BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Miralles B, Amigo L, Recio I. Critical Review and Perspectives on Food-Derived Antihypertensive Peptides. J Agric Food Chem 2018;66:9384-90. [DOI: 10.1021/acs.jafc.8b02603] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Gu S, Ling Q, Sheng X, Bao G, Zhao X, Gu Q, Shi Y, Wang X. Identification of a Novel Post-digestion Angiotensin I-Converting Enzyme Inhibitory Peptide from Silver Prussian Carp (Carassius auratus gibelio) Roe. ACS Food Sci Technol 2023. [DOI: 10.1021/acsfoodscitech.2c00360] [Reference Citation Analysis]
2 Im ST, Lee SH. Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler. Food Sci Anim Resour 2023;43:184-94. [PMID: 36789190 DOI: 10.5851/kosfa.2022.e70] [Reference Citation Analysis]
3 Wang J, Xie Y, Luan Y, Guo T, Xiao S, Zeng X, Zhang S. Identification and dipeptidyl peptidase IV (DPP-IV) inhibitory activity verification of peptides from mouse lymphocytes. Food Science and Human Wellness 2022;11:1515-26. [DOI: 10.1016/j.fshw.2022.06.009] [Reference Citation Analysis]
4 Zhou M, Zhao W, Xue W, Liu J, Yu Z. Potential antihypertensive mechanism of egg white-derived peptide QIGLF revealed by proteomic analysis. Int J Biol Macromol 2022;218:439-46. [PMID: 35878667 DOI: 10.1016/j.ijbiomac.2022.07.149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ibarz-blanch N, Morales D, Calvo E, Ros-medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022;14:1920. [DOI: 10.3390/nu14091920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 León-López A, Pérez-Marroquín XA, Estrada-Fernández AG, Campos-Lozada G, Morales-Peñaloza A, Campos-Montiel RG, Aguirre-Álvarez G. Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers (Basel) 2022;14:1258. [PMID: 35335587 DOI: 10.3390/polym14061258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang L, Shao X, Cheng M, Fan X, Wang C, Jiang H, Zhang X. Mechanisms and applications of milk‐derived bioactive peptides in Food for Special Medical Purposes. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15622] [Reference Citation Analysis]
8 Huang YP, Robinson RC, Dias FFG, de Moura Bell JMLN, Barile D. Solid-Phase Extraction Approaches for Improving Oligosaccharide and Small Peptide Identification with Liquid Chromatography-High-Resolution Mass Spectrometry: A Case Study on Proteolyzed Almond Extract. Foods 2022;11:340. [PMID: 35159490 DOI: 10.3390/foods11030340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhang N, Li F, Zhang T, Li C, Zhu L, Yan S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur Food Res Technol. [DOI: 10.1007/s00217-021-03949-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Zhang W, Tan B, Deng J, Haitao Z. Multiomics analysis of soybean meal induced marine fish enteritis in juvenile pearl gentian grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Sci Rep 2021;11:23319. [PMID: 34857775 DOI: 10.1038/s41598-021-02278-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
11 Sebastián-nicolas JL, Contreras-lópez E, Ramírez-godínez J, Cruz-guerrero AE, Rodríguez-serrano GM, Añorve-morga J, Jaimez-ordaz J, Castañeda-ovando A, Pérez-escalante E, Ayala-niño A, González-olivares LG. Milk Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic Profile and ACE-Inhibitory Activity. Fermentation 2021;7:215. [DOI: 10.3390/fermentation7040215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Langyan S, Khan FN, Yadava P, Alhazmi A, Mahmoud SF, Saleh DI, Zuan ATK, Kumar A. In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi J Biol Sci 2021;28:5480-9. [PMID: 34588858 DOI: 10.1016/j.sjbs.2021.08.027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ge HJ, Zhang ZK, Xiao JX, Tan HG, Huang GQ. Release of Leu-Pro-Pro from corn gluten meal by fermentation with a Lactobacillus helveticus strain. J Sci Food Agric 2021. [PMID: 34312867 DOI: 10.1002/jsfa.11446] [Reference Citation Analysis]
14 Wenhui T, Shumin H, Yongliang Z, Liping S, Hua Y. Identification of in vitro angiotensin-converting enzyme and dipeptidyl peptidase IV inhibitory peptides from draft beer by virtual screening and molecular docking. J Sci Food Agric 2021. [PMID: 34309842 DOI: 10.1002/jsfa.11445] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Guo H, Hao Y, Fan X, Richel A, Everaert N, Yang X, Ren G. Administration with Quinoa Protein Reduces the Blood Pressure in Spontaneously Hypertensive Rats and Modifies the Fecal Microbiota. Nutrients 2021;13:2446. [PMID: 34371955 DOI: 10.3390/nu13072446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Landim AP, Matsubara NK, da Silva-Santos JE, Mellinger-Silva C, Rosenthal A. Application of preliminary high-pressure processing for improving bioactive characteristics and reducing antigenicity of whey protein hydrolysates. Food Sci Technol Int 2021;:10820132211022106. [PMID: 34134565 DOI: 10.1177/10820132211022106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Liang F, Shi Y, Shi J, Zhang T, Zhang R. A novel Angiotensin-I-converting enzyme (ACE) inhibitory peptide IAF (Ile-Ala-Phe) from pumpkin seed proteins: in silico screening, inhibitory activity, and molecular mechanisms. Eur Food Res Technol 2021;247:2227-37. [DOI: 10.1007/s00217-021-03783-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Chen L, Wang L, Shu G, Li J. Antihypertensive Potential of Plant Foods: Research Progress and Prospect of Plant-Derived Angiotensin-Converting Enzyme Inhibition Compounds. J Agric Food Chem 2021;69:5297-305. [PMID: 33939411 DOI: 10.1021/acs.jafc.1c02117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Wang L, Niu D, Wang X, Khan J, Shen Q, Xue Y. A Novel Machine Learning Strategy for the Prediction of Antihypertensive Peptides Derived from Food with High Efficiency. Foods 2021;10:550. [PMID: 33800877 DOI: 10.3390/foods10030550] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Xu F, Gonzalez de Mejia E. Methodologies for bioactivity assay: animal study. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00022-4] [Reference Citation Analysis]
