BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019;62:6405-21. [DOI: 10.1021/acs.jmedchem.8b01749] [Cited by in Crossref: 97] [Cited by in F6Publishing: 99] [Article Influence: 24.3] [Reference Citation Analysis]
Number Citing Articles
1 De SK. Asciminib: first FDA approved allosteric inhibitor of BCR-ABL1 for the treatment of chronic myeloid leukemia. Med Chem Res 2023. [DOI: 10.1007/s00044-022-03011-9] [Reference Citation Analysis]
2 Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, Ng HL, Chen HF, Wei Z, Luo R, Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov 2023. [PMID: 36715303 DOI: 10.1080/17460441.2023.2171396] [Reference Citation Analysis]
3 Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023;66:1112-36. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Reference Citation Analysis]
4 Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2022;9:1070328. [PMID: 36710877 DOI: 10.3389/fmolb.2022.1070328] [Reference Citation Analysis]
5 Hutter MC. Interactions of Proteins with Small Molecules, Allosteric Effects. Protein Interactions 2022. [DOI: 10.1002/9783527830503.ch14] [Reference Citation Analysis]
6 Strömich L, Wu N, Barahona M, Yaliraki SN. Allosteric Hotspots in the Main Protease of SARS-CoV-2. J Mol Biol 2022;434:167748. [PMID: 35843284 DOI: 10.1016/j.jmb.2022.167748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022;27:5710. [PMID: 36080477 DOI: 10.3390/molecules27175710] [Reference Citation Analysis]
8 Sunkari YK, Meijer L, Flajolet M. The protein kinase CK1: Inhibition, activation, and possible allosteric modulation. Front Mol Biosci 2022;9:916232. [DOI: 10.3389/fmolb.2022.916232] [Reference Citation Analysis]
9 Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas A, Jaremko M, Abdalla M. Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches. Molecules 2022;27:5241. [DOI: 10.3390/molecules27165241] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Zhou S, Yang B, Xu Y, Gu A, Peng J, Fu J. Understanding gilteritinib resistance to FLT3-F691L mutation through an integrated computational strategy. J Mol Model 2022;28:247. [PMID: 35932378 DOI: 10.1007/s00894-022-05254-0] [Reference Citation Analysis]
11 Li M, Wang Y, Fan J, Zhuang H, Liu Y, Ji D, Lu S. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. J Mol Biol 2022;:167730. [PMID: 35872068 DOI: 10.1016/j.jmb.2022.167730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wu N, Yaliraki SN, Barahona M. Prediction of Protein Allosteric Signalling Pathways and Functional Residues Through Paths of Optimised Propensity. J Mol Biol 2022;:167749. [PMID: 35841931 DOI: 10.1016/j.jmb.2022.167749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shi Y, Cao S, Ni D, Fan J, Lu S, Xue M. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Front Mol Biosci 2022;9:933676. [DOI: 10.3389/fmolb.2022.933676] [Reference Citation Analysis]
14 Ji M, Chai Z, Chen J, Li G, Li Q, Li M, Ding Y, Lu S, Ju G, Hou J. Insights into the Allosteric Effect of SENP1 Q597A Mutation on the Hydrolytic Reaction of SUMO1 via an Integrated Computational Study. Molecules 2022;27:4149. [DOI: 10.3390/molecules27134149] [Reference Citation Analysis]
15 Wah Tan Z, Tee WV, Berezovsky IN. Learning about allosteric drugs and ways to design them. J Mol Biol 2022;:167692. [PMID: 35738428 DOI: 10.1016/j.jmb.2022.167692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wang Z, Wang M, Wang F, Shi X, Huang W, Hao G, Yang G. Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Briefings in Bioinformatics. [DOI: 10.1093/bib/bbac203] [Reference Citation Analysis]
17 Cong X, Zhang X, Liang X, He X, Tang Y, Zheng X, Lu S, Zhang J, Chen T. Delineating the conformational landscape and intrinsic properties of the angiotensin II type 2 receptor using a computational study. Comput Struct Biotechnol J 2022;20:2268-79. [PMID: 35615027 DOI: 10.1016/j.csbj.2022.05.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics 2022;11:675. [DOI: 10.3390/antibiotics11050675] [Reference Citation Analysis]
