BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Reductive Amination in the Synthesis of Pharmaceuticals. Chem Rev 2019;119:11857-911. [PMID: 31633341 DOI: 10.1021/acs.chemrev.9b00383] [Cited by in Crossref: 109] [Cited by in F6Publishing: 47] [Article Influence: 36.3] [Reference Citation Analysis]
Number Citing Articles
1 Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydrate Polymers 2022;289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Reference Citation Analysis]
2 Ganley JM, Murray PRD, Knowles RR. Photocatalytic Generation of Aminium Radical Cations for C─N Bond Formation. ACS Catal 2020;10:11712-38. [PMID: 33163257 DOI: 10.1021/acscatal.0c03567] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 11.5] [Reference Citation Analysis]
3 Runikhina S, Chusov D. Hayashi ligand-based rhodium complex in carbon monoxide and molecular hydrogen-assisted reductive amination. Mendeleev Communications 2021;31:781-3. [DOI: 10.1016/j.mencom.2021.11.004] [Reference Citation Analysis]
4 Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Photocatalysis in Dual Catalysis Systems for Carbon‐Nitrogen Bond Formation. Adv Synth Catal 2021;363:937-79. [DOI: 10.1002/adsc.202001176] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
5 Kim JE, Jang JH, Lee KM, Balamurugan M, Jo YI, Lee MY, Choi S, Im SW, Nam KT. Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate. Angew Chem Int Ed Engl 2021;60:21943-51. [PMID: 34324785 DOI: 10.1002/anie.202108352] [Reference Citation Analysis]
6 Zhang M, Hu D, Chen Y, Jin Y, Liu B, Lam CH, Yan K. Electrocatalytic Reductive Amination and Simultaneous Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. Ind Eng Chem Res . [DOI: 10.1021/acs.iecr.1c04508] [Reference Citation Analysis]
7 Dasgupta A, Pahar S, Babaahmadi R, Gierlichs L, Yates BF, Ariafard A, Melen RL. Borane Catalyzed Selective Diazo Cross‐Coupling Towards Pyrazoles. Adv Synth Catal . [DOI: 10.1002/adsc.202101312] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hu LA, Zhang Y, Zhang Q, Yin Q, Zhang X. Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H 2. Angew Chem 2020;132:5359-63. [DOI: 10.1002/ange.201915459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang J, Ye S, Liu X, Loh T. Hydrazine as Facile Nitrogen Source for Direct Synthesis of Amines over a Supported Pt Catalyst. ACS Sustainable Chem Eng 2020;8:16283-95. [DOI: 10.1021/acssuschemeng.0c05787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Wernik M, Sipos G, Buchholcz B, Darvas F, Novák Z, Ötvös SB, Kappe CO. Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chem 2021;23:5625-32. [DOI: 10.1039/d1gc02039k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhang Y, Liu YQ, Hu L, Zhang X, Yin Q. Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Org Lett 2020;22:6479-83. [PMID: 32806148 DOI: 10.1021/acs.orglett.0c02282] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ma S, Hill CK, Olen CL, Hartwig JF. Ruthenium-Catalyzed Hydroamination of Unactivated Terminal Alkenes with Stoichiometric Amounts of Alkene and an Ammonia Surrogate by Sequential Oxidation and Reduction. J Am Chem Soc 2021;143:359-68. [DOI: 10.1021/jacs.0c11043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 O'Neil LG, Bower JF. Electrophilic Aminating Agents in Total Synthesis. Angew Chem Int Ed Engl 2021. [PMID: 33942955 DOI: 10.1002/anie.202102864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Nori V, Dasgupta A, Babaahmadi R, Carlone A, Ariafard A, Melen RL. Triarylborane catalysed N -alkylation of amines with aryl esters. Catal Sci Technol 2020;10:7523-30. [DOI: 10.1039/d0cy01339k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Thorpe TW, Marshall JR, Harawa V, Ruscoe RE, Cuetos A, Finnigan JD, Angelastro A, Heath RS, Parmeggiani F, Charnock SJ, Howard RM, Kumar R, Daniels DSB, Grogan G, Turner NJ. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature 2022;604:86-91. [PMID: 35388195 DOI: 10.1038/s41586-022-04458-x] [Reference Citation Analysis]
