BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. J Proteome Res 2017;16:2339-58. [DOI: 10.1021/acs.jproteome.6b00868] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Kaushik P, Henry M, Clynes M, Meleady P. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture. Biotechnol J 2018;13:1700221. [DOI: 10.1002/biot.201700221] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
2 Bryan L, Henry M, Barron N, Gallagher C, Kelly RM, Frye CC, Osborne MD, Clynes M, Meleady P. Differential expression of miRNAs and functional role of mir-200a in high and low productivity CHO cells expressing an Fc fusion protein. Biotechnol Lett 2021;43:1551-63. [PMID: 34131805 DOI: 10.1007/s10529-021-03153-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021;49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Reference Citation Analysis]
4 Murphy S, Ohlendieck K. Proteomic profiling of large myofibrillar proteins from dried and long-term stored polyacrylamide gels. Analytical Biochemistry 2018;543:8-11. [DOI: 10.1016/j.ab.2017.11.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
5 Kaushik P, Curell RV, Henry M, Barron N, Meleady P. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Biotechnol Lett 2020;42:2523-36. [DOI: 10.1007/s10529-020-02953-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Klingler F, Mathias S, Schneider H, Buck T, Raab N, Zeh N, Shieh YW, Pfannstiel J, Otte K. Unveiling the CHO surfaceome: Identification of cell surface proteins reveals cell aggregation-relevant mechanisms. Biotechnol Bioeng 2021;118:3015-28. [PMID: 33951178 DOI: 10.1002/bit.27811] [Reference Citation Analysis]
7 Costello A, Coleman O, Lao NT, Henry M, Meleady P, Barron N, Clynes M. Depletion of endogenous miRNA-378-3p increases peak cell density of CHO DP12 cells and is correlated with elevated levels of ubiquitin carboxyl-terminal hydrolase 14. Journal of Biotechnology 2018;288:30-40. [DOI: 10.1016/j.jbiotec.2018.10.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
8 Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019;103:8127-43. [DOI: 10.1007/s00253-019-10020-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
9 Zhang H, Chingin K, Li J, Lu H, Huang K, Chen H. Selective Enrichment of Phosphopeptides and Phospholipids from Biological Matrixes on TiO 2 Nanowire Arrays for Direct Molecular Characterization by Internal Extractive Electrospray Ionization Mass Spectrometry. Anal Chem 2018;90:12101-7. [DOI: 10.1021/acs.analchem.8b03022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
10 Dahodwala H, Kaushik P, Tejwani V, Kuo CC, Menard P, Henry M, Voldborg BG, Lewis NE, Meleady P, Sharfstein ST. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Curr Res Biotechnol 2019;1:49-57. [PMID: 32577618 DOI: 10.1016/j.crbiot.2019.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
11 Jerabek T, Keysberg C, Otte K. The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107978] [Reference Citation Analysis]
12 Martinez-Lopez JE, Coleman O, Meleady P, Clynes M. Transfection of miR-31* boosts oxidative phosphorylation metabolism in the mitochondria and enhances recombinant protein production in Chinese hamster ovary cells. J Biotechnol 2021;333:86-96. [PMID: 33940052 DOI: 10.1016/j.jbiotec.2021.04.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Coleman O, Suda S, Meiller J, Henry M, Riedl M, Barron N, Clynes M, Meleady P. Increased growth rate and productivity following stable depletion of miR-7 in a mAb producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis. J Proteomics 2019;195:23-32. [PMID: 30641232 DOI: 10.1016/j.jprot.2019.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Bryan L, Henry M, Kelly RM, Lloyd M, Frye CC, Osborne MD, Clynes M, Meleady P. Global phosphoproteomic study of high/low specific productivity industrially relevant mAb producing recombinant CHO cell lines. Current Research in Biotechnology 2021;3:49-56. [DOI: 10.1016/j.crbiot.2021.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]