19 Liu C, Li Z, Liu Z, Yang S, Wang Q, Chai Z. Understanding the P-Loop Conformation in the Determination of Inhibitor Selectivity Toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Front Mol Biosci 2022;9:901603. [DOI: 10.3389/fmolb.2022.901603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kremer DM, Lyssiotis CA. Targeting allosteric regulation of cancer metabolism. Nat Chem Biol 2022;18:441-50. [PMID: 35484254 DOI: 10.1038/s41589-022-00997-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 He X, Du K, Wang Y, Fan J, Li M, Ni D, Lu S, Bian X, Liu Y. Autopromotion of K-Ras4B Feedback Activation Through an SOS-Mediated Long-Range Allosteric Effect. Front Mol Biosci 2022;9:860962. [DOI: 10.3389/fmolb.2022.860962] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
22 Tastan Bishop Ö, Mutemi Musyoka T, Barozi V. Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Lee J, Choi N, Kim S, Jin MS, Shen H, Kim Y. Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells. Pharmaceuticals 2022;15:440. [DOI: 10.3390/ph15040440] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
24 Pan Y, Mader MM. Principles of Kinase Allosteric Inhibition and Pocket Validation. J Med Chem 2022. [PMID: 35312319 DOI: 10.1021/acs.jmedchem.2c00073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022. [PMID: 35312190 DOI: 10.1002/med.21886] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Zhang H, Zhu M, Li M, Ni D, Wang Y, Deng L, Du K, Lu S, Shi H, Cai C. Mechanistic Insights Into Co-Administration of Allosteric and Orthosteric Drugs to Overcome Drug-Resistance in T315I BCR-ABL1. Front Pharmacol 2022;13:862504. [DOI: 10.3389/fphar.2022.862504] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Gorostiola González M, Janssen APA, IJzerman AP, Heitman LH, van Westen GJP. Oncological drug discovery: AI meets structure-based computational research. Drug Discov Today 2022:S1359-6446(22)00111-8. [PMID: 35301149 DOI: 10.1016/j.drudis.2022.03.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zhuang H, Fan X, Ji D, Wang Y, Fan J, Li M, Ni D, Lu S, Li X, Chai Z. Elucidation of the conformational dynamics and assembly of Argonaute−RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
29 Ni D, Liu Y, Kong R, Yu Z, Lu S, Zhang J. Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhong Y, Chi F, Wu H, Liu Y, Xie Z, Huang W, Shi W, Qian H. Emerging targeted protein degradation tools for innovative drug discovery: From classical PROTACs to the novel and beyond. European Journal of Medicinal Chemistry 2022;231:114142. [DOI: 10.1016/j.ejmech.2022.114142] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
31 Zhang Q, Chen Y, Ni D, Huang Z, Wei J, Feng L, Su JC, Wei Y, Ning S, Yang X, Zhao M, Qiu Y, Song K, Yu Z, Xu J, Li X, Lin H, Lu S, Zhang J. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharm Sin B 2022;12:876-89. [PMID: 35256952 DOI: 10.1016/j.apsb.2021.06.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
32 Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Salehi SM, Meuwly M. Cross-Correlated Motions in Azidolysozyme. Molecules 2022;27:839. [PMID: 35164105 DOI: 10.3390/molecules27030839] [Reference Citation Analysis]
34 Lee JH, Kim S, Jin MS, Kim YC. Discovery of substituted indole derivatives as allosteric inhibitors of m6 A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res 2022. [PMID: 35040501 DOI: 10.1002/ddr.21910] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Liang S, Wang Q, Qi X, Liu Y, Li G, Lu S, Mou L, Chen X. Deciphering the Mechanism of Gilteritinib Overcoming Lorlatinib Resistance to the Double Mutant I1171N/F1174I in Anaplastic Lymphoma Kinase. Front Cell Dev Biol 2021;9:808864. [PMID: 35004700 DOI: 10.3389/fcell.2021.808864] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
