BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bochevarov AD, Watson MA, Greenwood JR, Philipp DM. Multiconformation, Density Functional Theory-Based p Ka Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. J Chem Theory Comput 2016;12:6001-19. [DOI: 10.1021/acs.jctc.6b00805] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Paciotti R, Fish RH, Marrone A. MD-DFT Computational Studies on the Mechanistic and Conformational Parameters for the Chemoselective Tyrosine Residue Reactions of G-Protein-Coupled Receptor Peptides with [Cp*Rh(H 2 O) 3 ](OTf) 2 in Water To Form Their [(η 6 -Cp*Rh-Tyr # )-GPCR peptide] 2+ Complexes: Noncovalent H-Bonding Interactions, Molecular Orbital Analysis, Thermodynamics, and Lowest Energy Conformations. Organometallics. [DOI: 10.1021/acs.organomet.2c00259] [Reference Citation Analysis]
2 Yarovaya OI, Shcherbakov DN, Borisevich SS, Sokolova AS, Gureev MA, Khamitov EM, Rudometova NB, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Rogachev AD, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Borneol Ester Derivatives as Entry Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022;14:1295. [PMID: 35746766 DOI: 10.3390/v14061295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Busch M, Ahlberg E, Ahlberg E, Laasonen K. How to Predict the pK a of Any Compound in Any Solvent. ACS Omega 2022;7:17369-83. [PMID: 35647457 DOI: 10.1021/acsomega.2c01393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 van der Westhuizen CJ, Stander A, Riley DL, Panayides JL. Discovery of Novel Acetylcholinesterase Inhibitors by Virtual Screening, In Vitro Screening, and Molecular Dynamics Simulations. J Chem Inf Model 2022. [PMID: 35139637 DOI: 10.1021/acs.jcim.1c01443] [Reference Citation Analysis]
5 Šolínová V, Štěpánová S, Jančařík A, Klívar J, Šámal M, Stará IG, Chocholoušová JV, Vacek J, Starý I, Kašička V. Nonaqueous capillary electrophoresis and quantum chemical calculations applied to investigation of acid-base and electromigration properties of azahelicenes. Electrophoresis 2021. [PMID: 34933403 DOI: 10.1002/elps.202100331] [Reference Citation Analysis]
6 Sancineto L, Ostacolo C, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Abian O, Velazquez-Campoy A, Moretti S, Dabrowska A, Botwina P, Synowiec A, Kula-Pacurar A, Pyrc K, Iraci N, Santi C. l-Arginine Improves Solubility and ANTI SARS-CoV-2 Mpro Activity of Rutin but Not the Antiviral Activity in Cells. Molecules 2021;26:6062. [PMID: 34641606 DOI: 10.3390/molecules26196062] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Tielker N, Güssregen S, Kast SM. SAMPL7 physical property prediction from EC-RISM theory. J Comput Aided Mol Des 2021;35:933-41. [PMID: 34278539 DOI: 10.1007/s10822-021-00410-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Andreev S, Pantsar T, Tesch R, Kahlke N, El-Gokha A, Ansideri F, Grätz L, Romasco J, Sita G, Geibel C, Lämmerhofer M, Tarozzi A, Knapp S, Laufer SA, Koch P. Addressing a Trapped High-Energy Water: Design and Synthesis of Highly Potent Pyrimidoindole-Based Glycogen Synthase Kinase-3β Inhibitors. J Med Chem 2021. [PMID: 34213342 DOI: 10.1021/acs.jmedchem.0c02146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bergazin TD, Tielker N, Zhang Y, Mao J, Gunner MR, Francisco K, Ballatore C, Kast SM, Mobley DL. Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge. J Comput Aided Mol Des 2021;35:771-802. [PMID: 34169394 DOI: 10.1007/s10822-021-00397-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
10 Pracht P, Grimme S. Efficient Quantum-Chemical Calculations of Acid Dissociation Constants from Free-Energy Relationships. J Phys Chem A 2021;125:5681-92. [PMID: 34142841 DOI: 10.1021/acs.jpca.1c03463] [Reference Citation Analysis]
11 Xu T, Chen J, Chen X, Xie H, Wang Z, Xia D, Tang W, Xie HB. Prediction Models on pKa and Base-Catalyzed Hydrolysis Kinetics of Parabens: Experimental and Quantum Chemical Studies. Environ Sci Technol 2021;55:6022-31. [PMID: 33565873 DOI: 10.1021/acs.est.0c06891] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sokolova AS, Putilova VP, Yarovaya OI, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Shcherbakov DN, Orshanskaya IR, Sinegubova EO, Esaulkova IL, Borisevich SS, Bormotov NI, Shishkina LN, Zarubaev VV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Synthesis and Antiviral Activity of Camphene Derivatives against Different Types of Viruses. Molecules 2021;26:2235. [PMID: 33924393 DOI: 10.3390/molecules26082235] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
