BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018;118:11707-94. [PMID: 30550275 DOI: 10.1021/acs.chemrev.8b00333] [Cited by in Crossref: 254] [Cited by in F6Publishing: 266] [Article Influence: 63.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Takahashi-yamashiro K, Shen Y, Campbell RE. Quantification of Intracellular Citrate Concentrations with Genetically Encoded Biosensors. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2667-2_12] [Reference Citation Analysis]
2 Schmitt DL, Mehta S, Zhang J. Study of spatiotemporal regulation of kinase signaling using genetically encodable molecular tools. Current Opinion in Chemical Biology 2022;71:102224. [DOI: 10.1016/j.cbpa.2022.102224] [Reference Citation Analysis]
3 Liu X, Ju X, Hong Q, Wang X, Wu M, Xing W, Xu M, Hu C, Hao F. Establishment of a CaCC-based Cell Model and Method for High-throughput Screening of M3 Receptor Drugs. Cell Biochem Biophys 2022. [DOI: 10.1007/s12013-022-01119-8] [Reference Citation Analysis]
4 Hellweg L, Edenhofer A, Barck L, Huppertz M, Frei MS, Tarnawski M, Bergner A, Koch B, Johnsson K, Hiblot J. A general method for the development of multicolor biosensors with large dynamic ranges.. [DOI: 10.1101/2022.11.29.518186] [Reference Citation Analysis]
5 Zhang JZ, Nguyen WH, Rose JC, Ong S, Maly DJ, Baker D. Designed sensors reveal normal and oncogenic Ras signaling in endomembranes and condensates.. [DOI: 10.1101/2022.11.22.517009] [Reference Citation Analysis]
6 Clark PJ, Brodnik ZD, España RA. Chemogenetic Signaling in Space and Time: Considerations for Designing Neuroscience Experiments Using DREADDs. Neuroscientist 2022. [DOI: 10.1177/10738584221134587] [Reference Citation Analysis]
7 Göllner S, Mishra K, Stiel AC. Schallschalter: Photoschaltbare Reporter und Sensoren in der Optoakustik. Biospektrum 2022;28:711-715. [DOI: 10.1007/s12268-022-1861-z] [Reference Citation Analysis]
8 Lee J, Campillo B, Hamidian S, Liu Z, Shorey M, St-pierre F. Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators. Biochemistry 2022. [DOI: 10.1021/acs.biochem.2c00357] [Reference Citation Analysis]
9 Lavania AA, Carpenter WB, Oltrogge LM, Perez D, Turnšek JB, Savage DF, Moerner WE. Exploring Masses and Internal Mass Distributions of Single Carboxysomes in Free Solution Using Fluorescence and Interferometric Scattering in an Anti-Brownian Trap. J Phys Chem B 2022. [DOI: 10.1021/acs.jpcb.2c05939] [Reference Citation Analysis]
10 Hu Y, Zhang R, Wang Z, Liu S. In Situ Quantification of Lipids in Live Cells by Using Lipid-Binding Domain-Based Biosensors. Bioconjugate Chem 2022. [DOI: 10.1021/acs.bioconjchem.2c00469] [Reference Citation Analysis]
11 Liang G, Lai C, Yue Z, Zhang H, Li D, Chen Z, Lu X, Tao L, Subach FV, Piatkevich KD. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front Bioeng Biotechnol 2022;10:1039317. [DOI: 10.3389/fbioe.2022.1039317] [Reference Citation Analysis]
12 Xue P, Sánchez-león E, Damoo D, Hu G, Jung WH, Kronstad JW. Heme sensing and trafficking in fungi. Fungal Biology Reviews 2022. [DOI: 10.1016/j.fbr.2022.09.002] [Reference Citation Analysis]
13 Hashizume R, Fujii H, Mehta S, Ota K, Qian Y, Zhu W, Drobizhev M, Nasu Y, Zhang J, Bito H, Campbell RE. A genetically encoded far-red fluorescent calcium ion biosensor derived from a biliverdin-binding protein. Protein Sci 2022;31:e4440. [PMID: 36173169 DOI: 10.1002/pro.4440] [Reference Citation Analysis]
14 Xiaoyan Guo, Xianbo Ma, Fenglin Wang ZH, Jiang J. Genetically encodable tagging and sensing systems for fluorescent RNA imaging. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114769] [Reference Citation Analysis]
15 Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Reference Citation Analysis]