16 Clarke JJ, Devaraj K, Bestvater BP, Kojima R, Eisenberger P, DeJesus JF, Crudden CM. Hydrosilylation and Mukaiyama aldol-type reaction of quinolines and hydrosilylation of imines catalyzed by a mesoionic carbene-stabilized borenium ion. Org Biomol Chem 2021;19:6786-91. [PMID: 34318834 DOI: 10.1039/d1ob01056e] [Reference Citation Analysis]
17 Hall CJJ, Goundry WRF, Donohoe TJ. Hydrogen‐Borrowing Alkylation of 1,2‐Amino Alcohols in the Synthesis of Enantioenriched γ‐Aminobutyric Acids. Angew Chem 2021;133:7057-61. [DOI: 10.1002/ange.202100922] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Kato M, Ghosh K, Nishii Y, Miura M. Rhodium-catalysed direct formylmethylation using vinylene carbonate and sequential dehydrogenative esterification. Chem Commun (Camb) 2021;57:8280-3. [PMID: 34319322 DOI: 10.1039/d1cc03362j] [Reference Citation Analysis]
19 Ashley MA, Rovis T. Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines. J Am Chem Soc 2020;142:18310-6. [DOI: 10.1021/jacs.0c08595] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
20 Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021;19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Vinogradov MM, Afanasyev OI, Nelyubina YV, Denisov GL, Loginov DA, Chusov D. Osmium catalysis in the reductive amination using carbon monoxide as a reducing agent. Molecular Catalysis 2020;498:111260. [DOI: 10.1016/j.mcat.2020.111260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
22 Sarki N, Goyal V, Tyagi NK, Puttaswamy, Narani A, Ray A, Natte K. Simple RuCl 3 ‐catalyzed N ‐Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem 2021;13:1722-9. [DOI: 10.1002/cctc.202001937] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
23 Fatkulin AR, Afanasyev OI, Tsygankov AA, Chusov D. Enhancing the efficiency of the ruthenium catalysts in the reductive amination without an external hydrogen source. Journal of Catalysis 2022;405:404-9. [DOI: 10.1016/j.jcat.2021.12.018] [Reference Citation Analysis]
24 Podyacheva E, Afanasyev OI, Ostrovskii VS, Chusov D. Syngas Instead of Hydrogen Gas as a Reducing Agent─A Strategy To Improve the Selectivity and Efficiency of Organometallic Catalysts. ACS Catal . [DOI: 10.1021/acscatal.2c01000] [Reference Citation Analysis]
25 Dasgupta A, Richards E, Melen RL. Triarylborane Catalyzed Carbene Transfer Reactions Using Diazo Precursors. ACS Catal 2022;12:442-52. [PMID: 35028191 DOI: 10.1021/acscatal.1c04746] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Qi XK, Guo L, Yao LJ, Gao H, Yang C, Xia W. Multicomponent Synthesis of α-Branched Tertiary and Secondary Amines by Photocatalytic Hydrogen Atom Transfer Strategy. Org Lett 2021;23:4473-7. [PMID: 34028283 DOI: 10.1021/acs.orglett.1c01412] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Yamada M, Azuma K, Yamano M. Highly Enantioselective Direct Asymmetric Reductive Amination of 2-Acetyl-6-Substituted Pyridines. Org Lett 2021;23:3364-7. [PMID: 33891422 DOI: 10.1021/acs.orglett.1c00848] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Govaerts S, Angelini L, Hampton C, Malet‐sanz L, Ruffoni A, Leonori D. Photoinduced Olefin Diamination with Alkylamines. Angew Chem 2020;132:15131-8. [DOI: 10.1002/ange.202005652] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 van Vliet KM, de Bruin B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal 2020;10:4751-69. [DOI: 10.1021/acscatal.0c00961] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 20.5] [Reference Citation Analysis]
30 Zippel C, Seibert J, Bräse S. Skeletal Editing-Nitrogen Deletion of Secondary Amines by Anomeric Amide Reagents. Angew Chem Int Ed Engl 2021;60:19522-4. [PMID: 34337846 DOI: 10.1002/anie.202107490] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Marshall JR, Yao P, Montgomery SL, Finnigan JD, Thorpe TW, Palmer RB, Mangas-Sanchez J, Duncan RAM, Heath RS, Graham KM, Cook DJ, Charnock SJ, Turner NJ. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination. Nat Chem 2021;13:140-8. [PMID: 33380742 DOI: 10.1038/s41557-020-00606-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
