BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Miao J, Liu H, Li Y, Zhang X. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics. ACS Appl Mater Interfaces 2018;10:23037-47. [PMID: 29905073 DOI: 10.1021/acsami.8b04291] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Fukada K, Tajima T, Seyama M. Thermally Degradable Inductors with Water-Resistant Metal Leaf/Oleogel Wires and Gelatin/Chitosan Hydrogel Films. ACS Appl Mater Interfaces 2022. [PMID: 36095329 DOI: 10.1021/acsami.2c12380] [Reference Citation Analysis]
2 Hu Q, Wan J, Luo Y, Li S, Cao X, Feng W, Liang Y, Wang W, Niu L. Electrochemical Detection of Femtomolar DNA via Boronate Affinity-Mediated Decoration of Polysaccharides with Electroactive Tags. Anal Chem 2022. [PMID: 36070236 DOI: 10.1021/acs.analchem.2c02894] [Reference Citation Analysis]
3 Xu J, Zhao X, Zhao X, Wang Z, Tang Q, Xu H, Liu Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. Small Science. [DOI: 10.1002/smsc.202200028] [Reference Citation Analysis]
4 Zhao J, Wang S, Wang Q, Zhang D. Closed-loop recycling and fabrication of hydrophilic CNT films with high performance. Nanotechnology Reviews 2021;11:1827-41. [DOI: 10.1515/ntrev-2022-0075] [Reference Citation Analysis]
5 Xiang H, Li Z, Liu H, Chen T, Zhou H, Huang W. Green flexible electronics based on starch. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00147-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Guan H, Fan T, Bai H, Su Y, Liu Z, Ning X, Yu M, Ramakrishna S, Long Y. A waste biomass-derived photothermic material with high salt-resistance for efficient solar evaporation. Carbon 2022;188:265-75. [DOI: 10.1016/j.carbon.2021.12.029] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 16.0] [Reference Citation Analysis]
7 Zhao S, Ahn J. Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies. Materials Science and Engineering: R: Reports 2022;148:100672. [DOI: 10.1016/j.mser.2022.100672] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Park G, Lee K, Kwon G, Kim D, Jeon Y, You J. Green nanoarchitectonics for next generation electronics devices: patterning of conductive nanowires on regenerated cellulose substrates. Cellulose. [DOI: 10.1007/s10570-022-04435-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Fan Q, Miao J, Liu X, Zuo X, Zhang W, Tian M, Zhu S, Qu L, Zhang X. Biomimetic Hierarchically Silver Nanowire Interwoven MXene Mesh for Flexible Transparent Electrodes and Invisible Camouflage Electronics. Nano Lett 2022. [PMID: 35019663 DOI: 10.1021/acs.nanolett.1c04185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jeong JP, Kim Y, Hu Y, Jung S. Bacterial Succinoglycans: Structure, Physical Properties, and Applications. Polymers (Basel) 2022;14:276. [PMID: 35054683 DOI: 10.3390/polym14020276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhuang A, Huang X, Fan S, Yao X, Zhu B, Zhang Y. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS Appl Mater Interfaces 2021. [PMID: 34935351 DOI: 10.1021/acsami.1c16855] [Reference Citation Analysis]
12 Fukada K, Tajima T, Seyama M. Thermoresponsive Gelatin/Chitosan Hydrogel Films for a Degradable Capacitor. ACS Appl Mater Interfaces 2021;13:59006-11. [PMID: 34817996 DOI: 10.1021/acsami.1c14905] [Reference Citation Analysis]
13 Niu H, Zhang K, Myllymäki S, Ismail MY, Kinnunen P, Illikainen M, Liimatainen H. Nanostructured and Advanced Designs from Biomass and Mineral Residues: Multifunctional Biopolymer Hydrogels and Hybrid Films Reinforced with Exfoliated Mica Nanosheets. ACS Appl Mater Interfaces 2021;13:57841-50. [PMID: 34813268 DOI: 10.1021/acsami.1c18911] [Reference Citation Analysis]
14 Fu B, Mei S, Su X, Chen H, Zhu J, Zheng Z, Lin H, Dai C, Luque R, Yang DP. Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int J Biol Macromol 2021;191:1164-74. [PMID: 34597703 DOI: 10.1016/j.ijbiomac.2021.09.171] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
15 Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. Emergent Mater 2021;:1-49. [PMID: 34849454 DOI: 10.1007/s42247-021-00319-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Stucchi E, Maksimovic K, Bertolacci L, Viola FA, Athanassiou A, Caironi M. Biodegradable all-polymer field-effect transistors printed on Mater-Bi. Journal of Information Display 2021;22:247-56. [DOI: 10.1080/15980316.2021.1990145] [Reference Citation Analysis]
17 Kumar R, Mishra I, Kumar G. Synthesis and Evaluation of Mechanical Property of Chitosan/PVP Blend Through Nanoindentation-A Nanoscale Study. J Polym Environ 2021;29:3770-8. [DOI: 10.1007/s10924-021-02143-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
18 Chen Y, Guo M, Xu L, Cai Y, Tian X, Liao X, Wang Z, Meng J, Hong X, Mai L. In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Res 2022;15:1492-9. [DOI: 10.1007/s12274-021-3693-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Cheng H, Chen L, Mcclements DJ, Yang T, Zhang Z, Ren F, Miao M, Tian Y, Jin Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology 2021;114:70-82. [DOI: 10.1016/j.tifs.2021.05.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