16 Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G, Maggio R, Scarselli M, Rossi M. GPCRs in Intracellular Compartments: New Targets for Drug Discovery. Biomolecules 2022;12:1343. [DOI: 10.3390/biom12101343] [Reference Citation Analysis]
17 Zhu W, Takeuchi S, Imai S, Terada T, Ueda T, Nasu Y, Terai T, Campbell RE. Chemigenetic indicators based on synthetic chelators and green fluorescent protein. Nat Chem Biol 2022. [PMID: 36138142 DOI: 10.1038/s41589-022-01134-z] [Reference Citation Analysis]
18 Nellas I, Iyer KV, Iglesias‐artola JM, Pippel M, Nadler A, Eaton S, Dye NA. Hedgehog signaling can enhance glycolytic ATP production in the Drosophila wing disc. EMBO Reports 2022. [DOI: 10.15252/embr.202154025] [Reference Citation Analysis]
19 Xing Y, Li L, Yu X, Fox EG, Wang Y, Oberholzer J. Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. Curr Transpl Rep. [DOI: 10.1007/s40472-022-00377-y] [Reference Citation Analysis]
20 Weeks R, Zhou X, Yuan TL, Zhang J. Fluorescent Biosensor for Measuring Ras Activity in Living Cells. J Am Chem Soc 2022. [PMID: 36122391 DOI: 10.1021/jacs.2c05203] [Reference Citation Analysis]
21 Wu C, Huang S, Fu T, Lin F, Wang X, Tan K. Small-Molecule Modulated Affinity-Tunable Semisynthetic Protein Switches. ACS Sens . [DOI: 10.1021/acssensors.2c01211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Leonard AC, Whitehead TA. Design and engineering of genetically encoded protein biosensors for small molecules. Curr Opin Biotechnol 2022;78:102787. [PMID: 36058141 DOI: 10.1016/j.copbio.2022.102787] [Reference Citation Analysis]
23 Nasu Y, Kamijo Y, Hashizume R, Sato H, Hori Y, Tomita T, Drobizhev M, Campbell RE. A red fluorescent genetically encoded biosensor for extracellular L-lactate.. [DOI: 10.1101/2022.08.30.505811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Chi W, Au G, Liang J, Chen C, Huang C, Yang J. Imaging and analysis for simultaneous tracking of fluorescent biosensors in barcoded cells. STAR Protocols 2022;3:101611. [DOI: 10.1016/j.xpro.2022.101611] [Reference Citation Analysis]
25 Liu X, Ju X, Wu M, Wang X, Hong Q, Xing W, Xu M, Hu C, Hao F. Establishment of a CaCC-based cell model and method for high-throughput screening of M3 receptor drugs.. [DOI: 10.21203/rs.3.rs-2003368/v1] [Reference Citation Analysis]
26 Anwar M, Heinbockel T, Farooq Z. Introductory Chapter: Epigenetics and Optogenetics - The Science behind the Cover Blanket of Our Genome. Epigenetics to Optogenetics - A New Paradigm in the Study of Biology 2022. [DOI: 10.5772/intechopen.101190] [Reference Citation Analysis]
27 Lavania AA, Carpenter WB, Oltrogge LM, Perez D, Borden JS, Savage DF, Moerner WE. Exploring masses and internal mass distributions of single carboxysomes in free solution using fluorescence and interferometric scattering in an anti-Brownian trap.. [DOI: 10.1101/2022.08.23.505029] [Reference Citation Analysis]
28 Chen L, Cruz E, Oikari L, Padmanabhan P, Song J, Götz J. Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022;:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Reference Citation Analysis]
29 Zhang M, Yang B, Zhang J, Song Y, Wang W, Li N, Wang Y, Li W, Wang J. Monitoring the Dynamic Regulation of the Mitochondrial GTP‐to‐GDP Ratio with a Genetically Encoded Fluorescent Biosensor. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202201266] [Reference Citation Analysis]
30 Li S, Liao X, Yu X, Jameel A, Xing X, Xue Z, Zhang C. Combining genetically encoded biosensors with droplet microfluidic system for enhanced glutaminase production by Bacillus amyloliquefaciens. Biochemical Engineering Journal 2022;186:108586. [DOI: 10.1016/j.bej.2022.108586] [Reference Citation Analysis]
31 Zhu Z, Zhang H, Dong X, Lin M, Yang C. Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging. Biosensors 2022;12:557. [DOI: 10.3390/bios12080557] [Reference Citation Analysis]