36 Fan J, Liu Y, Kong R, Ni D, Yu Z, Lu S, Zhang J. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. J Med Chem 2021;64:17728-43. [PMID: 34878270 DOI: 10.1021/acs.jmedchem.1c01695] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
37 Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021;:1-13. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Li X, Wang C, Peng T, Chai Z, Ni D, Liu Y, Zhang J, Chen T, Lu S. Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Comput Struct Biotechnol J 2021;19:6108-24. [PMID: 34900128 DOI: 10.1016/j.csbj.2021.11.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
39 Mannes M, Martin C, Menet C, Ballet S. Wandering beyond small molecules: peptides as allosteric protein modulators. Trends Pharmacol Sci 2021:S0165-6147(21)00214-5. [PMID: 34857409 DOI: 10.1016/j.tips.2021.10.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Cao S, Jiang X, Tan C, Fu M, Xiong W, Ji D, Lv J. How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: insights from molecular dynamics simulations. J Mol Model 2021;27:337. [PMID: 34725737 DOI: 10.1007/s00894-021-04964-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Qiu Y, Wang Y, Chai Z, Ni D, Li X, Pu J, Chen J, Zhang J, Lu S, Lv C, Ji M. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharm Sin B 2021;11:3433-46. [PMID: 34900528 DOI: 10.1016/j.apsb.2021.02.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
42 Ni D, Chai Z, Wang Y, Li M, Yu Z, Liu Y, Lu S, Zhang J. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIREs Comput Mol Sci. [DOI: 10.1002/wcms.1585] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
43 Zhang T, Wei B. Rational Design of Allosteric Nanodevices Based on DNA Triple Helix. J Am Chem Soc 2021;143:16693-9. [PMID: 34606714 DOI: 10.1021/jacs.1c07824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Yang Y, Zhang L, Tian J, Ye F, Xiao Z. Integrated Approach to Identify Selective PTP1B Inhibitors Targeting the Allosteric Site. J Chem Inf Model 2021;61:4720-32. [PMID: 34521197 DOI: 10.1021/acs.jcim.1c00357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
45 Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
46 Zheng G, Xu S, Liu W, Du T, Zhang J, Li M, Cai C, Shi H. Deciphering the resistance mechanism of RET kinase mutant against vandetanib and nintedanib using molecular dynamics simulations. Journal of Experimental Nanoscience 2021;16:278-93. [DOI: 10.1080/17458080.2021.1970141] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. Eur J Org Chem 2021;2021:4245-4259. [DOI: 10.1002/ejoc.202100506] [Reference Citation Analysis]
48 Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 2021;12:4721. [PMID: 34354057 DOI: 10.1038/s41467-021-25020-9] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 36.0] [Reference Citation Analysis]
49 Mersmann SF, Strömich L, Song FJ, Wu N, Vianello F, Barahona M, Yaliraki SN. ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules. Nucleic Acids Res 2021;49:W551-8. [PMID: 33978752 DOI: 10.1093/nar/gkab350] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
50 Shao Q, Han Z, Cheng J, Wang Q, Gong W, Li C. Allosteric Mechanism of Human Mitochondrial Phenylalanyl-tRNA Synthetase: An Atomistic MD Simulation and a Mutual Information-Based Network Study. J Phys Chem B 2021;125:7651-61. [PMID: 34242030 DOI: 10.1021/acs.jpcb.1c03228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Kong X, Xing E, Zhuang T, Li PK, Cheng X. Mechanistic Insights into the Allosteric Inhibition of Androgen Receptors by Binding Function 3 Antagonists from an Integrated Molecular Modeling Study. J Chem Inf Model 2021;61:3477-94. [PMID: 34165949 DOI: 10.1021/acs.jcim.1c00124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIREs Comput Mol Sci 2021;11. [DOI: 10.1002/wcms.1529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
