BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Toldrá F, Gallego M, Reig M, Aristoy M, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. J Agric Food Chem 2020;68:12842-55. [DOI: 10.1021/acs.jafc.9b08297] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Jia W, Du A, Fan Z, Shi L. Goat milk-derived short chain peptides: Peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe(3)O(4)@GO mesoporous magnetic-based peptidomics. Food Res Int 2023;164:112442. [PMID: 36738007 DOI: 10.1016/j.foodres.2022.112442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Heres A, Mora L, Toldrá F. Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023;24. [PMID: 36675084 DOI: 10.3390/ijms24021574] [Reference Citation Analysis]
3 Li Y, Gao X, Pan D, Liu Z, Xiao C, Xiong Y, Du L, Cai Z, Lu W, Dang Y, Zhu X. Identification and virtual screening of novel anti-inflammatory peptides from broccoli fermented by Lactobacillus strains. Front Nutr 2022;9:1118900. [PMID: 36712498 DOI: 10.3389/fnut.2022.1118900] [Reference Citation Analysis]
4 Toldrá F, Basu L, Ockerman HW. Sustainability I: Edible by-products. Lawrie's Meat Science 2023. [DOI: 10.1016/b978-0-323-85408-5.00005-4] [Reference Citation Analysis]
5 Toldrá F. The storage and preservation of meat. III—Meat processing. Lawrie's Meat Science 2023. [DOI: 10.1016/b978-0-323-85408-5.00002-9] [Reference Citation Analysis]
6 Fan X, Han Y, Sun Y, Zhang T, Tu M, Du L, Pan D. Preparation and characterization of duck liver-derived antioxidant peptides based on LC-MS/MS, molecular docking, and machine learning. LWT 2023. [DOI: 10.1016/j.lwt.2023.114479] [Reference Citation Analysis]
7 Li H, Fan H, Lu K, Zhu Q, Wu J. Purification of Extracellular Protease from Staphylococcus simulans QB7and Its Ability in Generating Antioxidant and Anti-inflammatory Peptides from Meat Proteins. Nutrients 2022;15. [PMID: 36615723 DOI: 10.3390/nu15010065] [Reference Citation Analysis]
8 Mora L, Toldrá F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science 2022. [DOI: 10.1016/j.cofs.2022.100973] [Reference Citation Analysis]
9 Feng T, Zhang J, Wang Y, Wei D, Sun J, Yu H, Tao X, Mao X, Hu Q, Ji S. Purification and identification of thrombolytic peptides from enzymatic hydrolysate of Pheretima vulgaris. J Food Biochem 2022;46:e14414. [PMID: 36121709 DOI: 10.1111/jfbc.14414] [Reference Citation Analysis]
10 Carrera-alvarado G, Toldrá F, Mora L. Bile acid-binding capacity of peptide extracts obtained from chicken blood hydrolysates using HPLC. LWT 2022. [DOI: 10.1016/j.lwt.2022.114381] [Reference Citation Analysis]
11 Carrera-Alvarado G, Toldrá F, Mora L. DPP-IV Inhibitory Peptides GPF, IGL, and GGGW Obtained from Chicken Blood Hydrolysates. Int J Mol Sci 2022;23. [PMID: 36430616 DOI: 10.3390/ijms232214140] [Reference Citation Analysis]
12 Brandelli A, Daroit DJ. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Critical Reviews in Food Science and Nutrition 2022. [DOI: 10.1080/10408398.2022.2145262] [Reference Citation Analysis]
13 Wang F, Mao X, Deng F, Cui R, Li L, Liu S, Yang B, Lan D, Wang Y. A New Phospholipase D from Moritella sp. JT01: Biochemical Characterization, Crystallization and Application in the Synthesis of Phosphatidic Acid. Int J Mol Sci 2022;23:11633. [PMID: 36232934 DOI: 10.3390/ijms231911633] [Reference Citation Analysis]
14 Zhu B, Zhou J, Zhang J, Xu S, Fu G, Dai J, Cai M, Hu Y. Dietary enzymatic rice protein and enzymatic fish paste affect the growth, muscle development and quality traits of juvenile channel catfish (Ictalurus punctatus). Aquaculture 2022;559:738425. [DOI: 10.1016/j.aquaculture.2022.738425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lammi C, Boschin G, Bartolomei M, Arnoldi A, Galaverna G, Dellafiora L. Mechanistic Insights into Angiotensin I-Converting Enzyme Inhibitory Tripeptides to Decipher the Chemical Basis of Their Activity. J Agric Food Chem 2022. [PMID: 36074807 DOI: 10.1021/acs.jafc.2c04755] [Reference Citation Analysis]
16 Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.950823] [Reference Citation Analysis]
17 Zhou N, Wu N, Yao Y, Chen S, Xu M, Yin Z, Zhao Y, Tu Y. Anti-inflammatory effects of tripeptide WLS on TNF-α-induced HT-29 cells and DSS-induced colitis in mice. Food Funct 2022. [PMID: 35993870 DOI: 10.1039/d2fo01235a] [Reference Citation Analysis]
18 Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends in Food Science & Technology 2022;126:41-60. [DOI: 10.1016/j.tifs.2022.06.014] [Reference Citation Analysis]
19 Ogata M, Uchiyama J, Ahhmed AM, Sakuraoka S, Taharaguchi S, Sakata R, Mizunoya W, Takeda S. Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products. Foods 2022;11:2123. [DOI: 10.3390/foods11142123] [Reference Citation Analysis]
20 Madhu M, Kumar D, Sirohi R, Tarafdar A, Dhewa T, Aluko RE, Badgujar PC, Awasthi MK. Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. Chemosphere 2022;307:135650. [PMID: 35835242 DOI: 10.1016/j.chemosphere.2022.135650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Li M, Fan W, Xu Y. Comprehensive Identification of Short and Medium-Sized Peptides from Pixian Broad Bean Paste Protein Hydrolysates Using UPLC-Q-TOF-MS and UHPLC-Q Exactive HF-X. J Agric Food Chem 2022. [PMID: 35785966 DOI: 10.1021/acs.jafc.2c02487] [Reference Citation Analysis]