32 Afanasyev OI, Kuchuk EA, Muratov KM, Denisov GL, Chusov D. Symmetrical Tertiary Amines: Applications and Synthetic Approaches. Eur J Org Chem 2021;2021:543-86. [DOI: 10.1002/ejoc.202001171] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
33 Moutaoukil Z, Serrano-Díez E, Collado IG, Jiménez-Tenorio M, Botubol-Ares JM. N-Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Org Biomol Chem 2022. [PMID: 35018948 DOI: 10.1039/d1ob02214h] [Reference Citation Analysis]
34 Hughes DL. Highlights of the Recent Patent Literature─Focus on Biocatalysis Innovation. Org Process Res Dev . [DOI: 10.1021/acs.oprd.1c00417] [Reference Citation Analysis]
35 Mareya TM, Coady TM, O'Reilly C, Kinsella M, Coffey L, Lennon CM. Process Optimisation Studies and Aminonitrile Substrate Evaluation of Rhodococcus erythropolis SET1, A Nitrile Hydrolyzing Bacterium. ChemistryOpen 2020;9:512-20. [PMID: 32346499 DOI: 10.1002/open.202000088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kumar R, Karmilowicz MJ, Burke D, Burns MP, Clark LA, Connor CG, Cordi E, Do NM, Doyle KM, Hoagland S, Lewis CA, Mangan D, Martinez CA, Mcinturff EL, Meldrum K, Pearson R, Steflik J, Rane A, Weaver J. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat Catal 2021;4:775-82. [DOI: 10.1038/s41929-021-00671-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kennedy-Ellis JJ, Boldt ED, Chemler SR. Synthesis of Benzylureas and Related Amine Derivatives via Copper-Catalyzed Three-Component Carboamination of Styrenes. Org Lett 2020;22:8365-9. [PMID: 33074005 DOI: 10.1021/acs.orglett.0c02988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Yao W, Wang J, Lou Y, Wu H, Qi X, Yang J, Zhong A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org Chem Front 2021;8:4554-9. [DOI: 10.1039/d1qo00705j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
39 Ong DY, Chen J, Chiba S. Reductive Functionalization of Carboxamides: A Recent Update. BCSJ 2020;93:1339-49. [DOI: 10.1246/bcsj.20200182] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
40 Chen T, Chen Y, Chen Y, Lee W, Lin Y, Wang H. Iridium/graphene nanostructured catalyst for the N -alkylation of amines to synthesize nitrogen-containing derivatives and heterocyclic compounds in a green process. RSC Adv 2022;12:4760-70. [DOI: 10.1039/d1ra09052f] [Reference Citation Analysis]
41 Yamada T, Park K, Furugen C, Jiang J, Shimizu E, Ito N, Sajiki H. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem 2021. [PMID: 34779573 DOI: 10.1002/cssc.202102138] [Reference Citation Analysis]
42 Khopade KV, Sen A, Birajdar RS, Paulbudhe UP, Kavale DS, Shinde PS, Mhaske SB, Chikkali SH. Highly Enantioselective Synthesis of Sitagliptin. Asian J Org Chem 2020;9:189-91. [DOI: 10.1002/ajoc.201900709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
43 Fitzgerald PR, Paegel BM. DNA-Encoded Chemistry: Drug Discovery from a Few Good Reactions. Chem Rev 2021;121:7155-77. [PMID: 33044817 DOI: 10.1021/acs.chemrev.0c00789] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
44 Hall CJJ, Goundry WRF, Donohoe TJ. Hydrogen-Borrowing Alkylation of 1,2-Amino Alcohols in the Synthesis of Enantioenriched γ-Aminobutyric Acids. Angew Chem Int Ed Engl 2021;60:6981-5. [PMID: 33561302 DOI: 10.1002/anie.202100922] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Gao Z, Liu J, Huang H, Geng H, Chang M. An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions. Angew Chem Int Ed Engl 2021. [PMID: 34699113 DOI: 10.1002/anie.202112671] [Reference Citation Analysis]
46 Ailincai D, Mititelu-Tartau L, Marin L. Citryl-imine-PEG-ylated chitosan hydrogels - Promising materials for drug delivery applications. Int J Biol Macromol 2020;162:1323-37. [PMID: 32599243 DOI: 10.1016/j.ijbiomac.2020.06.218] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