13 Grimme S, Bohle F, Hansen A, Pracht P, Spicher S, Stahn M. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. J Phys Chem A 2021;125:4039-54. [PMID: 33688730 DOI: 10.1021/acs.jpca.1c00971] [Cited by in Crossref: 6] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
14 Perszyk RE, Zheng Z, Banke TG, Zhang J, Xie L, McDaniel MJ, Katzman BM, Pelly SC, Yuan H, Liotta DC, Traynelis SF. The Negative Allosteric Modulator EU1794-4 Reduces Single-Channel Conductance and Ca2+ Permeability of GluN1/GluN2A N-Methyl-d-Aspartate Receptors. Mol Pharmacol 2021;99:399-411. [PMID: 33688039 DOI: 10.1124/molpharm.120.000218] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Borisevich SS, Gureev MA, Yarovaya ОI, Zarubaev VV, Kostin GA, Porozov YB, Salakhutdinov NF. Can molecular dynamics explain decreased pathogenicity in mutant camphecene-resistant influenza virus? J Biomol Struct Dyn 2021;:1-12. [PMID: 33480324 DOI: 10.1080/07391102.2020.1871414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Işık M, Rustenburg AS, Rizzi A, Gunner MR, Mobley DL, Chodera JD. Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions. J Comput Aided Mol Des 2021;35:131-66. [PMID: 33394238 DOI: 10.1007/s10822-020-00362-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
17 Dutra FR, Silva CS, Custodio R. On the Accuracy of the Direct Method to Calculate pKa from Electronic Structure Calculations. J Phys Chem A 2021;125:65-73. [PMID: 33356255 DOI: 10.1021/acs.jpca.0c08283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
18 Mihalovits LM, Ferenczy GG, Keserű GM. Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations. J Chem Inf Model 2020;60:6579-94. [PMID: 33295760 DOI: 10.1021/acs.jcim.0c00834] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Jankov S, Armaković S, Tóth E, Srdic V, Cvejic Z, Skuban S. Electronic structure of yttrium-doped zinc ferrite – Insights from experiment and theory. Journal of Alloys and Compounds 2020;842:155704. [DOI: 10.1016/j.jallcom.2020.155704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Pereira RW, Ramabhadran RO. pK-Yay: A Black-Box Method Using Density Functional Theory and Implicit Solvation Models to Compute Aqueous pKa Values of Weak and Strong Acids. J Phys Chem A 2020;124:9061-74. [PMID: 32970437 DOI: 10.1021/acs.jpca.0c06298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Staroń J, Bugno R, Pietruś W, Satała G, Mordalski S, Warszycki D, Hogendorf A, Hogendorf AS, Kalinowska-Tłuścik J, Lenda T, Pilarski B, Bojarski AJ. Rationally designed N-phenylsulfonylindoles as a tool for the analysis of the non-basic 5-HT6R ligands binding mode. Eur J Med Chem 2021;209:112916. [PMID: 33328102 DOI: 10.1016/j.ejmech.2020.112916] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Frederiksen N, Hansen PR, Zabicka D, Tomczak M, Urbas M, Domraceva I, Björkling F, Franzyk H. Alternating Cationic-Hydrophobic Peptide/Peptoid Hybrids: Influence of Hydrophobicity on Antibacterial Activity and Cell Selectivity. ChemMedChem 2020;15:2544-61. [PMID: 33029927 DOI: 10.1002/cmdc.202000526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
23 Dajnowicz S, Ghoreishi D, Modugula K, Damm W, Harder ED, Abel R, Wang L, Yu HS. Advancing Free-Energy Calculations of Metalloenzymes in Drug Discovery via Implementation of LFMM Potentials. J Chem Theory Comput 2020;16:6926-37. [DOI: 10.1021/acs.jctc.0c00615] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Yang Q, Li Y, Yang J, Liu Y, Zhang L, Luo S, Cheng J. Holistic Prediction of the p Ka in Diverse Solvents Based on a Machine‐Learning Approach. Angew Chem Int Ed 2020;59:19282-91. [DOI: 10.1002/anie.202008528] [Cited by in Crossref: 14] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