22 Mansinhbhai CH, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Hati S. Significance of whey protein hydrolysate on anti-oxidative, ACE-inhibitory and anti-inflammatory activities and release of peptides with biofunctionality: an in vitro and in silico approach. J Food Sci Technol 2022;59:2629-2642. [DOI: 10.1007/s13197-021-05282-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Abd-talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. Biotechnol Bioproc E. [DOI: 10.1007/s12257-021-0160-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and Animal-Based Antioxidants' Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants (Basel) 2022;11:1025. [PMID: 35624889 DOI: 10.3390/antiox11051025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
25 Li H, Wu J, Wan J, Zhou Y, Zhu Q. Extraction and identification of bioactive peptides from Panxian dry-cured ham with multifunctional activities. LWT 2022;160:113326. [DOI: 10.1016/j.lwt.2022.113326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022. [PMID: 35080058 DOI: 10.1002/biof.1822] [Reference Citation Analysis]
27 Toldrá F, Mora L, Reig M. Current developments in meat by-products. New Aspects of Meat Quality 2022. [DOI: 10.1016/b978-0-323-85879-3.00027-1] [Reference Citation Analysis]
28 Heres A, Yokoyama I, Gallego M, Toldrá F, Arihara K, Mora L. Antihypertensive potential of sweet Ala-Ala dipeptide and its quantitation in dry-cured ham at different processing conditions. Journal of Functional Foods 2021;87:104818. [DOI: 10.1016/j.jff.2021.104818] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Heres A, Saldaña C, Toldrá F, Mora L. Identification of dipeptides by MALDI-ToF mass spectrometry in long-processing Spanish dry-cured ham. Food Chemistry: Molecular Sciences 2021;3:100048. [DOI: 10.1016/j.fochms.2021.100048] [Reference Citation Analysis]
30 Cheng S, Wang Y, Chen H, Liu H, Wang L, Battino M, Yao X, Zhu B, Du M. Anticoagulant Dodecapeptide Suppresses Thrombosis In Vivo by Inhibiting the Thrombin Exosite-I Binding Site. J Agric Food Chem 2021;69:10920-31. [PMID: 34491753 DOI: 10.1021/acs.jafc.1c03414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Heres A, Toldrá F, Mora L. Characterization of Umami Dry-Cured Ham-Derived Dipeptide Interaction with Metabotropic Glutamate Receptor (mGluR) by Molecular Docking Simulation. Applied Sciences 2021;11:8268. [DOI: 10.3390/app11178268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Borawska-Dziadkiewicz J, Darewicz M, Tarczyńska AS. Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS One 2021;16:e0255969. [PMID: 34375367 DOI: 10.1371/journal.pone.0255969] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Samaei SP, Martini S, Tagliazucchi D, Gianotti A, Babini E. Antioxidant and Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides Obtained from Alcalase Protein Hydrolysate Fractions of Hemp (Cannabis sativa L.) Bran. J Agric Food Chem 2021;69:9220-8. [PMID: 34353019 DOI: 10.1021/acs.jafc.1c01487] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
34 Heres A, Mora L, Toldrá F. Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham. Food Prod Process and Nutr 2021;3. [DOI: 10.1186/s43014-021-00058-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
35 Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci 2021;181:108608. [PMID: 34171788 DOI: 10.1016/j.meatsci.2021.108608] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
36 Chen J, Zhang X, Fu M, Chen X, Pius BA, Xu X. Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism. Ultrason Sonochem 2021;76:105652. [PMID: 34182317 DOI: 10.1016/j.ultsonch.2021.105652] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
37 Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021;181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 11.5] [Reference Citation Analysis]
38 Xue H, Han J, He B, Yi M, Liu X, Song H, Li J. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats. Food Funct 2021;12:5157-70. [PMID: 33977978 DOI: 10.1039/d1fo00356a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Heymich ML, Srirangan S, Pischetsrieder M. Stability and Activity of the Antimicrobial Peptide Leg1 in Solution and on Meat and Its Optimized Generation from Chickpea Storage Protein. Foods 2021;10:1192. [PMID: 34070446 DOI: 10.3390/foods10061192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Arihara K, Yokoyama I, Ohata M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Sci 2021;180:108561. [PMID: 34034035 DOI: 10.1016/j.meatsci.2021.108561] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
41 Arihara K, Yokoyama I, Ohata M. Generation of bioactivities from proteins of animal sources by enzymatic hydrolysis and the Maillard reaction. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00001-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Toldrá F, Mora L. Enzymatic mechanisms for the generation of bioactive peptides. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00031-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Li S, Ma B, Wang J, Peng H, Zheng M, Dai W, Liu J. Novel Pentapeptide Derived from Chicken by-Product Ameliorates DSS-Induced Colitis by Enhancing Intestinal Barrier Function via AhR-Induced Src Inactivation. J Agric Food Chem 2020. [PMID: 33210912 DOI: 10.1021/acs.jafc.0c06319] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
44 Fang M, Xiong S, Jiang Y, Yin T, Hu Y, Liu R, You J. In Vitro Pepsin Digestion Characteristics of Silver Carp ( Hypophthalmichthys molitrix ) Surimi Gels with Different Degrees of Cross-Linking Induced by Setting Time and Microbial Transglutaminase. J Agric Food Chem 2020;68:8413-30. [DOI: 10.1021/acs.jafc.0c03014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]