20 Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent Advances in Carbon Material‐Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv Funct Materials 2021;31:2104288. [DOI: 10.1002/adfm.202104288] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
21 Zhang L, Li J, Yue S, He H, Ouyang J. Biocompatible Blends of an Intrinsically Conducting Polymer as Stretchable Strain Sensors for Real‐Time Monitoring of Starch‐Based Food Processing. Adv Funct Materials 2021;31:2102745. [DOI: 10.1002/adfm.202102745] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
22 Li Z, Li M, Fan Q, Qi X, Qu L, Tian M. Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS Appl Mater Interfaces 2021;13:14778-85. [PMID: 33754690 DOI: 10.1021/acsami.1c02615] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Zhuang A, Pan Q, Qian Y, Fan S, Yao X, Song L, Zhu B, Zhang Y. Transparent Conductive Silk Film with a PEDOT-OH Nano Layer as an Electroactive Cell Interface. ACS Biomater Sci Eng 2021;7:1202-15. [PMID: 33599501 DOI: 10.1021/acsbiomaterials.0c01665] [Reference Citation Analysis]
24 Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Appl Bio Mater 2021;4:163-94. [PMID: 33842859 DOI: 10.1021/acsabm.0c01139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
25 Baldo TA, de Lima LF, Mendes LF, de Araujo WR, Paixão TRLC, Coltro WKT. Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Appl Electron Mater 2021;3:68-100. [DOI: 10.1021/acsaelm.0c00735] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
26 Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv Mater 2020;32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
27 Ghasemlou M, Daver F, Ivanova EP, Brkljaca R, Adhikari B. Assessment of interfacial interactions between starch and non-isocyanate polyurethanes in their hybrids. Carbohydr Polym 2020;246:116656. [PMID: 32747288 DOI: 10.1016/j.carbpol.2020.116656] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Torres FG, De-la-Torre GE. Polysaccharide-based triboelectric nanogenerators: A review. Carbohydr Polym 2021;251:117055. [PMID: 33142607 DOI: 10.1016/j.carbpol.2020.117055] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
29 Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. Sensors (Basel) 2020;20:E4484. [PMID: 32796604 DOI: 10.3390/s20164484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
30 Wu Y, Ye D, Shan Y, He S, Su Z, Liang J, Zheng J, Yang Z, Yang H, Xu W, Jiang H. Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Adv Mater Technol 2020;5:2000100. [DOI: 10.1002/admt.202000100] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
31 Pradhan S, Brooks AK, Yadavalli VK. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020;7:100065. [PMID: 32613186 DOI: 10.1016/j.mtbio.2020.100065] [Cited by in Crossref: 18] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
32 Sun S, Wang Y, Li L, Huang Z, Zhou H. Thermoplastic biomass transparent films directly fabricated by chitosan nanospheres. Polymer 2020;192:122335. [DOI: 10.1016/j.polymer.2020.122335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Zhai Y, Yu Y, Zhou K, Yun Z, Huang W, Liu H, Xia Q, Dai K, Zheng G, Liu C, Shen C. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chemical Engineering Journal 2020;382:122985. [DOI: 10.1016/j.cej.2019.122985] [Cited by in Crossref: 39] [Cited by in F6Publishing: 13] [Article Influence: 19.5] [Reference Citation Analysis]
34 Tong R, Chen G, Tian J, He M. Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydrate Polymers 2020;227:115366. [DOI: 10.1016/j.carbpol.2019.115366] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
35 Tong R, Chen G, Tian J, He M. Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Polymers (Basel) 2019;11:E2067. [PMID: 31835891 DOI: 10.3390/polym11122067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
36 Li Z, Ma Y, Wang L, Du X, Zhu S, Zhang X, Qu L, Tian M. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles. ACS Appl Mater Interfaces 2019;11:46278-85. [DOI: 10.1021/acsami.9b19078] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 7.7] [Reference Citation Analysis]
37 Chen J, Long Z, Wang S, Meng Y, Zhang G, Nie S. Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties. International Journal of Biological Macromolecules 2019;139:367-76. [DOI: 10.1016/j.ijbiomac.2019.07.211] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
38 Stojanović G, Pojić M, Kojić S, Mišan A, Vasiljević D. Mechanical properties of edible biofilm as a substrate for printed electronics. Appl Phys A 2019;125. [DOI: 10.1007/s00339-019-2881-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Liu H, Jian R, Chen H, Tian X, Sun C, Zhu J, Yang Z, Sun J, Wang C. Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions. Nanomaterials (Basel) 2019;9:E950. [PMID: 31261962 DOI: 10.3390/nano9070950] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 11.7] [Reference Citation Analysis]
40 Chen J, Liu J, Thundat T, Zeng H. Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors. ACS Appl Mater Interfaces 2019;11:18720-9. [PMID: 31045346 DOI: 10.1021/acsami.9b03346] [Cited by in Crossref: 64] [Cited by in F6Publishing: 31] [Article Influence: 21.3] [Reference Citation Analysis]