32 Rost BR, Wietek J, Yizhar O, Schmitz D. Optogenetics at the presynapse. Nat Neurosci 2022. [PMID: 35835882 DOI: 10.1038/s41593-022-01113-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022;203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Reference Citation Analysis]
34 Wei T, Huang S, Hu Q, Wang J, Huo Z, Liu C, Lu S, Chen H. Directed evolution of the genetically encoded zinc(II) FRET sensor ZapCY1. Biochim Biophys Acta Gen Subj 2022;1866:130201. [PMID: 35835349 DOI: 10.1016/j.bbagen.2022.130201] [Reference Citation Analysis]
35 Peng W, Maydew C, Kam H, Lynd J, Tutol JN, Phelps SM, Abeyrathna S, Meloni G, Dodani SC. Discovery of a monomeric green fluorescent protein sensor for chloride by structure-guided bioinformatics.. [DOI: 10.1101/2022.07.08.499230] [Reference Citation Analysis]
36 Perez D, Dahlberg PD, Wang J, Sartor AM, Borden JS, Shapiro L, Moerner WE. Identification and demonstration of roGFP2 as an environmental sensor for cryogenic correlative light and electron microscopy. J Struct Biol 2022;214:107881. [PMID: 35811036 DOI: 10.1016/j.jsb.2022.107881] [Reference Citation Analysis]
37 Schmitt DL, Curtis SD, Lyons AC, Zhang J, Chen M, He CY, Mehta S, Shaw RJ, Zhang J. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-31190-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Seo M, Lim Y, Jung YH, Lee JH, Baek MS, Jung JH, Kim H, Lee W, Park K. Design of a highly specific glutamine sensor by splitting the glutamine-binding protein.. [DOI: 10.1101/2022.06.28.497868] [Reference Citation Analysis]
39 Wu X, Tan D, Qiao Q, Yin W, Xu Z, Liu X. Molecular origins of the multi-donor strategy in inducing bathochromic shifts and enlarging Stokes shifts of fluorescent proteins. Phys Chem Chem Phys 2022. [PMID: 35727090 DOI: 10.1039/d2cp00759b] [Reference Citation Analysis]
40 Guo X, Wang M, Ma L, Cui Z, Liu Z, Yang H, Liu Y. Carboxyl porphyrin as signal molecule for sensitive fluorescent detection of aflatoxin B1 via ARGET-ATRP. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121535. [PMID: 35752041 DOI: 10.1016/j.saa.2022.121535] [Reference Citation Analysis]
41 Gohil K, Wu S, Takahashi-yamashiro K, Shen Y, Campbell RE. Biosensor optimization using a FRET pair based on mScarlet red fluorescent protein and an mScarlet-derived green fluorescent protein.. [DOI: 10.1101/2022.06.20.496847] [Reference Citation Analysis]
42 Kim H, Choi G, Suk ME, Kim T. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022;10:885394. [DOI: 10.3389/fcell.2022.885394] [Reference Citation Analysis]
43 Kempmann A, Gensch T, Offenhäusser A, Tihaa I, Maybeck V, Balfanz S, Baumann A. The Functional Characterization of GCaMP3.0 Variants Specifically Targeted to Subcellular Domains. Int J Mol Sci 2022;23:6593. [PMID: 35743038 DOI: 10.3390/ijms23126593] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Koveal D, Rosen PC, Meyer DJ, Díaz-García CM, Wang Y, Cai LH, Chou PJ, Weitz DA, Yellen G. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nat Commun 2022;13:2919. [PMID: 35614105 DOI: 10.1038/s41467-022-30685-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
45 Zhou X, Mehta S, Zhang J. AktAR and Akt-STOPS: Genetically Encodable Molecular Tools to Visualize and Perturb Akt Kinase Activity at Different Subcellular Locations in Living Cells. Curr Protoc 2022;2:e416. [PMID: 35532280 DOI: 10.1002/cpz1.416] [Reference Citation Analysis]
46 Theillet F, Luchinat E. In-cell NMR: Why and how? Progress in Nuclear Magnetic Resonance Spectroscopy 2022. [DOI: 10.1016/j.pnmrs.2022.04.002] [Reference Citation Analysis]