53 Lu S, Chen Y, Wei J, Zhao M, Ni D, He X, Zhang J. Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharm Sin B 2021;11:1355-61. [PMID: 34094839 DOI: 10.1016/j.apsb.2020.09.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
54 Salehi SM, Meuwly M. Site-selective dynamics of azidolysozyme. J Chem Phys 2021;154:165101. [PMID: 33940854 DOI: 10.1063/5.0047330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
55 Wu M, Sun Y, Zhu M, Zhu L, Lü J, Geng F. Molecular Dynamics-Based Allosteric Prediction Method to Design Key Residues in Threonine Dehydrogenase for Amino-Acid Production. ACS Omega 2021;6:10975-83. [PMID: 34056250 DOI: 10.1021/acsomega.1c00798] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Xiang S, Shi X, Chen P, Chen Y, Bing S, Jin X, Cao J, Wang J, Yang B, Shao X, He Q, Ying M. Targeting Cul3-scaffold E3 ligase complex via KLHL substrate adaptors for cancer therapy. Pharmacol Res 2021;169:105616. [PMID: 33872809 DOI: 10.1016/j.phrs.2021.105616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Slosky LM, Caron MG, Barak LS. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. Trends Pharmacol Sci 2021;42:283-99. [PMID: 33581873 DOI: 10.1016/j.tips.2020.12.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 22.5] [Reference Citation Analysis]
58 Naveed H, Reglin C, Schubert T, Gao X, Arold ST, Maitland ML. Identifying Novel Drug Targets by iDTPnd: A Case Study of Kinase Inhibitors. Genomics Proteomics Bioinformatics 2021:S1672-0229(21)00075-9. [PMID: 33794377 DOI: 10.1016/j.gpb.2020.05.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Davidovich C, Zhang Q. Allosteric regulation of histone lysine methyltransferases: from context-specific regulation to selective drugs. Biochem Soc Trans 2021;49:591-607. [PMID: 33769454 DOI: 10.1042/BST20200238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Li M, Rehman AU, Liu Y, Chen K, Lu S. Dual roles of ATP-binding site in protein kinases: Orthosteric inhibition and allosteric regulation. Adv Protein Chem Struct Biol 2021;124:87-119. [PMID: 33632471 DOI: 10.1016/bs.apcsb.2020.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
61 He X, Huang N, Qiu Y, Zhang J, Liu Y, Yin XL, Lu S. Conformational Selection Mechanism Provides Structural Insights into the Optimization of APC-Asef Inhibitors. Molecules 2021;26:962. [PMID: 33670371 DOI: 10.3390/molecules26040962] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
62 Wang Y, Ji D, Lei C, Chen Y, Qiu Y, Li X, Li M, Ni D, Pu J, Zhang J, Fu Q, Liu Y, Lu S. Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins. Comput Struct Biotechnol J 2021;19:1184-99. [PMID: 33680360 DOI: 10.1016/j.csbj.2021.01.044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
63 Li X, Ye M, Wang Y, Qiu M, Fu T, Zhang J, Zhou B, Lu S. How Parkinson's disease-related mutations disrupt the dimerization of WD40 domain in LRRK2: a comparative molecular dynamics simulation study. Phys Chem Chem Phys 2020;22:20421-33. [PMID: 32914822 DOI: 10.1039/d0cp03171b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
64 Ledneczki I, Tapolcsányi P, Gábor E, Visegrády A, Vass M, Éles J, Holm P, Horváth A, Pocsai A, Mahó S, Greiner I, Krámos B, Béni Z, Kóti J, Káncz AE, Thán M, Kolok S, Laszy J, Balázs O, Bugovits G, Nagy J, Vastag M, Szájli Á, Bozó É, Lévay G, Lendvai B, Némethy Z. Discovery of novel positive allosteric modulators of the α7 nicotinic acetylcholine receptor: Scaffold hopping approach. Eur J Med Chem 2021;214:113189. [PMID: 33540354 DOI: 10.1016/j.ejmech.2021.113189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Reyes-alcaraz A, Y. Lucero Garcia-rojas E, A. Bond R, K. Mcconnell B. Allosteric Modulators for GPCRs as a Therapeutic Alternative with High Potential in Drug Discovery. Molecular Pharmacology 2020. [DOI: 10.5772/intechopen.91838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