25 Yang Q, Li Y, Yang J, Liu Y, Zhang L, Luo S, Cheng J. Holistic Prediction of the p Ka in Diverse Solvents Based on a Machine‐Learning Approach. Angew Chem 2020;132:19444-53. [DOI: 10.1002/ange.202008528] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
26 Levine DS, Watson MA, Jacobson LD, Dickerson CE, Yu HS, Bochevarov AD. Pattern-free generation and quantum mechanical scoring of ring-chain tautomers. J Comput Aided Mol Des 2021;35:417-31. [PMID: 32830300 DOI: 10.1007/s10822-020-00334-w] [Reference Citation Analysis]
27 Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA, Xu X, Hirata K, Shoichet BK, Sunahara RK, Kobilka BK, Gmeiner P. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat Chem Biol 2020;16:749-55. [PMID: 32483378 DOI: 10.1038/s41589-020-0549-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
28 Baltruschat M, Czodrowski P. Machine learning meets pK a. F1000Res 2020;9:Chem Inf Sci-113. [PMID: 32226607 DOI: 10.12688/f1000research.22090.2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
29 Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Rudakova EV, Stupina TS, Terentiev AA, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorganic Chemistry 2020;94:103387. [DOI: 10.1016/j.bioorg.2019.103387] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
30 Noroozi J, Smith WR. Prediction of Alkanolamine p Ka Values by Combined Molecular Dynamics Free Energy Simulations and ab Initio Calculations. J Chem Eng Data 2020;65:1358-68. [DOI: 10.1021/acs.jced.9b00927] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
31 Kerru N, Gummidi L, Bhaskaruni SVHS, Maddila SN, Singh P, Jonnalagadda SB. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci Rep 2019;9:19280. [PMID: 31848439 DOI: 10.1038/s41598-019-55793-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
32 Mishra RK, Deibler KK, Clutter MR, Vagadia PP, O'Connor M, Schiltz GE, Bergan R, Scheidt KA. Modeling MEK4 Kinase Inhibitors through Perturbed Electrostatic Potential Charges. J Chem Inf Model 2019;59:4460-6. [PMID: 31566378 DOI: 10.1021/acs.jcim.9b00490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
33 Roszak R, Beker W, Molga K, Grzybowski BA. Rapid and Accurate Prediction of pKa Values of C-H Acids Using Graph Convolutional Neural Networks. J Am Chem Soc 2019;141:17142-9. [PMID: 31633925 DOI: 10.1021/jacs.9b05895] [Cited by in Crossref: 24] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
34 Semenov VE, Zueva IV, Lushchekina SV, Lenina OA, Gubaidullina LM, Saifina LF, Shulaeva MM, Kayumova RM, Saifina AF, Gubaidullin AT, Kondrashova SA, Latypov SK, Masson P, Petrov KA. 6-Methyluracil derivatives as peripheral site ligand-hydroxamic acid conjugates: Reactivation for paraoxon-inhibited acetylcholinesterase. Eur J Med Chem 2020;185:111787. [PMID: 31675511 DOI: 10.1016/j.ejmech.2019.111787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
35 Martin SJ, Chen IJ, Chan AWE, Foloppe N. Modelling the binding mode of macrocycles: Docking and conformational sampling. Bioorg Med Chem 2020;28:115143. [PMID: 31771798 DOI: 10.1016/j.bmc.2019.115143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
36 Thapa B, Raghavachari K. Accurate pKa Evaluations for Complex Bio-Organic Molecules in Aqueous Media. J Chem Theory Comput 2019;15:6025-35. [PMID: 31596078 DOI: 10.1021/acs.jctc.9b00606] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
37 Yin X, Lin L, Martinez U, Zelenay P. 2,2′-Dipyridylamine as Heterogeneous Organic Molecular Electrocatalyst for Two-Electron Oxygen Reduction Reaction in Acid Media. ACS Appl Energy Mater 2019;2:7272-8. [DOI: 10.1021/acsaem.9b01227] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
38 Andreev S, Pantsar T, Ansideri F, Kudolo M, Forster M, Schollmeyer D, Laufer SA, Koch P. Design, Synthesis and Biological Evaluation of 7-Chloro-9H-pyrimido[4,5-b]indole-based Glycogen Synthase Kinase-3β Inhibitors. Molecules 2019;24:E2331. [PMID: 31242571 DOI: 10.3390/molecules24122331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
