BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019;119:11510-49. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 21.7] [Reference Citation Analysis]
Number Citing Articles
1 Wu X, Craik DJ, Kaas Q. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Mar Drugs 2021;19:482. [PMID: 34564144 DOI: 10.3390/md19090482] [Reference Citation Analysis]
2 Lin Q, Hopper D, Zhang H, Sfyris Qoon J, Shen Z, Karas JA, Hughes RA, Northfield SE. 1,3-Dichloroacetone: A Robust Reagent for Preparing Bicyclic Peptides. ACS Omega 2020;5:1840-50. [PMID: 32039320 DOI: 10.1021/acsomega.9b03152] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Ma X, Huang Q, Yu S, Xu S, Huang Y, Zhao Z, Xiao X, Dai Q. The 3/4- and 3/6-Subfamily Variants of α-Conotoxins GI and MI Exhibit Potent Inhibitory Activity against Muscular Nicotinic Acetylcholine Receptors. Mar Drugs 2021;19:705. [PMID: 34940704 DOI: 10.3390/md19120705] [Reference Citation Analysis]
4 Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020;1:177-91. [PMID: 34458757 DOI: 10.1039/d0cb00062k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang B, Ren M, Xiong Y, Li H, Wu Y, Fu Y, Zhangsun D, Dong S, Luo S. Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Mar Drugs 2021;19:119. [PMID: 33671487 DOI: 10.3390/md19020119] [Reference Citation Analysis]
6 Sadeghi S, Deshpande S, Vallerinteavide Mavelli G, Aksoyoglu A, Bafna J, Winterhalter M, Kini RM, Lane DP, Drum CL. A general approach to protein folding using thermostable exoshells. Nat Commun 2021;12:5720. [PMID: 34588451 DOI: 10.1038/s41467-021-25996-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yap K, Du J, Looi FY, Tang SR, de Veer SJ, Bony AR, Rehm FBH, Xie J, Chan LY, Wang CK, Adams DJ, Lua LHL, Durek T, Craik DJ. An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chem 2020;22:5002-16. [DOI: 10.1039/d0gc01366h] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
8 Yang M, Li Y, Liu L, Zhou M. A novel proline-rich M-superfamily conotoxin that can simultaneously affect sodium, potassium and calcium currents. J Venom Anim Toxins Incl Trop Dis 2021;27:e20200164. [PMID: 34234819 DOI: 10.1590/1678-9199-JVATITD-2020-0164] [Reference Citation Analysis]
9 Armstrong DA, Jin AH, Braga Emidio N, Lewis RJ, Alewood PF, Rosengren KJ. Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Mar Drugs 2021;19:60. [PMID: 33530397 DOI: 10.3390/md19020060] [Reference Citation Analysis]
10 Li X, Liu H, Gao C, Li Y, Jia D, Yang Y, Yang J, Wei Z, Jiang T, Yu R. ConoMode, a database for conopeptide binding modes. Database (Oxford) 2020;2020:baaa058. [PMID: 32754758 DOI: 10.1093/database/baaa058] [Reference Citation Analysis]
11 Schwalen CJ, Babu C, Phulera S, Hao Q, Wall D, Nettleton DO, Pathak TP, Siuti P. Scalable Biosynthetic Production of Knotted Peptides Enables ADME and Thermodynamic Folding Studies. ACS Omega 2021;6:29555-66. [PMID: 34778627 DOI: 10.1021/acsomega.1c03707] [Reference Citation Analysis]
12 Wang CK, Craik DJ. Linking molecular evolution to molecular grafting. J Biol Chem 2021;296:100425. [PMID: 33600801 DOI: 10.1016/j.jbc.2021.100425] [Reference Citation Analysis]
13 Yang Y, Tan Y, Zhangsun D, Zhu X, Luo S. Design, Synthesis, and Activity of an α-Conotoxin LtIA Fluorescent Analogue. ACS Chem Neurosci 2021;12:3662-71. [PMID: 34523332 DOI: 10.1021/acschemneuro.1c00392] [Reference Citation Analysis]
14 Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021;26:3373. [PMID: 34204855 DOI: 10.3390/molecules26113373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020;181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Laps S, Atamleh F, Kamnesky G, Uzi S, Meijler MM, Brik A. Insight on the Order of Regioselective Ultrafast Formation of Disulfide Bonds in (Antimicrobial) Peptides and Miniproteins. Angew Chem Int Ed Engl 2021;60:24137-43. [PMID: 34524726 DOI: 10.1002/anie.202107861] [Reference Citation Analysis]