47 Choe M, Titov DV. Genetically encoded tools for measuring and manipulating metabolism. Nat Chem Biol 2022;18:451-60. [PMID: 35484256 DOI: 10.1038/s41589-022-01012-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Bierbuesse F, Bourges AC, Gielen V, Mönkemöller V, Vandenberg W, Shen Y, Hofkens J, Berghe PV, Campbell RE, Moeyaert B, Dedecker P. Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nat Commun 2022;13:1850. [PMID: 35387971 DOI: 10.1038/s41467-022-29508-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophysical Chemistry 2022. [DOI: 10.1016/j.bpc.2022.106821] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Fujii H, Bito H. Deciphering Ca2+-controlled biochemical computation governing neural circuit dynamics via multiplex imaging. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.04.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Morris MC. Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life 2022;12:516. [DOI: 10.3390/life12040516] [Reference Citation Analysis]
52 Pham H, Hoseini Soflaee M, Karginov AV, Miller LW. Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity. Sci Rep 2022;12:5291. [PMID: 35351946 DOI: 10.1038/s41598-022-09364-w] [Reference Citation Analysis]
53 Li X, Zhang Y, Ai HW. Ratiometric Imaging of Mitochondrial Hydrogen Peroxide in Aβ42-Mediated Neurotoxicity. ACS Sens 2022;7:722-9. [PMID: 35226474 DOI: 10.1021/acssensors.1c01381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Zhang JF, Mehta S, Zhang J. Protocol for reading and imaging live-cell PKA activity using ExRai-AKAR2. STAR Protoc 2022;3:101071. [PMID: 35036953 DOI: 10.1016/j.xpro.2021.101071] [Reference Citation Analysis]
55 Curtis AJ, Dowsell RS, Gold MG. Assaying Protein Kinase A Activity Using a FRET-Based Sensor Purified from Mammalian Cells. Methods Mol Biol 2022;2483:15-31. [PMID: 35286667 DOI: 10.1007/978-1-0716-2245-2_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Dudanova I. Biosensors for Studying Neuronal Proteostasis. Front Mol Neurosci 2022;15:829365. [DOI: 10.3389/fnmol.2022.829365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. Systematic Interrogation of Cellular Signaling in Live Cells Using a Membrane‐Anchored DNA Multitasking Processor. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202113795] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Chang Z, Liu C, Zhao S, Chen J, Zhang X, Tian H, Sun Q. Near Infrared-II Fluorescent protein for In-vivo Imaging.. [DOI: 10.1101/2022.03.04.482971] [Reference Citation Analysis]
59 Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
60 Valls PO, Esposito A. Signalling dynamics, cell decisions, and homeostatic control in health and disease. Curr Opin Cell Biol 2022;75:102066. [PMID: 35245783 DOI: 10.1016/j.ceb.2022.01.011] [Reference Citation Analysis]
61 Mehl BP, Li L, Hinde E, Liu B, Macnevin CJ, Hsu C, Gratton E, Hahn KM. Live cell biosensors based on the fluorescence lifetime of environment-sensing dyes.. [DOI: 10.1101/2022.02.08.479035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zhang Y, Du XK, Su X, Zou X, Zhang CY. Mismatched fluorescent probes with an enhanced strand displacement reaction rate for intracellular long noncoding RNA imaging. Chem Commun (Camb) 2022;58:1760-3. [PMID: 35037666 DOI: 10.1039/d1cc05270e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Farrants H, Tebo AG. Fluorescent chemigenetic actuators and indicators for use in living animals. Current Opinion in Pharmacology 2022;62:159-67. [DOI: 10.1016/j.coph.2021.12.007] [Reference Citation Analysis]
64 Hirashima T. Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development. Biochem J 2022;479:129-43. [PMID: 35050327 DOI: 10.1042/BCJ20210557] [Reference Citation Analysis]
65 Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022;25:103693. [PMID: 35036877 DOI: 10.1016/j.isci.2021.103693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Front Cell Neurosci 2022;15:814547. [DOI: 10.3389/fncel.2021.814547] [Reference Citation Analysis]
67 Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022. [PMID: 34995461 DOI: 10.1021/acs.chemrev.1c00746] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
