chem Commun (Camb) 2022. [PMID: 36172799 DOI: 10.1039/d2cc04434j] [Reference Citation Analysis]
5 Wu Y, Wen H, Bernstein ZJ, Hainline KM, Blakney TS, Congdon KL, Snyder DJ, Sampson JH, Sanchez-Perez L, Collier JH. Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. Sci Adv 2022;8:eabm7833. [PMID: 35857833 DOI: 10.1126/sciadv.abm7833] [Reference Citation Analysis]
6 Lam NT, McCluskey JB, Glover DJ. Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS Appl Bio Mater 2022. [PMID: 35766918 DOI: 10.1021/acsabm.2c00275] [Reference Citation Analysis]
7 Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022:S0168-3659(22)00378-9. [PMID: 35752254 DOI: 10.1016/j.jconrel.2022.06.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kreutzberger MAB, Wang S, Beltran LC, Tuachi A, Zuo X, Egelman EH, Conticello VP. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proc Natl Acad Sci U S A 2022;119:e2121586119. [PMID: 35533283 DOI: 10.1073/pnas.2121586119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022;140:43-75. [PMID: 34710626 DOI: 10.1016/j.actbio.2021.10.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
10 Hamley IW. Peptides for Vaccine Development. ACS Appl Bio Mater 2022. [PMID: 35195008 DOI: 10.1021/acsabm.1c01238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. Methods Mol Biol 2022;2412:309-38. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mohseninia A, Dehghani P, Bargahi A, Rad-Malekshahi M, Rahimikian R, Movahed A, Reza Farzaneh M, Mohammadi M. Harnessing self-assembling peptide nanofibers toprime robust tumor-specific CD8 T cell responses in mice. Int Immunopharmacol 2022;104:108522. [PMID: 35032825 DOI: 10.1016/j.intimp.2022.108522] [Reference Citation Analysis]
13 Jin S, Zhuo S, Takemoto Y, Li Y, Uesugi M. Self-assembling small-molecule adjuvants as antigen nano-carriers. Chem Commun 2022;58:12228-12231. [DOI: 10.1039/d2cc05016a] [Reference Citation Analysis]
14 O'Neill CL, Shrimali PC, Clapacs ZP, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021;133:153-67. [PMID: 34010691 DOI: 10.1016/j.actbio.2021.05.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Bhorkar I, Dhoble AS. Advances in the synthesis and application of self-assembling biomaterials. Prog Biophys Mol Biol 2021:S0079-6107(21)00091-2. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Fries CN, Chen JL, Dennis ML, Votaw NL, Eudailey J, Watts BE, Hainline KM, Cain DW, Barfield R, Chan C, Moody MA, Haynes BF, Saunders KO, Permar SR, Fouda GG, Collier JH. HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. Sci Rep 2021;11:14494. [PMID: 34262096 DOI: 10.1038/s41598-021-93702-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021;174:482-503. [PMID: 34015417 DOI: 10.1016/j.addr.2021.05.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
18 Nie J, Zhang X, Wang W, Ren J, Zeng AP. Tunable Protein Hydrogels: Present State and Emerging Development. Adv Biochem Eng Biotechnol 2021;178:63-97. [PMID: 33860358 DOI: 10.1007/10_2021_167] [Reference Citation Analysis]
19 Qiu Y, Clarke M, Wan LTL, Lo JCK, Mason AJ, Lam JKW. Optimization of PEGylated KL4 Peptide for siRNA Delivery with Improved Pulmonary Tolerance. Mol Pharm 2021;18:2218-32. [PMID: 34014665 DOI: 10.1021/acs.molpharmaceut.0c01242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Votaw NL, Collier L, Curvino EJ, Wu Y, Fries CN, Ojeda MT, Collier JH. Randomized peptide assemblies for enhancing immune responses to nanomaterials. Biomaterials 2021;273:120825. [PMID: 33901731 DOI: 10.1016/j.biomaterials.2021.120825] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Kelly SH, Cossette BJ, Varadhan AK, Wu Y, Collier JH. Titrating Polyarginine into Nanofibers Enhances Cyclic-Dinucleotide Adjuvanticity in Vitro and after Sublingual Immunization. ACS Biomater Sci Eng 2021;7:1876-88. [DOI: 10.1021/acsbiomaterials.0c01429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
