BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lara HH, Ixtepan-Turrent L, Jose Yacaman M, Lopez-Ribot J. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS Appl Mater Interfaces 2020;12:21183-91. [PMID: 31944650 DOI: 10.1021/acsami.9b20708] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Vazquez-munoz R, Lopez-ribot JL. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020;11:15. [DOI: 10.3390/challe11020015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
2 Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021;9:807. [PMID: 33920482 DOI: 10.3390/microorganisms9040807] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Miesen TJ, Engstrom AM, Frost DC, Ajjarapu R, Ajjarapu R, Lira CN, Mackiewicz MR. A hybrid lipid membrane coating “shape-locks” silver nanoparticles to prevent surface oxidation and silver ion dissolution. RSC Adv 2020;10:15677-93. [DOI: 10.1039/d0ra01727b] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 John A, Shaji A, Velayudhannair K, M N, Krishnamoorthy G. Anti-bacterial and biocompatibility properties of green synthesized silver nanoparticles using Parkia biglandulosa (Fabales:Fabaceae) leaf extract. Current Research in Green and Sustainable Chemistry 2021;4:100112. [DOI: 10.1016/j.crgsc.2021.100112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Raj V, Raorane CJ, Lee JH, Lee J. Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea. ACS Appl Mater Interfaces 2021;13:47354-70. [PMID: 34596375 DOI: 10.1021/acsami.1c12617] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Fonseca MS, Rodrigues DM, Sokolonski AR, Stanisic D, Tomé LM, Góes-Neto A, Azevedo V, Meyer R, Araújo DB, Tasic L, Portela RD. Activity of Fusarium oxysporum-Based Silver Nanoparticles on Candida spp. Oral Isolates. Nanomaterials (Basel) 2022;12:501. [PMID: 35159845 DOI: 10.3390/nano12030501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021;18:342-58. [PMID: 33314723 DOI: 10.1111/iwj.13537] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Marena GD, Ramos MADS, Carvalho GC, de Lima LC, Nascimento ALCSD, Sábio RM, Rodero CF, Spósito L, Bauab TM, Chorilli M. Development and characterization of an amphotericin B - loaded nanoemulsion applied to Candida auris biofilms control. Journal of Drug Delivery Science and Technology 2022;74:103566. [DOI: 10.1016/j.jddst.2022.103566] [Reference Citation Analysis]
9 Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, Fajer-Ávila EJ, Chávez-Sánchez C, Lara HH, García-Gasca A. Molecular Effects of Silver Nanoparticles on Monogenean Parasites: Lessons from Caenorhabditis elegans. Int J Mol Sci 2020;21:E5889. [PMID: 32824343 DOI: 10.3390/ijms21165889] [Reference Citation Analysis]
10 Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021;12:638609. [PMID: 33995297 DOI: 10.3389/fmicb.2021.638609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021;9:634. [PMID: 33803604 DOI: 10.3390/microorganisms9030634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Eldesouky HE, Lanman NA, Hazbun TR, Seleem MN. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence 2020;11:1466-81. [PMID: 33100149 DOI: 10.1080/21505594.2020.1838741] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021;10:1303. [PMID: 34684252 DOI: 10.3390/pathogens10101303] [Reference Citation Analysis]
14 Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS Omega 2020;5:28441-51. [PMID: 33195894 DOI: 10.1021/acsomega.0c02007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
15 Smirnov O, Kalynovskyi V, Yumyna Y, Zelena P, Levenets T, Kovalenko M, Dzhagan V, Skoryk M. Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia. [DOI: 10.1007/s11756-022-01117-4] [Reference Citation Analysis]
16 Lara HH, Lopez-Ribot JL. Inhibition of Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 2020;9:E784. [PMID: 32992727 DOI: 10.3390/pathogens9100784] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Bratek-Skicki A, Sadowska M, Maciejewska-Prończuk J, Adamczyk Z. Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements. Nanomaterials (Basel) 2021;11:E145. [PMID: 33435619 DOI: 10.3390/nano11010145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Vila T, Montelongo-Jauregui D, Ahmed H, Puthran T, Sultan AS, Jabra-Rizk MA. Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. mSphere 2020;5:e00760-20. [PMID: 32759340 DOI: 10.1128/mSphere.00760-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Bhatnagar S, Ogbonna CN, Ogbonna JC, Aoyagi H. Effect of physicochemical factors on extracellular fungal pigment-mediated biofabrication of silver nanoparticles. Green Chemistry Letters and Reviews 2022;15:274-84. [DOI: 10.1080/17518253.2022.2036376] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Malik MA, Batterjee MG, Kamli MR, Alzahrani KA, Danish EY, Nabi A. Polyphenol-Capped Biogenic Synthesis of Noble Metallic Silver Nanoparticles for Antifungal Activity against Candida auris. J Fungi (Basel) 2022;8:639. [PMID: 35736122 DOI: 10.3390/jof8060639] [Reference Citation Analysis]