68 Bourque K, Dallagnol JC, Nassour H, Chatenet D, Allen BG, Hébert TE. Exploring the use of intracellular and extracellular allosteric modulators to understand GPCR signaling. Allosteric Modulation of G Protein-Coupled Receptors 2022. [DOI: 10.1016/b978-0-12-819771-4.00008-7] [Reference Citation Analysis]
69 Aktar A, Wodz KM, Heit B. Monitoring Cellular Responses to Infection with Fluorescent Biosensors. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2051-9_6] [Reference Citation Analysis]
70 Peng W, Maydew CC, Kam H, Lynd JK, Tutol JN, Phelps SM, Abeyrathna S, Meloni G, Dodani SC. Discovery of a monomeric green fluorescent protein sensor for chloride by structure-guided bioinformatics. Chem Sci 2022. [DOI: 10.1039/d2sc03903f] [Reference Citation Analysis]
71 Bourque K, Mnasri N, Jones-tabah J, Martins-cannavino K, Hébert TE. Drug Discovery in Induced Pluripotent Stem Cell Models. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00049-9] [Reference Citation Analysis]
72 Sumetsky D, Jiang JY, Ayad M, Mahon T, Menaesse A, Cararo-lopes MM, Patel MV, Firestein BL, Boustany NN. Measuring FRET efficiency with phase lifetime. Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN) 2022. [DOI: 10.1364/microscopy.2022.mtu4a.4] [Reference Citation Analysis]
73 Jena S, Parker LL. Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-1811-0_9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Hoare SR. Kinetics of Drug-Target Binding: A Guide for Drug Discovery. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00011-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Keyes J, Mehta S, Zhang J. Genetically Encoded Biosensors Reveal Spatiotemporal Dynamics and Cellular Heterogeneity of Neuronal Cells. Neuromethods 2022. [DOI: 10.1007/978-1-0716-2525-5_11] [Reference Citation Analysis]
76 Maiellaro I. In Vivo cAMP Dynamics in Drosophila Larval Neurons. cAMP Signaling 2022. [DOI: 10.1007/978-1-0716-2245-2_11] [Reference Citation Analysis]
77 Xiao K, Liang J, Wang X, Hou T, Ren X, Yin P, Ma Z, Zeng C, Gao X, Yu T, Si T, Wang B, Zhong C, Jiang Z, Lee C, Yu JC, Wong PK. Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy Environ Sci . [DOI: 10.1039/d1ee03094a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
78 Gong Y, Wei C, Cheng L, Ma F, Lu S, Peng Q, Liu L, Wang Y. Tracking the Dynamic Histone Methylation of H3K27 in Live Cancer Cells. ACS Sens 2021;6:4369-78. [PMID: 34878766 DOI: 10.1021/acssensors.1c01670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
79 Grimm JB, Lavis LD. Caveat fluorophore: an insiders' guide to small-molecule fluorescent labels. Nat Methods 2021. [PMID: 34949811 DOI: 10.1038/s41592-021-01338-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 29.0] [Reference Citation Analysis]
80 Chen M, Sun T, Zhong Y, Zhou X, Zhang J. A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity. ACS Cent Sci 2021;7:2009-20. [PMID: 34963894 DOI: 10.1021/acscentsci.1c00919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
81 Wang M, Chen J, Wang L, Zheng X, Zhou J, Zeng Y, Qu J, Shao Y, Gao BZ. Recent Progress in the Correlative Structured Illumination Microscopy. Chemosensors 2021;9:364. [DOI: 10.3390/chemosensors9120364] [Reference Citation Analysis]
82 Farooq A, Bhat KA, Mir RA, Mahajan R, Nazir M, Sharma V, Zargar SM. Emerging trends in developing biosensor techniques to undertake plant phosphoproteomic analysis. J Proteomics 2021;253:104458. [PMID: 34923172 DOI: 10.1016/j.jprot.2021.104458] [Reference Citation Analysis]
83 Yang JM, Chi WY, Liang J, Takayanagi S, Iglesias PA, Huang CH. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 2021;184:6193-6206.e14. [PMID: 34838160 DOI: 10.1016/j.cell.2021.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