22 Castelletto V, Seitsonen J, Ruokolainen J, Hamley IW. Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter 2021;17:3096-104. [PMID: 33598669 DOI: 10.1039/d0sm02095h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on self‐assembled peptide scaffolds. Peptide Science 2021;113. [DOI: 10.1002/pep2.24224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021;38:101119. [PMID: 34267794 DOI: 10.1016/j.nantod.2021.101119] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 32.0] [Reference Citation Analysis]
25 Kelly SH, Opolot EE, Wu Y, Cossette B, Varadhan AK, Collier JH. Tabletized Supramolecular Assemblies for Sublingual Peptide Immunization. Adv Healthc Mater 2021;10:e2001614. [PMID: 33634607 DOI: 10.1002/adhm.202001614] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Nguyen QD, Kikuchi K, Maity B, Ueno T. The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021;22:1934. [PMID: 33669238 DOI: 10.3390/ijms22041934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
27 Wang F, Gnewou O, Modlin C, Beltran LC, Xu C, Su Z, Juneja P, Grigoryan G, Egelman EH, Conticello VP. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat Commun 2021;12:407. [PMID: 33462223 DOI: 10.1038/s41467-020-20689-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
28 Roth GA, Saouaf OM, Smith AAA, Gale EC, Hernández MA, Idoyaga J, Appel EA. Prolonged Codelivery of Hemagglutinin and a TLR7/8 Agonist in a Supramolecular Polymer-Nanoparticle Hydrogel Enhances Potency and Breadth of Influenza Vaccination. ACS Biomater Sci Eng 2021;7:1889-99. [PMID: 33404236 DOI: 10.1021/acsbiomaterials.0c01496] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
29 Song H, Su Q, Huang P, Zhang C, Wang W. Self-assembling, self-adjuvanting and fully synthetic peptide nanovaccine for cancer immunotherapy. Smart Materials in Medicine 2021;2:237-49. [DOI: 10.1016/j.smaim.2021.07.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
30 Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020;120:13434-60. [DOI: 10.1021/acs.chemrev.0c00690] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 20.7] [Reference Citation Analysis]
31 Froimchuk E, Carey ST, Edwards C, Jewell CM. Self-Assembly as a Molecular Strategy to Improve Immunotherapy. Acc Chem Res 2020;53:2534-45. [PMID: 33074649 DOI: 10.1021/acs.accounts.0c00438] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
32 Shi X, Song H, Wang C, Zhang C, Huang P, Kong D, Zhang J, Wang W. Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chemical Engineering Journal 2020;399:125854. [DOI: 10.1016/j.cej.2020.125854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
33 Abudula T, Bhatt K, Eggermont LJ, O'Hare N, Memic A, Bencherif SA. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front Chem 2020;8:598160. [PMID: 33195107 DOI: 10.3389/fchem.2020.598160] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
34 Roth GA, Gale EC, Alcántara-Hernández M, Luo W, Axpe E, Verma R, Yin Q, Yu AC, Lopez Hernandez H, Maikawa CL, Smith AAA, Davis MM, Pulendran B, Idoyaga J, Appel EA. Injectable Hydrogels for Sustained Codelivery of Subunit Vaccines Enhance Humoral Immunity. ACS Cent Sci 2020;6:1800-12. [PMID: 33145416 DOI: 10.1021/acscentsci.0c00732] [Cited by in Crossref: 51] [Cited by in F6Publishing: 59] [Article Influence: 17.0] [Reference Citation Analysis]
35 Li X, Wang Y, Wang S, Liang C, Pu G, Chen Y, Wang L, Xu H, Shi Y, Yang Z. A strong CD8+ T cell-stimulating supramolecular hydrogel. Nanoscale 2020;12:2111-7. [PMID: 31913398 DOI: 10.1039/c9nr08916k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
36 Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020;63:14184-96. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
37 Fries CN, Wu Y, Kelly SH, Wolf M, Votaw NL, Zauscher S, Collier JH. Controlled Lengthwise Assembly of Helical Peptide Nanofibers to Modulate CD8+ T-Cell Responses. Adv Mater 2020;32:e2003310. [PMID: 32820582 DOI: 10.1002/adma.202003310] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
38 Chang R, Yan X. Supramolecular Immunotherapy of Cancer Based on the Self‐Assembling Peptide Design. Small Structures 2020;1:2000068. [DOI: 10.1002/sstr.202000068] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