17 Kumar S, Vijayasarathy M, Venkatesha M, Sunita P, Balaram P. Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020;1868:140391. [DOI: 10.1016/j.bbapap.2020.140391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021;20:309-25. [PMID: 33536635 DOI: 10.1038/s41573-020-00135-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 42.0] [Reference Citation Analysis]
19 Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HNT, Emidio NB, Muttenthaler M. On the Utility of Chemical Strategies to Improve Peptide Gut Stability. J Med Chem 2022. [PMID: 35420805 DOI: 10.1021/acs.jmedchem.2c00094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ho TNT, Abraham N, Lewis RJ. Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Front Pharmacol 2021;12:803397. [PMID: 34955864 DOI: 10.3389/fphar.2021.803397] [Reference Citation Analysis]
21 González-Castro R, Gómez-Lim MA, Plisson F. Cysteine-Rich Peptides: Hyperstable Scaffolds for Protein Engineering. Chembiochem 2021;22:961-73. [PMID: 33095969 DOI: 10.1002/cbic.202000634] [Reference Citation Analysis]
22 Wang S, Zhu X, Zhangsun M, Wu Y, Yu J, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021;64:5620-31. [PMID: 33902275 DOI: 10.1021/acs.jmedchem.0c02079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Qu Q, Gao S, Wu F, Zhang M, Li Y, Zhang L, Bierer D, Tian C, Zheng J, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angew Chem 2020;132:6093-101. [DOI: 10.1002/ange.201915358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Chen J, Liu X, Yu S, Liu J, Chen R, Zhang Y, Jiang L, Dai Q. A novel ω-conotoxin Bu8 inhibiting N-type voltage-gated calcium channels displays potent analgesic activity. Acta Pharm Sin B 2021;11:2685-93. [PMID: 34589389 DOI: 10.1016/j.apsb.2021.03.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhao Y, Antunes A. Biomedical Potential of the Neglected Molluscivorous and Vermivorous Conus Species. Marine Drugs 2022;20:105. [DOI: 10.3390/md20020105] [Reference Citation Analysis]
26 Qi Y, Qu Q, Bierer D, Liu L. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chem Asian J 2020;15:2793-802. [DOI: 10.1002/asia.202000609] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
27 Olson KM, Traynor JR, Alt A. Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Front Chem 2021;9:671483. [PMID: 34692635 DOI: 10.3389/fchem.2021.671483] [Reference Citation Analysis]
28 Wilson DT, Bansal PS, Carter DA, Vetter I, Nicke A, Dutertre S, Daly NL. Characterisation of a Novel A-Superfamily Conotoxin. Biomedicines 2020;8:E128. [PMID: 32443665 DOI: 10.3390/biomedicines8050128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Brassart PL, Thomas OP, Courdavault V, Papon N. Towards a Better Understanding of Toxin Biosynthesis in Seaweeds. Chembiochem 2022;:e202200223. [PMID: 35666802 DOI: 10.1002/cbic.202200223] [Reference Citation Analysis]
30 Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020;11:1235-51. [PMID: 34095838 DOI: 10.1039/d0md00173b] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Tibery DV, de Souza ACB, Mourão CBF, do Nascimento JM, Schwartz EF. Purification and characterization of peptides Ap2, Ap3 and Ap5 (ω-toxins) from the venom of the Brazilian tarantula Acanthoscurria paulensis. Peptides 2021;145:170622. [PMID: 34363923 DOI: 10.1016/j.peptides.2021.170622] [Reference Citation Analysis]
32 Rajaian Pushpabai R, Wilson Alphonse CR, Mani R, Arun Apte D, Franklin JB. Diversity of Conopeptides and Conoenzymes from the Venom Duct of the Marine Cone Snail Conus bayani as Determined from Transcriptomic and Proteomic Analyses. Mar Drugs 2021;19:202. [PMID: 33916793 DOI: 10.3390/md19040202] [Reference Citation Analysis]