47 Govaerts S, Angelini L, Hampton C, Malet-Sanz L, Ruffoni A, Leonori D. Photoinduced Olefin Diamination with Alkylamines. Angew Chem Int Ed Engl 2020;59:15021-8. [PMID: 32432808 DOI: 10.1002/anie.202005652] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
48 Pandey VK, Bauri S, Rit A. Catalyst- and solvent-free efficient access to N-alkylated amines via reductive amination using HBpin. Org Biomol Chem 2020;18:3853-7. [PMID: 32409809 DOI: 10.1039/d0ob00740d] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Pang JH, Wang B, Watanabe K, Takita R, Chiba S. Hydroalkylation of Styrenes with Benzylamines by Potassium Hydride. Helv Chim Acta 2021;104. [DOI: 10.1002/hlca.202100120] [Reference Citation Analysis]
50 Makarova M, Afanasyev OI, Kliuev F, Nelyubina YV, Godovikova M, Chusov D. Phosphine ligands in the ruthenium-catalyzed reductive amination without an external hydrogen source. Journal of Organometallic Chemistry 2021;941:121806. [DOI: 10.1016/j.jorganchem.2021.121806] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Ramachandran PV, Choudhary S, Singh A. Trimethyl Borate-Catalyzed, Solvent-Free Reductive Amination. J Org Chem 2021;86:4274-80. [PMID: 33605720 DOI: 10.1021/acs.joc.0c02143] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021;50:1522-86. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
53 Aguilera-garrido A, del Castillo-santaella T, Yang Y, Galisteo-gonzález F, Gálvez-ruiz MJ, Molina-bolívar JA, Holgado-terriza JA, Cabrerizo-vílchez MÁ, Maldonado-valderrama J. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science 2021;290:102365. [DOI: 10.1016/j.cis.2021.102365] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
54 Zhao L, Hu C, Cong X, Deng G, Liu LL, Luo M, Zeng X. Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications. J Am Chem Soc 2021;143:1618-29. [DOI: 10.1021/jacs.0c12318] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
55 Torrens-Spence MP, Glinkerman CM, Günther J, Weng JK. Imine chemistry in plant metabolism. Curr Opin Plant Biol 2021;60:101999. [PMID: 33450608 DOI: 10.1016/j.pbi.2020.101999] [Reference Citation Analysis]
56 Hu LA, Zhang Y, Zhang Q, Yin Q, Zhang X. Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H 2. Angew Chem Int Ed 2020;59:5321-5. [DOI: 10.1002/anie.201915459] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 7.5] [Reference Citation Analysis]
57 Ruscoe RE, Ramsden JI, Turner NJ. Redox surrogate methods for sustainable amine N-alkylation. Current Opinion in Chemical Engineering 2020;30:60-8. [DOI: 10.1016/j.coche.2020.08.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Thakore RR, Takale BS, Casotti G, Gao ES, Jin HS, Lipshutz BH. Chemoselective Reductive Aminations in Aqueous Nanoreactors Using Parts per Million Level Pd/C Catalysis. Org Lett 2020;22:6324-9. [DOI: 10.1021/acs.orglett.0c02156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
59 Mas-Roselló J, Cramer N. Catalytic Reduction of Oximes to Hydroxylamines: Current Methods, Challenges and Opportunities. Chemistry 2021;:e202103683. [PMID: 34817089 DOI: 10.1002/chem.202103683] [Reference Citation Analysis]
60 Zhang K, He Y, Zhu J, Zhang Q, Tang L, Cui L, Feng Y. Engineering of Reductive Aminases for Asymmetric Synthesis of Enantiopure Rasagiline. Front Bioeng Biotechnol 2021;9:798147. [PMID: 35004654 DOI: 10.3389/fbioe.2021.798147] [Reference Citation Analysis]
61 Jeong J, Fujita K. Selective Synthesis of Bisdimethylamine Derivatives from Diols and an Aqueous Solution of Dimethylamine through Iridium‐Catalyzed Borrowing Hydrogen Pathway. ChemCatChem. [DOI: 10.1002/cctc.202101499] [Reference Citation Analysis]
62 Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 2020;49:6273-328. [DOI: 10.1039/c9cs00286c] [Cited by in Crossref: 41] [Cited by in F6Publishing: 4] [Article Influence: 20.5] [Reference Citation Analysis]