39 Watson MA, Yu HS, Bochevarov AD. Generation of Tautomers Using Micro-p Ka's. J Chem Inf Model 2019;59:2672-89. [PMID: 31070917 DOI: 10.1021/acs.jcim.8b00955] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Caine BA, Bronzato M, Popelier PLA. Experiment stands corrected: accurate prediction of the aqueous pK a values of sulfonamide drugs using equilibrium bond lengths. Chem Sci 2019;10:6368-81. [PMID: 31341593 DOI: 10.1039/c9sc01818b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
41 Giannakopoulou E, Pardali V, Frakolaki E, Siozos V, Myrianthopoulos V, Mikros E, Taylor MC, Kelly JM, Vassilaki N, Zoidis G. Scaffold hybridization strategy towards potent hydroxamate-based inhibitors of Flaviviridae viruses and Trypanosoma species. Medchemcomm 2019;10:991-1006. [PMID: 31303998 DOI: 10.1039/c9md00200f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Kalliokoski T, Sinervo K. Predicting pK a for Small Molecules on Public and In‐house Datasets Using Fast Prediction Methods Combined with Data Fusion. Mol Inf 2019;38:1800163. [DOI: 10.1002/minf.201800163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
43 Tielker N, Eberlein L, Chodun C, Güssregen S, Kast SM. pKa calculations for tautomerizable and conformationally flexible molecules: partition function vs. state transition approach. J Mol Model 2019;25:139. [PMID: 31041535 DOI: 10.1007/s00894-019-4033-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
44 Bembenek SD, Venkatesan H, Peltier HM, Rosen MD, Barrett TD, Kanelakis KC, Palomino HL, Brondstetter TI, Mirzadegan T, Rabinowitz MH. Beyond Traditional Structure-Based Drug Design: The Role of Iron Complexation, Strain, and Water in the Binding of Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylase 2. ACS Omega 2019;4:6703-8. [PMID: 31179408 DOI: 10.1021/acsomega.9b00199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
45 Molga K, Gajewska EP, Szymkuć S, Grzybowski BA. The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry. React Chem Eng 2019;4:1506-21. [DOI: 10.1039/c9re00076c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
46 Chen B, Zhang H, Li M. Prediction of pK(a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network. Neural Comput & Applic 2019;31:8297-304. [DOI: 10.1007/s00521-018-3956-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
47 Caballero-García G, Mondragón-Solórzano G, Torres-Cadena R, Díaz-García M, Sandoval-Lira J, Barroso-Flores J. Calculation of VS,max and Its Use as a Descriptor for the Theoretical Calculation of pKa Values for Carboxylic Acids. Molecules 2018;24:E79. [PMID: 30587832 DOI: 10.3390/molecules24010079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
48 de Oliveira C, Yu HS, Chen W, Abel R, Wang L. Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States. J Chem Theory Comput 2019;15:424-35. [PMID: 30537823 DOI: 10.1021/acs.jctc.8b00826] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
49 Bannan CC, Mobley DL, Skillman AG. SAMPL6 challenge results from [Formula: see text] predictions based on a general Gaussian process model. J Comput Aided Mol Des 2018;32:1165-77. [PMID: 30324305 DOI: 10.1007/s10822-018-0169-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
50 Prasad S, Huang J, Zeng Q, Brooks BR. An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge. J Comput Aided Mol Des 2018;32:1191-201. [PMID: 30276503 DOI: 10.1007/s10822-018-0167-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
51 Corbella M, Toa ZSD, Scholes GD, Luque FJ, Curutchet C. Determination of the protonation preferences of bilin pigments in cryptophyte antenna complexes. Phys Chem Chem Phys 2018;20:21404-16. [PMID: 30105318 DOI: 10.1039/c8cp02541j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
52 Pracht P, Wilcken R, Udvarhelyi A, Rodde S, Grimme S. High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. J Comput Aided Mol Des 2018;32:1139-49. [PMID: 30141103 DOI: 10.1007/s10822-018-0145-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
53 Zeng Q, Jones MR, Brooks BR. Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge. J Comput Aided Mol Des 2018;32:1179-89. [PMID: 30128926 DOI: 10.1007/s10822-018-0150-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
54 Dardonville C. Automated techniques in pKa determination: Low, medium and high-throughput screening methods. Drug Discovery Today: Technologies 2018;27:49-58. [DOI: 10.1016/j.ddtec.2018.04.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