33 Li C, He C. Facile synthesis of sulfotyrosine-containing α-conotoxins. Org Biomol Chem 2020;18:7559-64. [PMID: 32945320 DOI: 10.1039/d0ob01526a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Shi WW, Shi C, Wang TY, Li YL, Zhou YK, Zhang XH, Bierer D, Zheng JS, Liu L. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J Am Chem Soc 2022;144:349-57. [PMID: 34978456 DOI: 10.1021/jacs.1c10091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
35 Laps S, Atamleh F, Kamnesky G, Sun H, Brik A. General synthetic strategy for regioselective ultrafast formation of disulfide bonds in peptides and proteins. Nat Commun 2021;12:870. [PMID: 33558523 DOI: 10.1038/s41467-021-21209-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
36 Philippe GJB, Craik DJ, Henriques ST. Converting peptides into drugs targeting intracellular protein-protein interactions. Drug Discov Today 2021;26:1521-31. [PMID: 33524603 DOI: 10.1016/j.drudis.2021.01.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Poth AG, Chiu FC, Stalmans S, Hamilton BR, Huang Y, Shackleford DM, Patil R, Le TT, Kan M, Durek T, Wynendaele E, De Spiegeleer B, Powell AK, Venter DJ, Clark RJ, Charman SA, Craik DJ. Effects of backbone cyclization on the pharmacokinetics and drug efficiency of the orally active analgesic conotoxin cVc1.1. Medicine in Drug Discovery 2021;10:100087. [DOI: 10.1016/j.medidd.2021.100087] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Dekan Z, Kremsmayr T, Keov P, Godin M, Teakle N, Dürrauer L, Xiang H, Gharib D, Bergmayr C, Hellinger R, Gay M, Vilaseca M, Kurzbach D, Albericio F, Alewood PF, Gruber CW, Muttenthaler M. Nature-inspired dimerization as a strategy to modulate neuropeptide pharmacology exemplified with vasopressin and oxytocin. Chem Sci 2021;12:4057-62. [PMID: 34163676 DOI: 10.1039/d0sc05501h] [Reference Citation Analysis]
39 Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2021;222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
40 Hernández-sámano AC, Falcón A, Zamudio F, Michel-morfín JE, Landa-jaime V, López-vera E, Jeziorski MC, Aguilar MB. A short framework-III (mini-M-2) conotoxin from the venom of a vermivorous species, Conus archon, inhibits human neuronal nicotinic acetylcholine receptors. Peptides 2022. [DOI: 10.1016/j.peptides.2022.170785] [Reference Citation Analysis]
41 Hwang HJ, Patnaik BB, Chung JM, Sang MK, Park JE, Kang SW, Park SY, Jo YH, Park HS, Baliarsingh S, Han YS, Lee JS, Lee YS. De novo transcriptome sequencing of triton shell Charonia lampas sauliae: Identification of genes related to neurotoxins and discovery of genetic markers. Mar Genomics 2021;59:100862. [PMID: 33827771 DOI: 10.1016/j.margen.2021.100862] [Reference Citation Analysis]
42 Zheng N, Christensen SB, Blakely A, Dowell C, Purushottam L, McIntosh JM, Chou DH. Development of Conformationally Constrained α-RgIA Analogues as Stable Peptide Antagonists of Human α9α10 Nicotinic Acetylcholine Receptors. J Med Chem 2020;63:8380-7. [PMID: 32597184 DOI: 10.1021/acs.jmedchem.0c00613] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
43 Kumar S, Venkatesha MA, Lall S, Prakash S, Balaram P. Mechanistic Insights into an Unusual Side-Chain-Mediated N-Cα Bond Cleavage under Collision-Induced Dissociation Conditions in the Disulfide-Containing Peptide Conopressin. J Am Soc Mass Spectrom 2020;31:1083-92. [PMID: 32175740 DOI: 10.1021/jasms.0c00023] [Reference Citation Analysis]