63 Yamabe S, Tsuchida N, Yamazaki S. A density functional theory study of the hydride shift in the Eschweiler–Clarke reaction. J Phys Org Chem 2021;34. [DOI: 10.1002/poc.4253] [Reference Citation Analysis]
64 Tien C, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium‐Catalyzed Carbonylative Transformations. Angew Chem 2021;133:4388-95. [DOI: 10.1002/ange.202010211] [Reference Citation Analysis]
65 Kang T, González JM, Li Z, Foo K, Cheng PTW, Engle KM. Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catal . [DOI: 10.1021/acscatal.2c00373] [Reference Citation Analysis]
66 Dombrowski AW, Aguirre AL, Shrestha A, Sarris KA, Wang Y. The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. J Org Chem 2021. [PMID: 34780177 DOI: 10.1021/acs.joc.1c01427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Liu J, Song Y, Wang H, Ma L. Tandem synthesis of tertiary amines using graphene encapsulated Ni nonocatalyst via nitro compounds hydrogenation and primary amine methylation. Green Chemical Engineering 2021. [DOI: 10.1016/j.gce.2021.08.005] [Reference Citation Analysis]
68 Zhao H, Li B, Zhao H, Li J, Kou J, Zhu H, Liu B, Li Z, Sun X, Dong Z. Construction of a sandwich-like UiO-66-NH2@Pt@mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. J Colloid Interface Sci 2022;606:1524-33. [PMID: 34500155 DOI: 10.1016/j.jcis.2021.08.081] [Reference Citation Analysis]
69 Sato T, Uozumi Y, Yamada YMA. Catalytic Reductive Alkylation of Amines in Batch and Microflow Conditions Using a Silicon-Wafer-Based Palladium Nanocatalyst. ACS Omega 2020;5:26938-45. [PMID: 33111021 DOI: 10.1021/acsomega.0c04329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Dagar N, Sen PP, Roy SR. Electrifying Sustainability on Transition Metal‐Free Modes: An Eco‐Friendly Approach for the Formation of C−N Bonds. ChemSusChem 2021;14:1229-57. [DOI: 10.1002/cssc.202002567] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
71 Górski B, Barthelemy A, Douglas JJ, Juliá F, Leonori D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat Catal 2021;4:623-30. [DOI: 10.1038/s41929-021-00652-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
72 Thierry T, Pfund E, Lequeux T. Metal-Free Aminomethylation of Aromatic Sulfones Promoted by Eosin Y. Chemistry 2021;27:14826-30. [PMID: 34464004 DOI: 10.1002/chem.202102124] [Reference Citation Analysis]
73 Tian Y, Hu L, Wang Y, Zhang X, Yin Q. Recent advances on transition-metal-catalysed asymmetric reductive amination. Org Chem Front 2021;8:2328-42. [DOI: 10.1039/d1qo00300c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
74 Sudhakaran S, Shinde PG, Aratikatla EK, Kaulage SH, Rana P, Parit RS, Kavale DS, Senthilkumar B, Punji B. Nickel-Catalyzed Asymmetric Hydrogenation for the Synthesis of a Key Intermediate of Sitagliptin. Chem Asian J 2022;17:e202101208. [PMID: 34817131 DOI: 10.1002/asia.202101208] [Reference Citation Analysis]
75 Ouyang L, Xia Y, Liao J, Luo R. One‐Pot Transfer Hydrogenation Reductive Amination of Aldehydes and Ketones by Iridium Complexes “on Water”. Eur J Org Chem 2020;2020:6387-91. [DOI: 10.1002/ejoc.202001097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
76 Zhao X, Yang F, Zou S, Zhou Q, Chen Z, Ji K. Cu-Catalyzed Intermolecular γ-Site C–H Amination of Cyclohexenone Derivatives: The Benefit of Bifunctional Ligands. ACS Catal . [DOI: 10.1021/acscatal.1c05439] [Reference Citation Analysis]