66 Jaffe EK. Wrangling Shape-Shifting Morpheeins to Tackle Disease and Approach Drug Discovery. Front Mol Biosci 2020;7:582966. [PMID: 33330623 DOI: 10.3389/fmolb.2020.582966] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
67 Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2021;97:721-73. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
68 Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 2020;12:464-76. [PMID: 34163609 DOI: 10.1039/d0sc05131d] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
69 Han B, Salituro FG, Blanco MJ. Impact of Allosteric Modulation in Drug Discovery: Innovation in Emerging Chemical Modalities. ACS Med Chem Lett 2020;11:1810-9. [PMID: 33062158 DOI: 10.1021/acsmedchemlett.9b00655] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
70 Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020;25:E4210. [PMID: 32937901 DOI: 10.3390/molecules25184210] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Geng Q, Rohondia SO, Khan HJ, Jiao P, Dou QP. Small molecules as antagonists of co-inhibitory pathways for cancer immunotherapy: a patent review (2018-2019). Expert Opin Ther Pat 2020;30:677-94. [PMID: 32715813 DOI: 10.1080/13543776.2020.1801640] [Reference Citation Analysis]
72 Qiu Y, Li X, He X, Pu J, Zhang J, Lu S. Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 2020;207:112764. [PMID: 32871340 DOI: 10.1016/j.ejmech.2020.112764] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
73 Bian Y, Jun JJ, Cuyler J, Xie XQ. Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Eur J Med Chem 2020;206:112690. [PMID: 32818870 DOI: 10.1016/j.ejmech.2020.112690] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
74 He X, Ni D, Zhang H, Li X, Zhang J, Fu Q, Liu Y, Lu S. Zinc-mediated conformational preselection mechanism in the allosteric control of DNA binding to the zinc transcriptional regulator (ZitR). Sci Rep 2020;10:13276. [PMID: 32764589 DOI: 10.1038/s41598-020-70381-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
75 Guarnera E, Berezovsky IN. Allosteric drugs and mutations: chances, challenges, and necessity. Current Opinion in Structural Biology 2020;62:149-57. [DOI: 10.1016/j.sbi.2020.01.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
76 Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 2020;48:D394-401. [PMID: 31665428 DOI: 10.1093/nar/gkz958] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
77 Asquith CRM, Tizzard GJ, Bennett JM, Wells CI, Elkins JM, Willson TM, Poso A, Laitinen T. Targeting the Water Network in Cyclin G‐Associated Kinase (GAK) with 4‐Anilino‐quin(az)oline Inhibitors. ChemMedChem 2020;15:1200-15. [DOI: 10.1002/cmdc.202000150] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
78 Song K, Li Q, Gao W, Lu S, Shen Q, Liu X, Wu Y, Wang B, Lin H, Chen G, Zhang J. AlloDriver: a method for the identification and analysis of cancer driver targets. Nucleic Acids Res 2019;47:W315-21. [PMID: 31069394 DOI: 10.1093/nar/gkz350] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
79 Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr Opin Struct Biol 2020;62:183-8. [PMID: 32302874 DOI: 10.1016/j.sbi.2020.02.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
80 Zhao S, Zhu YY, Wang XY, Liu YS, Sun YX, Zhao QJ, Li HY. Structural Insight into the Interactions between Structurally Similar Inhibitors and SIRT6. Int J Mol Sci 2020;21:E2601. [PMID: 32283646 DOI: 10.3390/ijms21072601] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
81 Mou L, Ma Z, Meng X, Li W, Liang S, Chen X. Exploration of the selective binding mechanism of GSK3β via molecular modeling and molecular dynamics simulation studies. Med Chem Res 2020;29:690-698. [DOI: 10.1007/s00044-020-02514-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. Combining Allosteric and Orthosteric Drugs to Overcome Drug Resistance. Trends Pharmacol Sci 2020;41:336-48. [PMID: 32171554 DOI: 10.1016/j.tips.2020.02.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 14.0] [Reference Citation Analysis]