44 Oroz-Parra I, Álvarez-Delgado C, Cervantes-Luevano K, Dueñas-Espinoza S, Licea-Navarro AF. Proapoptotic Index Evaluation of Two Synthetic Peptides Derived from the Coneshell Californiconus californicus in Lung Cancer Cell Line H1299. Mar Drugs 2019;18:E10. [PMID: 31861952 DOI: 10.3390/md18010010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Kennedy AC, Belgi A, Husselbee BW, Spanswick D, Norton RS, Robinson AJ. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins (Basel) 2020;12:E505. [PMID: 32781580 DOI: 10.3390/toxins12080505] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
46 Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. Sensors (Basel) 2021;21:5784. [PMID: 34502675 DOI: 10.3390/s21175784] [Reference Citation Analysis]
47 Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020;187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Knuhtsen A, Whiting R, Mcwhinnie FS, Whitmore C, Smith BO, Green AC, Timperley CM, Kinnear KI, Jamieson AG. μ‐Conotoxin KIIIA peptidomimetics that block human voltage‐gated sodium channels. Peptide Science 2021;113. [DOI: 10.1002/pep2.24203] [Reference Citation Analysis]
49 Bosse GD, Urcino C, Watkins M, Flórez Salcedo P, Kozel S, Chase K, Cabang A, Espino SS, Safavi-Hemami H, Raghuraman S, Olivera BM, Peterson RT, Gajewiak J. Discovery of a Potent Conorfamide from Conus episcopatus Using a Novel Zebrafish Larvae Assay. J Nat Prod 2021;84:1232-43. [PMID: 33764053 DOI: 10.1021/acs.jnatprod.0c01297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Hone AJ, Kaas Q, Kearns I, Hararah F, Gajewiak J, Christensen S, Craik DJ, McIntosh JM. Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs. J Med Chem 2021;64:1685-700. [PMID: 33523678 DOI: 10.1021/acs.jmedchem.0c01973] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021;26:7401. [PMID: 34885985 DOI: 10.3390/molecules26237401] [Reference Citation Analysis]
52 Jimenez EC. Peptide antagonists of NMDA receptors: Structure-activity relationships for potential therapeutics. Peptides 2022. [DOI: 10.1016/j.peptides.2022.170796] [Reference Citation Analysis]
53 Peschel A, Cardoso FC, Walker AA, Durek T, Stone MRL, Braga Emidio N, Dawson PE, Muttenthaler M, King GF. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem 2020;63:12773-85. [PMID: 33078946 DOI: 10.1021/acs.jmedchem.0c01107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
54 Wang S, Bartels P, Zhao C, Yousuf A, Liu Z, Yu S, Bony AR, Ma X, Dai Q, Sun T, Liu N, Yang M, Yu R, Du W, Adams DJ, Dai Q. A 4/8 Subtype α-Conotoxin Vt1.27 Inhibits N-Type Calcium Channels With Potent Anti-Allodynic Effect. Front Pharmacol 2022;13:881732. [DOI: 10.3389/fphar.2022.881732] [Reference Citation Analysis]
55 Agouridas V, El Mahdi O, Melnyk O. Chemical Protein Synthesis in Medicinal Chemistry. J Med Chem 2020;63:15140-52. [PMID: 33236900 DOI: 10.1021/acs.jmedchem.0c01082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Zhang M, Yu S, Zhang X, Huang Q, Huang Y, Luo M, Wei Y, Chen W, Chen Z, Zhou X, Dai Q. A new protein-coupled antigen of α-conotoxin MI displays high immunogenicity and can produce antiserum with high detoxification activity. Toxicon 2022. [DOI: 10.1016/j.toxicon.2022.01.009] [Reference Citation Analysis]
57 Zhang H, Liang A, Pan X. Preparation and Functional Identification of a Novel Conotoxin QcMNCL-XIII0.1 from Conus quercinus. Toxins 2022;14:99. [DOI: 10.3390/toxins14020099] [Reference Citation Analysis]
58 Tosti E, Boni R, Gallo A. Pathophysiological Responses to Conotoxin Modulation of Voltage-Gated Ion Currents. Marine Drugs 2022;20:282. [DOI: 10.3390/md20050282] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zheng L, Lin Z, Fan H, Chen M, Yu J, Miao Y, Wu B. A fluorescent screening method for optimization of conotoxin expression in Pichia pastoris. Biotechnol Appl Biochem 2021. [PMID: 34337794 DOI: 10.1002/bab.2231] [Reference Citation Analysis]