21 de Moraes DC. Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021;32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Reference Citation Analysis]
22 Faísca F, Filipe L, Petrovski Z, Santos MM, Gago S, Branco LC. Ionic Systems and Nanomaterials as Antiseptic and Disinfectant Agents for Surface Applications: A Review. Surfaces 2021;4:169-90. [DOI: 10.3390/surfaces4020016] [Reference Citation Analysis]
23 Barantsevich N, Barantsevich E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022;11:718. [DOI: 10.3390/antibiotics11060718] [Reference Citation Analysis]
24 González-fernández S, Lozano-iturbe V, Menéndez MF, Ordiales H, Fernández-vega I, Merayo J, Vazquez F, Quirós LM, Martín C. A Promising Antifungal and Antiamoebic Effect of Silver Nanorings, a Novel Type of AgNP. Antibiotics 2022;11:1054. [DOI: 10.3390/antibiotics11081054] [Reference Citation Analysis]
25 Ray S, Jin JO, Choi I, Kim M. Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus. Appl Biochem Biotechnol 2022. [PMID: 35593953 DOI: 10.1007/s12010-022-03971-z] [Reference Citation Analysis]
26 Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Silver Nanoantibiotics Display Strong Antifungal Activity Against the Emergent Multidrug-Resistant Yeast Candida auris Under Both Planktonic and Biofilm Growing Conditions. Front Microbiol 2020;11:1673. [PMID: 32849347 DOI: 10.3389/fmicb.2020.01673] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Vera-González N, Shukla A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front Microbiol 2020;11:538602. [PMID: 33042051 DOI: 10.3389/fmicb.2020.538602] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
28 Hu S, Zhu F, Jiang W, Wang Y, Quan Y, Zhang G, Gu F, Yang Y. Retrospective Analysis of the Clinical Characteristics of Candida auris Infection Worldwide From 2009 to 2020. Front Microbiol 2021;12:658329. [PMID: 34093471 DOI: 10.3389/fmicb.2021.658329] [Reference Citation Analysis]
29 Ciriminna R, Albo Y, Pagliaro M. New Antivirals and Antibacterials Based on Silver Nanoparticles. ChemMedChem 2020;15:1619-23. [PMID: 32657536 DOI: 10.1002/cmdc.202000390] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
30 Fan X, Yahia L, Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology (Basel) 2021;10:137. [PMID: 33578705 DOI: 10.3390/biology10020137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into Shape-Based Silver Nanoparticles: A Weapon to Cope with Pathogenic Attacks. ACS Sustainable Chem Eng 2021;9:12476-507. [DOI: 10.1021/acssuschemeng.1c03797] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
32 Sadowska M, Cieśla M, Adamczyk Z. Nanoparticle deposition on heterogeneous surfaces: Random sequential adsorption modeling and experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;617:126296. [DOI: 10.1016/j.colsurfa.2021.126296] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
33 Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Bismuth Nanoantibiotics Display Anticandidal Activity and Disrupt the Biofilm and Cell Morphology of the Emergent Pathogenic Yeast Candida auris. Antibiotics (Basel) 2020;9:E461. [PMID: 32751405 DOI: 10.3390/antibiotics9080461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
34 Žalnėravičius R, Klimas V, Paškevičius A, Grincienė G, Karpicz R, Jagminas A, Ramanavičius A. Highly efficient antimicrobial agents based on sulfur-enriched, hydrophilic molybdenum disulfide nano/microparticles and coatings functionalized with palladium nanoparticles. J Colloid Interface Sci 2021;591:115-28. [PMID: 33596501 DOI: 10.1016/j.jcis.2021.01.103] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 de Souza MGM, Batista JP, de Faria EH, Ciuffi KJ, Rocha LA, Nassar EJ, da Silva JVL, Oliveira MF, Maia IA. Silver nanoparticle incorporation into flexible polyamide 12 membranes. J Sol-Gel Sci Technol. [DOI: 10.1007/s10971-021-05693-w] [Reference Citation Analysis]