84 Nasu Y, Murphy-Royal C, Wen Y, Haidey JN, Molina RS, Aggarwal A, Zhang S, Kamijo Y, Paquet ME, Podgorski K, Drobizhev M, Bains JS, Lemieux MJ, Gordon GR, Campbell RE. A genetically encoded fluorescent biosensor for extracellular L-lactate. Nat Commun 2021;12:7058. [PMID: 34873165 DOI: 10.1038/s41467-021-27332-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
85 Stelzer EHK, Strobl F, Chang B, Preusser F, Preibisch S, Mcdole K, Fiolka R. Light sheet fluorescence microscopy. Nat Rev Methods Primers 2021;1. [DOI: 10.1038/s43586-021-00069-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
86 Landman J, Verduyn Lunel SM, Kegel WK. Transcription factor competition facilitates self-sustained oscillations in single gene genetic circuits.. [DOI: 10.1101/2021.12.01.470700] [Reference Citation Analysis]
87 Mao J. Aptamer-engineered gold nanorod driven an absorbance enhanced strategy for sensitive biomacromolecule profiling. Talanta 2021;239:123116. [PMID: 34864534 DOI: 10.1016/j.talanta.2021.123116] [Reference Citation Analysis]
88 Bousmah Y, Valenta H, Bertolin G, Singh U, Nicolas V, Pasquier H, Tramier M, Merola F, Erard M. tdLanYFP, a Yellow, Bright, Photostable, and pH-Insensitive Fluorescent Protein for Live-Cell Imaging and Förster Resonance Energy Transfer-Based Sensing Strategies. ACS Sens 2021;6:3940-7. [PMID: 34676768 DOI: 10.1021/acssensors.1c00874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Yang J, Johnson CH. Bioluminescent Sensors for Ca++ Flux Imaging and the Introduction of a New Intensity-Based Ca++ Sensor. Front Bioeng Biotechnol 2021;9:773353. [PMID: 34778237 DOI: 10.3389/fbioe.2021.773353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Vollmer KM, Doncheck EM, Grant RI, Winston KT, Romanova EV, Bowen CW, Siegler PN, Green LM, Bobadilla AC, Trujillo-Pisanty I, Kalivas PW, Otis JM. A Novel Assay Allowing Drug Self-Administration, Extinction, and Reinstatement Testing in Head-Restrained Mice. Front Behav Neurosci 2021;15:744715. [PMID: 34776891 DOI: 10.3389/fnbeh.2021.744715] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
91 Kanadome T, Hoshino N, Nagai T, Matsuda T, Yagi T. Development of FRET-based indicators for visualizing homophilic trans interaction of a clustered protocadherin. Sci Rep 2021;11:22237. [PMID: 34782670 DOI: 10.1038/s41598-021-01481-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Jullié D, Valbret Z, Stoeber M. Optical tools to study the subcellular organization of GPCR neuromodulation. J Neurosci Methods 2021;366:109408. [PMID: 34763022 DOI: 10.1016/j.jneumeth.2021.109408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
93 Wu T, Pang Y, Ai H. Circularly Permuted Far-Red Fluorescent Proteins. Biosensors 2021;11:438. [DOI: 10.3390/bios11110438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
94 Lv S. Research fronts of Chemical Biology. Pure and Applied Chemistry 2021;93:1473-85. [DOI: 10.1515/pac-2020-1004] [Reference Citation Analysis]
95 Khrenova MG, Mulashkin FD, Nemukhin AV. Modeling Spectral Tuning in Red Fluorescent Proteins Using the Dipole Moment Variation upon Excitation. J Chem Inf Model 2021;61:5125-32. [PMID: 34601882 DOI: 10.1021/acs.jcim.1c00981] [Reference Citation Analysis]
96 Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021;9:1528. [PMID: 34829757 DOI: 10.3390/biomedicines9111528] [Reference Citation Analysis]
97 Geisler MM. A Retro-Perspective on Auxin Transport. Front Plant Sci 2021;12:756968. [PMID: 34675956 DOI: 10.3389/fpls.2021.756968] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