60 Xu P, Kaas Q, Wu Y, Zhu X, Li X, Harvey PJ, Zhangsun D, Craik DJ, Luo S. Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020;63:1564-75. [DOI: 10.1021/acs.jmedchem.9b01409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
61 Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020;181:114129. [PMID: 32619425 DOI: 10.1016/j.bcp.2020.114129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
62 Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020;18:E173. [PMID: 32245015 DOI: 10.3390/md18030173] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
63 Capecchi A, Zhang A, Reymond JL. Populating Chemical Space with Peptides Using a Genetic Algorithm. J Chem Inf Model 2020;60:121-32. [PMID: 31868369 DOI: 10.1021/acs.jcim.9b01014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
64 Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021;24:102512. [PMID: 34041453 DOI: 10.1016/j.isci.2021.102512] [Reference Citation Analysis]
65 Hering A, Braga Emidio N, Muttenthaler M. Expanding the versatility and scope of the oxime ligation: rapid bioconjugation to disulfide-rich peptides. Chem Commun (Camb) 2022. [PMID: 35880482 DOI: 10.1039/d2cc03752a] [Reference Citation Analysis]
66 Wang H, Li Y, Yang M, Zhou M. Synthesis and characterization of αM-conotoxin SIIID, a reversible human α7 nicotinic acetylcholine receptor antagonist. Toxicon 2022;210:141-7. [DOI: 10.1016/j.toxicon.2022.03.002] [Reference Citation Analysis]
67 Wilhelm P, Luna-Ramirez K, Chin YK, Dekan Z, Abraham N, Tae HS, Chow CY, Eagles DA, King GF, Lewis RJ, Adams DJ, Alewood PF. Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2022;13:1245-50. [PMID: 35357806 DOI: 10.1021/acschemneuro.1c00857] [Reference Citation Analysis]
68 Itang CEMM, Gaza JT, Masacupan DJM, Batoctoy DCR, Chen YJ, Nellas RB, Yu ET. Identification of Conomarphin Variants in the Conus eburneus Venom and the Effect of Sequence and PTM Variations on Conomarphin Conformations. Mar Drugs 2020;18:E503. [PMID: 33019526 DOI: 10.3390/md18100503] [Reference Citation Analysis]
69 Liu Y, Yin Y, Song Y, Wang K, Wu F, Jiang H. α-Conotoxin as Potential to α7-nAChR Recombinant Expressed in Escherichia coli. Mar Drugs 2020;18:E422. [PMID: 32806654 DOI: 10.3390/md18080422] [Reference Citation Analysis]
70 V V, Achar RR, M U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021;2:329-40. [PMID: 34604795 DOI: 10.1016/j.crtox.2021.09.001] [Reference Citation Analysis]
71 Fu Y, Zhang Y, Ju S, Ma B, Huang W, Luo S. Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom. J Venom Anim Toxins incl Trop Dis 2022;28:e20210116. [DOI: 10.1590/1678-9199-jvatitd-2021-0116] [Reference Citation Analysis]
72 Braga Emidio N, Tran HNT, Andersson A, Dawson PE, Albericio F, Vetter I, Muttenthaler M. Improving the Gastrointestinal Stability of Linaclotide. J Med Chem 2021;64:8384-90. [PMID: 33979161 DOI: 10.1021/acs.jmedchem.1c00380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
73 Yousuf A, Wu X, Bony AR, Sadeghi M, Huang YH, Craik DJ, Adams DJ. ɑO-Conotoxin GeXIVA isomers modulate N-type calcium (CaV 2.2) channels and inwardly-rectifying potassium (GIRK) channels via GABAB receptor activation. J Neurochem 2021. [PMID: 34738241 DOI: 10.1111/jnc.15535] [Reference Citation Analysis]
74 Wu Y, Qiang Y, Zhang G, Zhou M. Acute toxicity and micronucleus test of conotoxin lt14a in mice. Basic Clin Pharmacol Toxicol 2021;129:52-60. [PMID: 33742558 DOI: 10.1111/bcpt.13582] [Reference Citation Analysis]
75 Fisher F, Zhang Y, Vincent PFY, Gajewiak J, Gordon TJ, Glowatzki E, Fuchs PA, McIntosh JM. Cy3-RgIA-5727 Labels and Inhibits α9-Containing nAChRs of Cochlear Hair Cells. Front Cell Neurosci 2021;15:697560. [PMID: 34385908 DOI: 10.3389/fncel.2021.697560] [Reference Citation Analysis]