39 Castelletto V, Seitsonen J, Ruokolainen J, Piras C, Cramer R, Edwards-Gayle CJC, Hamley IW. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem Commun (Camb) 2020;56:11977-80. [PMID: 33033814 DOI: 10.1039/d0cc04299d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
40 Shores LS, Kelly SH, Hainline KM, Suwanpradid J, MacLeod AS, Collier JH. Multifactorial Design of a Supramolecular Peptide Anti-IL-17 Vaccine Toward the Treatment of Psoriasis. Front Immunol 2020;11:1855. [PMID: 32973764 DOI: 10.3389/fimmu.2020.01855] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
41 Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol 2021;16:1-14. [PMID: 32807876 DOI: 10.1038/s41565-020-0739-9] [Cited by in Crossref: 69] [Cited by in F6Publishing: 77] [Article Influence: 23.0] [Reference Citation Analysis]
42 Roth GA, Gale EC, Alcántara-hernández M, Luo W, Axpe E, Verma R, Yin Q, Yu AC, Hernandez HL, Maikawa CL, Smith AAA, Davis MM, Pulendran B, Idoyaga J, Appel EA. Injectable hydrogels for sustained co-delivery of subunit vaccines enhance humoral immunity.. [DOI: 10.1101/2020.05.26.117465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
43 Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH. Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: influence of integrated T-cell epitopes. Biomater Sci 2020;8:3522-35. [PMID: 32452474 DOI: 10.1039/d0bm00521e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
44 Huang Z, Song W, Chen X. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. Front Chem 2020;8:380. [PMID: 32528926 DOI: 10.3389/fchem.2020.00380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
45 Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. Nanomaterials (Basel) 2020;10:E1008. [PMID: 32466176 DOI: 10.3390/nano10051008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
46 Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020;108:1-21. [PMID: 32268235 DOI: 10.1016/j.actbio.2020.03.020] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]
47 Eppler HB, Jewell CM. Biomaterials as Tools to Decode Immunity. Adv Mater 2020;32:e1903367. [PMID: 31782844 DOI: 10.1002/adma.201903367] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
48 Kelly SH, Wu Y, Varadhan AK, Curvino EJ, Chong AS, Collier JH. Enabling sublingual peptide immunization with molecular self-assemblies. Biomaterials 2020;241:119903. [PMID: 32143059 DOI: 10.1016/j.biomaterials.2020.119903] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
49 Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019;9:7807-25. [PMID: 31695802 DOI: 10.7150/thno.37194] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 9.8] [Reference Citation Analysis]
50 Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. Adv Therap 2019;2:1900048. [DOI: 10.1002/adtp.201900048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
51 Beesley JL, Woolfson DN. The de novo design of α-helical peptides for supramolecular self-assembly. Curr Opin Biotechnol 2019;58:175-82. [PMID: 31039508 DOI: 10.1016/j.copbio.2019.03.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 10.5] [Reference Citation Analysis]
52 Si Y, Wen Y, Kelly SH, Chong AS, Collier JH. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. J Control Release 2018;282:120-30. [PMID: 29673645 DOI: 10.1016/j.jconrel.2018.04.031] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 11.8] [Reference Citation Analysis]
53 Sahoo JK, Braegelman AS, Webber MJ. Immunoengineering with Supramolecular Peptide Biomaterials. J Indian Inst Sci 2018;98:69-79. [DOI: 10.1007/s41745-018-0060-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
54 Tsoras AN, Champion JA. Cross-Linked Peptide Nanoclusters for Delivery of Oncofetal Antigen as a Cancer Vaccine. Bioconjugate Chem 2018;29:776-85. [DOI: 10.1021/acs.bioconjchem.8b00079] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
55 Worthington P, Pochan D. The Design and Applications of Beta-Hairpin Peptide Hydrogels. ACS Symposium Series 2018. [DOI: 10.1021/bk-2018-1296.ch008] [Reference Citation Analysis]