83 Asquith CRM, Tizzard GJ, Bennett JM, Wells CI, Elkins JM, Willson TM, Poso A, Laitinen T. Targeting the water network in cyclin G associated kinase (GAK) with 4-anilino-quin(az)oline inhibitors.. [DOI: 10.1101/2020.03.06.976563] [Reference Citation Analysis]
84 Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. European Journal of Medicinal Chemistry 2020;190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
85 Chen X, Li C, Wang D, Chen Y, Zhang N. Recent Advances in the Discovery of CK2 Allosteric Inhibitors: From Traditional Screening to Structure-Based Design. Molecules 2020;25:E870. [PMID: 32079098 DOI: 10.3390/molecules25040870] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
86 Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020;37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
87 Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker G, Tastan Bishop O. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020;21:E847. [PMID: 32013012 DOI: 10.3390/ijms21030847] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
88 Liang Z, Zhu Y, Liu X, Hu G. Role of protein-protein interactions in allosteric drug design for DNA methyltransferases. Adv Protein Chem Struct Biol 2020;121:49-84. [PMID: 32312426 DOI: 10.1016/bs.apcsb.2019.12.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2019;7:873. [PMID: 31970149 DOI: 10.3389/fchem.2019.00873] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 14.3] [Reference Citation Analysis]
90 Li C, Zhang X, Zhang N, Zhou Y, Sun G, Zhao L, Zhong R. Identification and Biological Evaluation of CK2 Allosteric Fragments through Structure-Based Virtual Screening. Molecules 2020;25:E237. [PMID: 31935979 DOI: 10.3390/molecules25010237] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
91 Liu X, Tian W, Cheng J, Li D, Liu T, Zhang L. Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Comput Biol Chem 2020;84:107194. [PMID: 31881526 DOI: 10.1016/j.compbiolchem.2019.107194] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
92 Ran T, Xiao R, Huang Q, Yuan H, Lu T, Liu W. In Silico Discovery of JMJD6 Inhibitors for Cancer Treatment. ACS Med Chem Lett 2019;10:1609-13. [PMID: 31857835 DOI: 10.1021/acsmedchemlett.9b00264] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
93 Li X, Dai J, Ni D, He X, Zhang H, Zhang J, Fu Q, Liu Y, Lu S. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B. Int J Biol Macromol 2020;144:643-55. [PMID: 31816384 DOI: 10.1016/j.ijbiomac.2019.12.020] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
94 Naveed H, Reglin C, Schubert T, Gao X, Arold ST, Maitland ML. Identifying Novel Targets by using Drug-binding Site Signature: A Case Study of Kinase Inhibitors.. [DOI: 10.1101/860510] [Reference Citation Analysis]
95 Lu S, Qiu Y, Ni D, He X, Pu J, Zhang J. Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov Today 2020;25:177-84. [PMID: 31634592 DOI: 10.1016/j.drudis.2019.10.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
96 Ni D, Li X, He X, Zhang H, Zhang J, Lu S. Drugging K-RasG12C through covalent inhibitors: Mission possible? Pharmacol Ther 2019;202:1-17. [PMID: 31233765 DOI: 10.1016/j.pharmthera.2019.06.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
97 Li F, Jiang X, Luo LL, Xu YM, Huang XX, Huang C, Zhang Y. A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells. Cell Commun Signal 2019;17:49. [PMID: 31122241 DOI: 10.1186/s12964-019-0359-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
98 Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019;39:2314-42. [PMID: 30957264 DOI: 10.1002/med.21585] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 12.8] [Reference Citation Analysis]
99 Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019;21:19795-804. [DOI: 10.1039/c9cp03917a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]