55 Caine BA, Dardonville C, Popelier PLA. Prediction of Aqueous pK a Values for Guanidine-Containing Compounds Using Ab Initio Gas-Phase Equilibrium Bond Lengths. ACS Omega 2018;3:3835-50. [PMID: 31458625 DOI: 10.1021/acsomega.8b00142] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
56 Cruz PG, Martínez Leal JF, Daranas AH, Pérez M, Cuevas C. On the Mechanism of Action of Dragmacidins I and J, Two New Representatives of a New Class of Protein Phosphatase 1 and 2A Inhibitors. ACS Omega 2018;3:3760-7. [PMID: 30023878 DOI: 10.1021/acsomega.7b01786] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
57 Patel A, Tiwari S, Jha PK. Density functional theory based probe of the affinity interaction of saccharide ligands with extra-cellular sialic acid residues. J Biomol Struct Dyn 2019;37:1545-54. [PMID: 29624120 DOI: 10.1080/07391102.2018.1461690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
58 Rossini E, Bochevarov AD, Knapp EW. Empirical Conversion of pK a Values between Different Solvents and Interpretation of the Parameters: Application to Water, Acetonitrile, Dimethyl Sulfoxide, and Methanol. ACS Omega 2018;3:1653-62. [PMID: 31458485 DOI: 10.1021/acsomega.7b01895] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 14.8] [Reference Citation Analysis]
59 Yu HS, Watson MA, Bochevarov AD. Weighted Averaging Scheme and Local Atomic Descriptor for pKa Prediction Based on Density Functional Theory. J Chem Inf Model 2018;58:271-86. [PMID: 29356524 DOI: 10.1021/acs.jcim.7b00537] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
60 Moncomble A, Jani Thaviligadu D, Raoumbé Djendja A, Cornard J. The crucial role of the inter-ring hydrogen bond to explain the properties of morin. New J Chem 2018;42:7691-702. [DOI: 10.1039/c7nj04579d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
61 Philipp DM, Watson MA, Yu HS, Steinbrecher TB, Bochevarov AD. Quantum chemical pKa prediction for complex organic molecules. Int J Quantum Chem 2018;118:e25561. [DOI: 10.1002/qua.25561] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
62 Jacobson LD, Bochevarov AD, Watson MA, Hughes TF, Rinaldo D, Ehrlich S, Steinbrecher TB, Vaitheeswaran S, Philipp DM, Halls MD, Friesner RA. Automated Transition State Search and Its Application to Diverse Types of Organic Reactions. J Chem Theory Comput 2017;13:5780-97. [PMID: 28957627 DOI: 10.1021/acs.jctc.7b00764] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 15.2] [Reference Citation Analysis]
63 Strope CL, Mansouri K, Clewell HJ 3rd, Rabinowitz JR, Stevens C, Wambaugh JF. High-throughput in-silico prediction of ionization equilibria for pharmacokinetic modeling. Sci Total Environ 2018;615:150-60. [PMID: 28964990 DOI: 10.1016/j.scitotenv.2017.09.033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
64 Shee J, Zhang S, Reichman DR, Friesner RA. Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2017;13:2667-80. [DOI: 10.1021/acs.jctc.7b00224] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
65 Frau J, Hernández-haro N, Glossman-mitnik D. Computational prediction of the pKas of small peptides through Conceptual DFT descriptors. Chemical Physics Letters 2017;671:138-41. [DOI: 10.1016/j.cplett.2017.01.038] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
66 Jensen JH, Swain CJ, Olsen L. Prediction of pKa Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods. J Phys Chem A 2017;121:699-707. [PMID: 28054775 DOI: 10.1021/acs.jpca.6b10990] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
67 Dardonville C, Caine BA, Navarro de la Fuente M, Martín Herranz G, Corrales Mariblanca B, Popelier PLA. Substituent effects on the basicity (pK a ) of aryl guanidines and 2-(arylimino)imidazolidines: correlations of pH-metric and UV-metric values with predictions from gas-phase ab initio bond lengths. New J Chem 2017;41:11016-28. [DOI: 10.1039/c7nj02497e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
68 Krishnakumar P, Maity DK. Microhydration of a benzoic acid molecule and its dissociation. New J Chem 2017;41:7195-202. [DOI: 10.1039/c7nj01245d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]