BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015;14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Nyman TA, Lorey MB, Cypryk W, Matikainen S. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Rev Proteomics 2017;14:395-407. [PMID: 28406322 DOI: 10.1080/14789450.2017.1319768] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
2 Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. J Proteome Res 2017;16:2339-58. [DOI: 10.1021/acs.jproteome.6b00868] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
3 Tan HT, Chung MCM. Label-Free Quantitative Phosphoproteomics Reveals Regulation of Vasodilator-Stimulated Phosphoprotein upon Stathmin-1 Silencing in a Pair of Isogenic Colorectal Cancer Cell Lines. Proteomics. 2018;18:e1700242. [PMID: 29460479 DOI: 10.1002/pmic.201700242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
4 Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Science Signaling 2016;9:ra98-ra98. [DOI: 10.1126/scisignal.aaf5132] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
5 Li M, Ramage H, Cherry S. Deciphering flavivirus-host interactions using quantitative proteomics. Curr Opin Immunol 2020;66:90-7. [PMID: 32682290 DOI: 10.1016/j.coi.2020.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Martinez-Fabregas J, Pohler E, Moraga I. Identifying cytokine signaling signatures in primary human Th-1 cells by phospho-proteomics analysis. STAR Protoc 2021;2:100417. [PMID: 33870224 DOI: 10.1016/j.xpro.2021.100417] [Reference Citation Analysis]
7 Wang X, Zheng B, Ashraf U, Zhang H, Cao C, Li Q, Chen Z, Imran M, Chen H, Cao S, Ye J. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antiviral Res 2020;179:104810. [PMID: 32360948 DOI: 10.1016/j.antiviral.2020.104810] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
8 Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, Chawla-Sarkar M. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol 2017;19. [PMID: 27665089 DOI: 10.1111/cmi.12670] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
9 Tang X, Liu T, Li X, Sheng X, Xing J, Chi H, Zhan W. Protein phosphorylation in hemocytes of Fenneropenaeus chinensis in response to white spot syndrome virus infection. Fish & Shellfish Immunology 2022. [DOI: 10.1016/j.fsi.2022.01.038] [Reference Citation Analysis]
10 Zhang J, Sun L. Global profiling of megalocytivirus-induced proteins in tongue sole (Cynoglossus semilaevis) spleen identifies cellular processes essential to viral infection. Dev Comp Immunol 2019;92:150-9. [PMID: 30428365 DOI: 10.1016/j.dci.2018.11.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021;12:2814-38. [PMID: 34696709 DOI: 10.1080/21505594.2021.1996059] [Reference Citation Analysis]
12 Oxford KL, Wendler JP, Mcdermott JE, White Iii RA, Powell JD, Jacobs JM, Adkins JN, Waters KM. The landscape of viral proteomics and its potential to impact human health. Expert Review of Proteomics 2016;13:579-91. [DOI: 10.1080/14789450.2016.1184091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020;15:e0232585. [PMID: 32374750 DOI: 10.1371/journal.pone.0232585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 He W, Zhao Z, Anees A, Li Y, Ashraf U, Chen Z, Song Y, Chen H, Cao S, Ye J. p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Front Cell Infect Microbiol 2017;7:271. [PMID: 28680855 DOI: 10.3389/fcimb.2017.00271] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
15 Mohl BP, Emmott E, Roy P. Phosphoproteomic Analysis Reveals the Importance of Kinase Regulation During Orbivirus Infection. Mol Cell Proteomics 2017;16:1990-2005. [PMID: 28851738 DOI: 10.1074/mcp.M117.067355] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
16 Katsarou EI, Billinis C, Galamatis D, Fthenakis GC, Tsangaris GT, Katsafadou AI. Applied Proteomics in 'One Health'. Proteomes 2021;9:31. [PMID: 34208880 DOI: 10.3390/proteomes9030031] [Reference Citation Analysis]
17 Chen J, Sun J, Liu X, Liu F, Liu R, Wang J. Structure-based prediction of West Nile virus-human protein-protein interactions. J Biomol Struct Dyn 2019;37:2310-21. [PMID: 30044201 DOI: 10.1080/07391102.2018.1479659] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021;:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Reference Citation Analysis]
19 Wang HH, Liu J, Li LT, Chen HC, Zhang WP, Liu ZF. Typical gene expression profile of pseudorabies virus reactivation from latency in swine trigeminal ganglion. J Neurovirol 2020;26:687-95. [PMID: 32671812 DOI: 10.1007/s13365-020-00866-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 2021;13:668. [PMID: 33924391 DOI: 10.3390/v13040668] [Reference Citation Analysis]
21 Scaturro P, Kastner AL, Pichlmair A. Chasing Intracellular Zika Virus Using Proteomics. Viruses 2019;11:E878. [PMID: 31546825 DOI: 10.3390/v11090878] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
22 Rahm M, Merl-Pham J, Adamski J, Hauck SM. Time-resolved phosphoproteomic analysis elucidates hepatic 11,12-Epoxyeicosatrienoic acid signaling pathways. Prostaglandins Other Lipid Mediat 2020;146:106387. [PMID: 31669255 DOI: 10.1016/j.prostaglandins.2019.106387] [Reference Citation Analysis]
23 Cortés-Vieyra R, Silva-García O, Gómez-García A, Gutiérrez-Castellanos S, Álvarez-Aguilar C, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites. Front Immunol 2021;12:675751. [PMID: 34017345 DOI: 10.3389/fimmu.2021.675751] [Reference Citation Analysis]