98 Deng X, Yao XQ, Berglund K, Dong B, Ouedraogo D, Ghane MA, Zhuo Y, McBean C, Wei ZZ, Gozem S, Yu SP, Wei L, Fang N, Mabb AM, Gadda G, Hamelberg D, Yang JJ. Tuning Protein Dynamics to Sense Rapid Endoplasmic-Reticulum Calcium Dynamics. Angew Chem Int Ed Engl 2021;60:23289-98. [PMID: 34436811 DOI: 10.1002/anie.202108443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Deng X, Yao X, Berglund K, Dong B, Ouedraogo D, Ghane MA, Zhuo Y, Mcbean C, Wei ZZ, Gozem S, Yu SP, Wei L, Fang N, Mabb AM, Gadda G, Hamelberg D, Yang JJ. Tuning Protein Dynamics to Sense Rapid Endoplasmic‐Reticulum Calcium Dynamics. Angewandte Chemie 2021;133:23477-23486. [DOI: 10.1002/ange.202108443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Ueda HH, Nagasawa Y, Murakoshi H. Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021:S0168-0102(21)00212-1. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
101 Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang C, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains.. [DOI: 10.1101/2021.10.13.464006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Schmitt DL, Curtis SD, Leung A, Zhang J, Chen M, He CY, Mehta S, Rangamani P, Shaw RJ, Zhang J. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter.. [DOI: 10.1101/2021.10.11.463987] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. Curr Protoc Neurosci 2020;94:e108. [PMID: 33232577 DOI: 10.1002/cpns.108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
104 Sadoine M, Ishikawa Y, Kleist TJ, Wudick MM, Nakamura M, Grossmann G, Frommer WB, Ho CH. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. Plant Physiol 2021;187:485-503. [PMID: 35237822 DOI: 10.1093/plphys/kiab353] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
105 Waadt R, Kudla J, Kollist H. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. Plant Physiol 2021;187:537-49. [PMID: 35237819 DOI: 10.1093/plphys/kiab399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
106 Grenzi M, Resentini F, Vanneste S, Zottini M, Bassi A, Costa A. Illuminating the hidden world of calcium ions in plants with a universe of indicators. Plant Physiol 2021;187:550-71. [PMID: 35237821 DOI: 10.1093/plphys/kiab339] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
107 Lin W, Mo GCH, Mehta S, Zhang J. DrFLINC Contextualizes Super-resolution Activity Imaging. J Am Chem Soc 2021;143:14951-5. [PMID: 34516108 DOI: 10.1021/jacs.1c05530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Jin X, Ye Q, Wang CW, Wu Y, Ma K, Yu S, Wei N, Gao H. Magnetic Nanoplatforms for Covalent Protein Immobilization Based on Spy Chemistry. ACS Appl Mater Interfaces 2021;13:44147-56. [PMID: 34515459 DOI: 10.1021/acsami.1c14670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhang JZ, Tenner B, Mehta S, Zhang J. Protocol for using fluorescent sensors targeted to endogenous proteins (FluoSTEPs) to measure microdomain-specific signaling events. STAR Protoc 2021;2:100693. [PMID: 34467224 DOI: 10.1016/j.xpro.2021.100693] [Reference Citation Analysis]
110 Koberstein JN, Stewart ML, Mighell TL, Smith CB, Cohen MS. A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors. ACS Chem Biol 2021;16:1709-20. [PMID: 34431656 DOI: 10.1021/acschembio.1c00423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
111 Ustyantseva EI, Zakian SM, Medvedev SP. A cell-based platform for oxidative stress monitoring in motor neurons using genetically encoded biosensors of H2O2.. [DOI: 10.1101/2021.09.13.459724] [Reference Citation Analysis]
112 Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, Schmidt HB, Yu F, Moses D, Brophy JAN, Cosio-Acosta D, Das A, Wang L, Jones AM, Covarrubias AA, Sukenik S, Dinneny JR. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nat Commun 2021;12:5438. [PMID: 34521831 DOI: 10.1038/s41467-021-25736-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
113 Secilmis M, Altun HY, Pilic J, Erdogan YC, Cokluk Z, Ata BN, Sevimli G, Zaki AG, Yigit EN, Öztürk G, Malli R, Eroglu E. A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H2O2 Signals with Targeted HyPer7. Biosensors (Basel) 2021;11:338. [PMID: 34562927 DOI: 10.3390/bios11090338] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
