BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Makvandi P, Ghomi M, Padil VVT, Shalchy F, Ashrafizadeh M, Askarinejad S, Pourreza N, Zarrabi A, Nazarzadeh Zare E, Kooti M, Mokhtari B, Borzacchiello A, Tay FR. Biofabricated Nanostructures and Their Composites in Regenerative Medicine. ACS Appl Nano Mater 2020;3:6210-38. [DOI: 10.1021/acsanm.0c01164] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Feng Y, Cölfen H, Xiong R. Organized mineralized cellulose nanostructures for biomedical applications. J Mater Chem B 2023. [PMID: 36892529 DOI: 10.1039/d2tb02611b] [Reference Citation Analysis]
2 Jafarzadeh S, Nooshkam M, Zargar M, Garavand F, Ghosh S, Hadidi M, Forough M. Green synthesis of nanomaterials for smart biopolymer packaging: challenges and outlooks. J Nanostruct Chem 2023. [DOI: 10.1007/s40097-023-00527-3] [Reference Citation Analysis]
3 Argenziano R, Agustin-Salazar S, Panaro A, Calarco A, Di Salle A, Aprea P, Cerruti P, Panzella L, Napolitano A. Combining the Potent Reducing Properties of Pecan Nutshell with a Solvent-Free Mechanochemical Approach for Synthesizing High Ag(0) Content-Silver Nanoparticles: An Eco-Friendly Route to an Efficient Multifunctional Photocatalytic, Antibacterial, and Antioxidant Material. Nanomaterials (Basel) 2023;13. [PMID: 36903701 DOI: 10.3390/nano13050821] [Reference Citation Analysis]
4 Khan E, Khan S, Khan A. Polymer nanocomposites for biomedical applications. Smart Polymer Nanocomposites 2023. [DOI: 10.1016/b978-0-323-91611-0.00025-6] [Reference Citation Analysis]
5 Wang Z, Li K, Xu Q, Fu G, Li H, Yang W. Preparation and evaluation of chitosan- and hyaluronic acid-grafted pullulan succinate films for skin wound healing. Int J Biol Macromol 2022;223:1432-42. [PMID: 36400206 DOI: 10.1016/j.ijbiomac.2022.11.100] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Elsilk SE, Khalil MA, Aboshady TA, Alsalmi FA, Ali SS. Streptomyces rochei MS-37 as a Novel Marine Actinobacterium for Green Biosynthesis of Silver Nanoparticles and Their Biomedical Applications. Molecules 2022;27:7296. [DOI: 10.3390/molecules27217296] [Reference Citation Analysis]
7 Matveeva VG, Bronstein LM. From renewable biomass to nanomaterials: Does biomass origin matter? Progress in Materials Science 2022;130:100999. [DOI: 10.1016/j.pmatsci.2022.100999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhao D, Chang Q, Fan J, Shu Q, Niu S, Li D, Xie Y, Deng X. Effects of ε‐polylysine and chitosan functionalization on pulp board properties for food packaging. J of Applied Polymer Sci. [DOI: 10.1002/app.52770] [Reference Citation Analysis]
9 Podder S, Ghosh CK, Das A, Hardy JG. Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. emergent mater . [DOI: 10.1007/s42247-022-00361-3] [Reference Citation Analysis]
10 Khalil MA, El-shanshoury AER, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J, Ali SS. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Front Microbiol 2022;12:705673. [DOI: 10.3389/fmicb.2021.705673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Akshay Kumar K, Ramakrishnan RK, Černík M, Padil VV. Tree gum-based nanostructures and their biomedical applications. Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications 2022. [DOI: 10.1016/b978-0-323-90986-0.00008-x] [Reference Citation Analysis]
12 Patel M, Patel R, Rai M. Nanomedicines. Nanotechnology in Medicine 2021. [DOI: 10.1002/9781119769897.ch1] [Reference Citation Analysis]
13 Ogundare SA, Moodley V, Amaku JF, Ogunmoye AO, Atewolara-odule OC, Olubomehin OO, Awokoya KN, Sanyaolu NO, Ibikunle AA, van Zyl WE. Nanocrystalline cellulose derived from melon seed shell (Citrullus colocynthis L.) for reduction and stabilization of silver nanoparticles: Synthesis and catalytic activity. Carbohydrate Polymer Technologies and Applications 2021;2:100134. [DOI: 10.1016/j.carpta.2021.100134] [Reference Citation Analysis]
14 Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. Journal of Saudi Chemical Society 2021;25:101304. [DOI: 10.1016/j.jscs.2021.101304] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
15 Mahtabian S, Mirhadi SM, Tavangarian F. From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds for bone tissue engineering applications. Ceramics International 2021;47:21633-41. [DOI: 10.1016/j.ceramint.2021.04.176] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Valdez-Salas B, Beltrán-Partida E, Curiel-Álvarez M, Guerra-Balcázar M, Arjona N. Crystallographic Pattern Mediates Fungal Nanoadhesion Bond Formation on Titanium Nanotubes. ACS Omega 2021;6:15625-36. [PMID: 34179607 DOI: 10.1021/acsomega.1c00475] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal‐Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small 2021;17:2007073. [DOI: 10.1002/smll.202007073] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
18 Deng J, Ren L, Pan Y, Gao H, Meng X. Antifungal property of acrylic denture soft liner containing silver nanoparticles synthesized in situ. J Dent 2021;106:103589. [PMID: 33524431 DOI: 10.1016/j.jdent.2021.103589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang D, Ouyang Q, Hu Z, Lu S, Quan W, Li P, Chen Y, Li S. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol 2021;173:591-606. [PMID: 33508359 DOI: 10.1016/j.ijbiomac.2021.01.157] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
20 Cavalli PA, Wanderlind EH, Hemmer JV, Gerlach OMS, Emmerich AK, Bella-cruz A, Tamanaha M, Almerindo GI. Pterocladiella capillacea -stabilized silver nanoparticles as a green approach toward antibacterial biomaterials. New J Chem 2021;45:3382-6. [DOI: 10.1039/d0nj05150k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 2021;167:182-92. [PMID: 33259842 DOI: 10.1016/j.ijbiomac.2020.11.168] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 18.0] [Reference Citation Analysis]
22 Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci 2020;283:102236. [PMID: 32829011 DOI: 10.1016/j.cis.2020.102236] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
23 Ur Rehman MA. Zein/Bioactive Glass Coatings with Controlled Degradation of Magnesium under Physiological Conditions: Designed for Orthopedic Implants. Prosthesis 2020;2:211-24. [DOI: 10.3390/prosthesis2030018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]