21 Dalabasmaz S, Pischetsrieder M. Peptidomics in Food. Comprehensive Foodomics 2021. [DOI: 10.1016/b978-0-08-100596-5.22757-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience 2020;38:100771. [DOI: 10.1016/j.fbio.2020.100771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
23 Qian B, Yu L, Tian C, Huang S, Huo J, Villarreal OD. Citrullyl-Hydroxyprolyl-Proline (ChPP): An Artificially Synthesized Tripeptide as Potent ACE Inhibitor. Int J Pept Res Ther 2021;27:967-76. [DOI: 10.1007/s10989-020-10142-3] [Reference Citation Analysis]
24 Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021;890:173661. [PMID: 33098835 DOI: 10.1016/j.ejphar.2020.173661] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
25 Guo H, Hao Y, Richel A, Everaert N, Chen Y, Liu M, Yang X, Ren G. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. J Sci Food Agric 2020;100:5569-76. [PMID: 32608025 DOI: 10.1002/jsfa.10609] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
26 Guo H, Richel A, Hao Y, Fan X, Everaert N, Yang X, Ren G. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Sci Nutr 2020;8:1415-22. [PMID: 32180951 DOI: 10.1002/fsn3.1423] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
27 Liang Q, Chalamaiah M, Liao W, Ren X, Ma H, Wu J. Zein hydrolysate and its peptides exert anti-inflammatory activity on endothelial cells by preventing TNF-α-induced NF-κB activation. Journal of Functional Foods 2020;64:103598. [DOI: 10.1016/j.jff.2019.103598] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
28 Cao S, Wang Y, Hao Y, Zhang W, Zhou G. Antihypertensive Effects in Vitro and in Vivo of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Bovine Bone Gelatin Hydrolysate. J Agric Food Chem 2020;68:759-68. [DOI: 10.1021/acs.jafc.9b05618] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
29 Tagliazucchi D, Martini S, Solieri L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019;5:96. [DOI: 10.3390/fermentation5040096] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
30 Moosmang S, Siltari A, Bolzer M, Kiechl S, Sturm S, Stuppner H. Development, validation, and application of a fast, simple, and robust SPE-based LC-MS/MS method for quantification of angiotensin I-converting enzyme inhibiting tripeptides Val-Pro-Pro, Ile-Pro-Pro, and Leu-Pro-Pro in yoghurt and other fermented dairy products. International Dairy Journal 2019;97:31-9. [DOI: 10.1016/j.idairyj.2019.05.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Yu D, Wang C, Song Y, Zhu J, Zhang X. Discovery of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Todarodes pacificus and Their Inhibitory Mechanism: In Silico and In Vitro Studies. Int J Mol Sci 2019;20:E4159. [PMID: 31454889 DOI: 10.3390/ijms20174159] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
32 Ayala-Niño A, Rodríguez-Serrano GM, González-Olivares LG, Contreras-López E, Regal-López P, Cepeda-Saez A. Sequence Identification of Bioactive Peptides from Amaranth Seed Proteins (Amaranthus hypochondriacus spp.). Molecules 2019;24:E3033. [PMID: 31438557 DOI: 10.3390/molecules24173033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
33 Sánchez-rivera L, Ferreira Santos P, Sevilla MA, Montero MJ, Recio I, Miralles B. Implication of Opioid Receptors in the Antihypertensive Effect of a Bovine Casein Hydrolysate and α s1 -Casein-Derived Peptides. J Agric Food Chem 2020;68:1877-83. [DOI: 10.1021/acs.jafc.9b03872] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
34 Eberhardt A, López EC, Ceruti RJ, Marino F, Mammarella EJ, Manzo RM, Sihufe GA. Influence of the degree of hydrolysis on the bioactive properties of whey protein hydrolysates using Alcalase ®. Int J Dairy Technol 2019;72:573-84. [DOI: 10.1111/1471-0307.12606] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
35 Dang Y, Zhou T, Hao L, Cao J, Sun Y, Pan D. In Vitro and in Vivo Studies on the Angiotensin-Converting Enzyme Inhibitory Activity Peptides Isolated from Broccoli Protein Hydrolysate. J Agric Food Chem 2019;67:6757-64. [PMID: 31184153 DOI: 10.1021/acs.jafc.9b01137] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
36 Liu L, Qiao Z, Cui X, Pang C, Liang H, Xie P, Luo X, Huang Z, Zhang Y, Zhao Z. Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. ACS Appl Mater Interfaces 2019;11:23039-49. [DOI: 10.1021/acsami.9b07453] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
37 Guo S, Ai M, Liu J, Luo Z, Yu J, Li Z, Jiang A. Physicochemical, conformational properties and ACE-inhibitory activity of peanut protein marinated by aged vinegar. LWT 2019;101:469-75. [DOI: 10.1016/j.lwt.2018.11.058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
38 Liu C, Yu Y, Liu F, You L. Purification and Molecular Docking Study of Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Alcalase Hydrolysate of Hazelnut (<i>Corylus heterophylla</i> Fisch) Protein. FNS 2019;10:1374-1387. [DOI: 10.4236/fns.2019.1011098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Shen W, Matsui T. Intestinal absorption of small peptides: a review. Int J Food Sci Technol 2019;54:1942-8. [DOI: 10.1111/ijfs.14048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]