76 Huynh PN, Giuvelis D, Christensen S, Tucker KL, McIntosh JM. RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Mar Drugs 2019;18:E12. [PMID: 31877728 DOI: 10.3390/md18010012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
77 Naranjo D, Díaz-Franulic I. Binding of κ-Conotoxin-PVIIA to Open and Closed Shaker K-Channels Are Differentially Affected by the Ionic Strength. Mar Drugs 2020;18:E533. [PMID: 33114777 DOI: 10.3390/md18110533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Zheng N, Christensen SB, Dowell C, Purushottam L, Skalicky JJ, McIntosh JM, Chou DH. Discovery of Methylene Thioacetal-Incorporated α-RgIA Analogues as Potent and Stable Antagonists of the Human α9α10 Nicotinic Acetylcholine Receptor for the Treatment of Neuropathic Pain. J Med Chem 2021;64:9513-24. [PMID: 34161094 DOI: 10.1021/acs.jmedchem.1c00802] [Reference Citation Analysis]
79 Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021;54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
80 Himaya SWA, Jin AH, Hamilton B, Rai SK, Alewood P, Lewis RJ. Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Sci Rep 2021;11:13282. [PMID: 34168165 DOI: 10.1038/s41598-021-91919-4] [Reference Citation Analysis]
81 Mozhaeva V, Kudryavtsev D, Prokhorov K, Utkin Y, Gudkov S, Garnov S, Kasheverov I, Tsetlin V. Toxins' classification through Raman spectroscopy with principal component analysis. Spectrochim Acta A Mol Biomol Spectrosc 2022;278:121276. [PMID: 35504103 DOI: 10.1016/j.saa.2022.121276] [Reference Citation Analysis]
82 Jimenez EC. Post-translationally modified conopeptides: Biological activities and pharmacological applications. Peptides 2021;139:170525. [PMID: 33684482 DOI: 10.1016/j.peptides.2021.170525] [Reference Citation Analysis]
83 Qu Q, Gao S, Wu F, Zhang MG, Li Y, Zhang LH, Bierer D, Tian CL, Zheng JS, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large-Span Surrogate Bridges Through a Native-Chemical-Ligation-Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020;59:6037-45. [PMID: 32060988 DOI: 10.1002/anie.201915358] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
84 Himaya SWA, Arkhipov A, Yum WY, Lewis RJ. Comparative Venomics of C. flavidus and C. frigidus and Closely Related Vermivorous Cone Snails. Marine Drugs 2022;20:209. [DOI: 10.3390/md20030209] [Reference Citation Analysis]
85 Kremsmayr T, Muttenthaler M. Fmoc Solid Phase Peptide Synthesis of Oxytocin and Analogues. Methods Mol Biol 2022;2384:175-99. [PMID: 34550575 DOI: 10.1007/978-1-0716-1759-5_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Simien JM, Haglund E. Topological Twists in Nature. Trends Biochem Sci 2021;46:461-71. [PMID: 33419636 DOI: 10.1016/j.tibs.2020.12.004] [Reference Citation Analysis]
87 Craik DJ, Kan MW. How can we improve peptide drug discovery? Learning from the past. Expert Opin Drug Discov 2021;:1-4. [PMID: 34344242 DOI: 10.1080/17460441.2021.1961740] [Reference Citation Analysis]
88 Schmitz T, Pengelley S, Belau E, Suckau D, Imhof D. LC-Trapped Ion Mobility Spectrometry-TOF MS Differentiation of 2- and 3-Disulfide-Bonded Isomers of the μ-Conotoxin PIIIA. Anal Chem 2020;92:10920-4. [PMID: 32806900 DOI: 10.1021/acs.analchem.0c02151] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Ho TNT, Lee HS, Swaminathan S, Goodwin L, Rai N, Ushay B, Lewis RJ, Rosengren KJ, Conibear AC. Posttranslational modifications of α-conotoxins: sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding. RSC Med Chem 2021;12:1574-84. [PMID: 34671739 DOI: 10.1039/d1md00182e] [Reference Citation Analysis]
90 Zamora-Bustillos R, Martínez-Núñez MA, Aguilar MB, Collí-Dula RC, Brito-Domínguez DA. Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Mar Drugs 2021;19:547. [PMID: 34677446 DOI: 10.3390/md19100547] [Reference Citation Analysis]