BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao F, Wang J, Lu H, Fang L, Qin H, Liu C, Min W. Neuroprotection by Walnut-Derived Peptides through Autophagy Promotion via Akt/mTOR Signaling Pathway against Oxidative Stress in PC12 Cells. J Agric Food Chem 2020;68:3638-48. [DOI: 10.1021/acs.jafc.9b08252] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Han C, Fang L, Song S, Min W. Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydrate Polymers 2022;291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Reference Citation Analysis]
2 Ma R, Chen Q, Dai Y, Huang Y, Hou Q, Huang Y, Zhong K, Huang Y, Gao H, Bu Q. Identification of novel antioxidant peptides from sea squirt (Halocynthia roretzi) and its neuroprotective effect in 6-OHDA-induced neurotoxicity. Food Funct 2022;13:6008-21. [PMID: 35603858 DOI: 10.1039/d2fo00729k] [Reference Citation Analysis]
3 Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline Protects PC12 Cells Against Cadmium-Induced Neurotoxicity by Modulating Apoptosis. Biol Trace Elem Res. [DOI: 10.1007/s12011-022-03305-4] [Reference Citation Analysis]
4 Zhang Q, Zheng L, Su G, Luo D, Huang M, Feng Y, Zhao M. Peptide WCPFSRSF ameliorates excitotoxicity and elevates synaptic plasticity in glutamate-damaged SH-SY5Y cells by modulating the PI3K/mTOR/EIF4E and BDNF/CREB/TrkB pathways. Food Bioscience 2022;47:101696. [DOI: 10.1016/j.fbio.2022.101696] [Reference Citation Analysis]
5 Fan H, Liu H, Zhang Y, Zhang S, Liu T, Wang D. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. Journal of Future Foods 2022;2:143-59. [DOI: 10.1016/j.jfutfo.2022.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Liu D, Guo Y, Ma H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: a review. Crit Rev Food Sci Nutr 2022;:1-16. [PMID: 35361034 DOI: 10.1080/10408398.2022.2054933] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Lv R, Dong Y, Bao Z, Zhang S, Lin S, Sun N. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends in Food Science & Technology 2022;122:171-86. [DOI: 10.1016/j.tifs.2022.02.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Yang J, Fang L, Lu H, Liu C, Wang J, Wu D, Min W. Walnut-Derived Peptide Enhances Mitophagy via JNK-Mediated PINK1 Activation to Reduce Oxidative Stress in HT-22 Cells. J Agric Food Chem . [DOI: 10.1021/acs.jafc.2c00005] [Reference Citation Analysis]
9 Liu X, Song L. Quercetin protects human liver cells from o,p'-DDT-induced toxicity by suppressing Nrf2 and NADPH oxidase-regulated ROS production. Food Chem Toxicol 2022;:112849. [PMID: 35122929 DOI: 10.1016/j.fct.2022.112849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang S, Sun-waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends in Food Science & Technology 2021;116:712-32. [DOI: 10.1016/j.tifs.2021.04.056] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
11 Gao Y, Qin H, Wu D, Liu C, Fang L, Wang J, Liu X, Min W. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-κB/p38 MAPK pathways. J Biosci Bioeng 2021;132:496-504. [PMID: 34509368 DOI: 10.1016/j.jbiosc.2021.07.009] [Reference Citation Analysis]
12 Lu H, Fang L, Wang J, Zhao F, Liu C, Gao Y, Liu J, Min W. Pine nut antioxidant peptides ameliorate the memory impairment in a scopolamine-induced mouse model via SIRT3-induced synaptic plasticity. Food Funct 2021;12:8026-36. [PMID: 34269783 DOI: 10.1039/d1fo01817e] [Reference Citation Analysis]
13 Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021;28:623-42. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Katayama S, Corpuz HM, Nakamura S. Potential of plant-derived peptides for the improvement of memory and cognitive function. Peptides 2021;142:170571. [PMID: 33965441 DOI: 10.1016/j.peptides.2021.170571] [Reference Citation Analysis]
15 Wang S, Su G, Zhang X, Song G, Zhang L, Zheng L, Zhao M. Characterization and Exploration of Potential Neuroprotective Peptides in Walnut (Juglans regia) Protein Hydrolysate against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. J Agric Food Chem 2021;69:2773-83. [PMID: 33645974 DOI: 10.1021/acs.jafc.0c07798] [Reference Citation Analysis]
16 Zhao F, Liu C, Fang L, Lu H, Wang J, Gao Y, Gabbianelli R, Min W. Walnut-Derived Peptide Activates PINK1 via the NRF2/KEAP1/HO-1 Pathway, Promotes Mitophagy, and Alleviates Learning and Memory Impairments in a Mice Model. J Agric Food Chem 2021;69:2758-72. [PMID: 33591165 DOI: 10.1021/acs.jafc.0c07546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Luan F, Wang Z, Yang Y, Ji Y, Lv H, Han K, Liu D, Shang X, He X, Zeng N. Juglans mandshurica Maxim.: A Review of Its Traditional Usages, Phytochemical Constituents, and Pharmacological Properties. Front Pharmacol 2020;11:569800. [PMID: 33551795 DOI: 10.3389/fphar.2020.569800] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cai X, Chen S, Liang J, Tang M, Wang S. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food Chem Toxicol 2021;148:111965. [PMID: 33388406 DOI: 10.1016/j.fct.2020.111965] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, Kim CW, Kim MJ, Heo HJ. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ1-42-Induced Mice. Antioxidants (Basel) 2020;9:E976. [PMID: 33053754 DOI: 10.3390/antiox9100976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wang J, Wu T, Fang L, Liu C, Liu X, Li H, Shi J, Li M, Min W. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. Journal of Functional Foods 2020;69:103944. [DOI: 10.1016/j.jff.2020.103944] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
21 Wang J, Wu T, Fang L, Liu C, Liu X, Li H, Shi J, Li M, Min W. Peptides from walnut ( Juglans mandshurica Maxim.) protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress. Food Funct 2020;11:8112-21. [DOI: 10.1039/d0fo01753a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]