77 Xie R, Mao W, Jia H, Sun J, Lu G, Jiang H, Zhang M. Reductive electrophilic C-H alkylation of quinolines by a reusable iridium nanocatalyst. Chem Sci 2021;12:13802-8. [PMID: 34760165 DOI: 10.1039/d1sc02967c] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Rykowski S, Gurda-Woźna D, Orlicka-Płocka M, Fedoruk-Wyszomirska A, Giel-Pietraszuk M, Wyszko E, Kowalczyk A, Stączek P, Bak A, Kiliszek A, Rypniewski W, Olejniczak AB. Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021;22:2772. [PMID: 33803403 DOI: 10.3390/ijms22052772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Luo Z, Wan S, Pan Y, Yao Z, Zhang X, Li B, Li J, Xu L, Fan Q. Metal‐Free Reductive Amination of Ketones with Amines Using Formic Acid as the Reductant under BF 3 ⋅ Et 2 O Catalysis. Asian J of Organic Chemis. [DOI: 10.1002/ajoc.202100707] [Reference Citation Analysis]
80 Xie C, Song J, Hua M, Hu Y, Huang X, Wu H, Yang G, Han B. Ambient-Temperature Synthesis of Primary Amines via Reductive Amination of Carbonyl Compounds. ACS Catal 2020;10:7763-72. [DOI: 10.1021/acscatal.0c01872] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
81 Gong L, Zhao H, Yang J, Jiang H, Zhang M. Selective construction of fused heterocycles by an iridium-catalyzed reductive three-component annulation reaction. Chem Commun (Camb) 2021;57:8292-5. [PMID: 34318819 DOI: 10.1039/d1cc03332h] [Reference Citation Analysis]
82 Zu C, Zhang T, Yang F, Wu Y, Wu Y. Copper(II)-Catalyzed Direct Amination of 1-Naphthylamines at the C8 Site. J Org Chem 2020;85:12777-84. [PMID: 32880176 DOI: 10.1021/acs.joc.0c01672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
83 Akıncıoğlu A, Göksu S, Naderi A, Akıncıoğlu H, Kılınç N, Gülçin İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput Biol Chem 2021;94:107565. [PMID: 34474201 DOI: 10.1016/j.compbiolchem.2021.107565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Sen PP, Dagar N, Singh S, Roy VJ, Pathania V, Raha Roy S. Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond formation. Org Biomol Chem 2020;18:8994-9017. [DOI: 10.1039/d0ob01874k] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Tien CH, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium-Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2021;60:4342-9. [PMID: 33085182 DOI: 10.1002/anie.202010211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
86 Chandrashekhar VG, Natte K, Alenad AM, Alshammari AS, Kreyenschulte C, Jagadeesh RV. Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5‐Hydroxymethylfurfural using Silica‐supported Cobalt‐ Nanoparticles. ChemCatChem 2022;14. [DOI: 10.1002/cctc.202101234] [Reference Citation Analysis]
87 Zhang H, Liu Y, Zhang L, Wang X, Sun H, Liu C, Ye J, Cheng R. Direct Reductive Amination from Ketones, Aldehydes to Synthesize Amines Using N, S-Dual Doped Co/C Catalyst. Catal Lett. [DOI: 10.1007/s10562-021-03911-2] [Reference Citation Analysis]
88 Luo N, Zhong Y, Wen H, Luo R. Cyclometalated Iridium Complex-Catalyzed N-Alkylation of Amines with Alcohols via Borrowing Hydrogen in Aqueous Media. ACS Omega 2020;5:27723-32. [PMID: 33134736 DOI: 10.1021/acsomega.0c04192] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
89 Gilio AK, Thorpe TW, Turner N, Grogan G. Reductive aminations by imine reductases: from milligrams to tons. Chem Sci . [DOI: 10.1039/d2sc00124a] [Reference Citation Analysis]
90 Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022;12:360-89. [DOI: 10.1039/d1cy01827b] [Reference Citation Analysis]
91 Zhang J, Liao D, Chen R, Zhu F, Ma Y, Gao L, Qu G, Cui C, Sun Z, Lei X, Gao S. Tuning an Imine Reductase for the Asymmetric Synthesis of Azacycloalkylamines by Concise Structure‐Guided Engineering. Angewandte Chemie. [DOI: 10.1002/ange.202201908] [Reference Citation Analysis]
92 Luo N, Zhong Y, Shui H, Luo R. pH-Mediated Selective Synthesis of N-Allylic Alkylation or N-Alkylation Amines with Allylic Alcohols via an Iridium Catalyst in Water. J Org Chem 2021;86:15509-21. [PMID: 34644075 DOI: 10.1021/acs.joc.1c01930] [Reference Citation Analysis]
93 Huxoll F, Jameel F, Bianga J, Seidensticker T, Stein M, Sadowski G, Vogt D. Solvent Selection in Homogeneous Catalysis—Optimization of Kinetics and Reaction Performance. ACS Catal 2021;11:590-4. [DOI: 10.1021/acscatal.0c04431] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
94 Sukhorukov AY. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction. Front Chem 2020;8:215. [PMID: 32351929 DOI: 10.3389/fchem.2020.00215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
95 Kim JE, Choi S, Balamurugan M, Jang JH, Nam KT. Electrochemical C–N Bond Formation for Sustainable Amine Synthesis. Trends in Chemistry 2020;2:1004-19. [DOI: 10.1016/j.trechm.2020.09.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
96 Lee C, Weber JM, Rodriguez LE, Sheppard RY, Barge LM, Berger EL, Burton AS. Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry 2022;14:460. [DOI: 10.3390/sym14030460] [Reference Citation Analysis]
97 Clemente F, Matassini C, Cardona F. Reductive Amination Routes in the Synthesis of Piperidine IminoSugars: Reductive Amination Routes in the Synthesis of Piperidine IminoSugars. Eur J Org Chem 2020;2020:4447-62. [DOI: 10.1002/ejoc.201901840] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
98 Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J Chem Inf Model 2021. [PMID: 34928600 DOI: 10.1021/acs.jcim.1c00811] [Reference Citation Analysis]
99 Liu J, Song Y, Ma L. Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. Chem Asian J 2021;16:2371-91. [PMID: 34235866 DOI: 10.1002/asia.202100473] [Reference Citation Analysis]
100 Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting N‐terminal cysteine. Peptide Science. [DOI: 10.1002/pep2.24235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Ducrot L, Bennett M, Grogan G, Vergne‐vaxelaire C. NAD(P)H‐Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl‐Containing Compound Spectrum. Adv Synth Catal 2021;363:328-51. [DOI: 10.1002/adsc.202000870] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
102 Beveridge RE, Hu Y, Gregoire B, Batey RA. Di-tert-butyl Ethynylimidodicarbonate as a General Synthon for the β-Aminoethylation of Organic Electrophiles: Application to the Formal Synthesis of Pyrrolidinoindoline Alkaloids (±)-CPC-1 and (±)-Alline. J Org Chem 2020;85:8447-61. [PMID: 32495626 DOI: 10.1021/acs.joc.0c00781] [Reference Citation Analysis]
103 He Y, Song H, Chen J, Zhu S. NiH-catalyzed asymmetric hydroarylation of N-acyl enamines to chiral benzylamines. Nat Commun 2021;12:638. [PMID: 33504793 DOI: 10.1038/s41467-020-20888-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
104 Romanazzi G, Petrelli V, Fiore AM, Mastrorilli P, Dell'Anna MM. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes. Molecules 2021;26:1120. [PMID: 33672487 DOI: 10.3390/molecules26041120] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Zhao H, Wu Y, Ci C, Tan Z, Yang J, Jiang H, Dixneuf PH, Zhang M. Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29985-z] [Reference Citation Analysis]
106 Bao Q, Li M, Xia Y, Wang Y, Zhou Z, Liang Y. Visible-Light-Mediated Decarboxylative Radical Addition Bifunctionalization Cascade for the Production of 1,4-Amino Alcohols. Org Lett 2021;23:1107-12. [DOI: 10.1021/acs.orglett.1c00034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Radhika S, Neetha M, Aneeja T, Anilkumar G. Microwave-assisted Amination Reactions: An Overview. COC 2020;24:2235-55. [DOI: 10.2174/1385272824999200914111246] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
108 Popov KK, Campbell JLP, Kysilka O, Hošek J, Davies CD, Pour M, Kočovský P. Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations. J Org Chem 2021. [PMID: 34841878 DOI: 10.1021/acs.joc.1c01561] [Reference Citation Analysis]
109 Irrgang T, Kempe R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem Rev 2020;120:9583-674. [PMID: 32812752 DOI: 10.1021/acs.chemrev.0c00248] [Cited by in Crossref: 34] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
110 Zou Q, Liu F, Zhao T, Hu X. Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a reductant. Chem Commun (Camb) 2021;57:8588-91. [PMID: 34357367 DOI: 10.1039/d1cc02618f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]