114 Nellas I, Iyer KV, Iglesias-artola JM, Nadler A, Dye NA, Eaton S. Hedgehog signaling can enhance glycolytic ATP production in the Drosophila wing disc.. [DOI: 10.1101/2021.09.11.459911] [Reference Citation Analysis]
115 Marston DJ, Slattery SD, Hahn KM, Tsygankov D. Correcting Artifacts in Ratiometric Biosensor Imaging; an Improved Approach for Dividing Noisy Signals. Front Cell Dev Biol 2021;9:685825. [PMID: 34490242 DOI: 10.3389/fcell.2021.685825] [Reference Citation Analysis]
116 Keyes J, Mehta S, Zhang J. Strategies for Multiplexed Biosensor Imaging to Study Intracellular Signaling Networks. Methods Mol Biol 2021;2350:1-20. [PMID: 34331275 DOI: 10.1007/978-1-0716-1593-5_1] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
117 Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021;12:722889. [PMID: 34447313 DOI: 10.3389/fphar.2021.722889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
118 Khan SS, Shen Y, Fatmi MQ, Campbell RE, Bokhari H. Design and Prototyping of Genetically Encoded Arsenic Biosensors Based on Transcriptional Regulator AfArsR. Biomolecules 2021;11:1276. [PMID: 34572489 DOI: 10.3390/biom11091276] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
119 Kim AK, Wu HD, Inoue T. Synthetic design of farnesyl-electrostatic peptides for development of a protein kinase A membrane translocation switch. Sci Rep 2021;11:16421. [PMID: 34385501 DOI: 10.1038/s41598-021-95840-8] [Reference Citation Analysis]
120 Zhang JZ, Mehta S, Zhang J. Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends Pharmacol Sci 2021:S0165-6147(21)00138-3. [PMID: 34373114 DOI: 10.1016/j.tips.2021.07.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
121 Nakamura A, Goto Y, Kondo Y, Aoki K. Shedding light on developmental ERK signaling with genetically encoded biosensors. Development 2021;148:dev199767. [PMID: 34338283 DOI: 10.1242/dev.199767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
122 Gheorghiu M, Polonschii C, Popescu O, Gheorghiu E. Advanced Optogenetic-Based Biosensing and Related Biomaterials. Materials (Basel) 2021;14:4151. [PMID: 34361345 DOI: 10.3390/ma14154151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Habif M, Corbat AA, Silberberg M, Grecco HE. CASPAM: A Triple-Modality Biosensor for Multiplexed Imaging of Caspase Network Activity. ACS Sens 2021;6:2642-53. [PMID: 34191492 DOI: 10.1021/acssensors.1c00554] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Bordes L, Chavez-Abiega S, Goedhart J. Imaging of Genetically Encoded FRET-Based Biosensors to Detect GPCR Activity. Methods Mol Biol 2021;2268:159-78. [PMID: 34085268 DOI: 10.1007/978-1-0716-1221-7_11] [Reference Citation Analysis]
125 Wang W, Wei Q, Zhang J, Zhang M, Wang C, Qu R, Wang Y, Yang G, Wang J. A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long‐Chain Fatty Acyl‐CoA Esters Metabolism. Angew Chem 2021;133:14115-14123. [DOI: 10.1002/ange.202101731] [Reference Citation Analysis]
126 Sumetsky D, Jiang JY, Ayad MA, Mahon T, Menaesse A, Cararo-lopes MM, Patel MV, Firestein BL, Boustany NN. Linear Behavior of the Phase Lifetime in Frequency-Domain Fluorescence Lifetime Imaging of FRET Constructs. Front Phys 2021;9:648016. [DOI: 10.3389/fphy.2021.648016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem Int Ed 2021;60:14887-91. [DOI: 10.1002/anie.202104408] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
128 Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem 2021;133:15013-7. [DOI: 10.1002/ange.202104408] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
129 Tenner B, Zhang JZ, Kwon Y, Pessino V, Feng S, Huang B, Mehta S, Zhang J. FluoSTEPs: Fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. Sci Adv 2021;7:eabe4091. [PMID: 34020947 DOI: 10.1126/sciadv.abe4091] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
130 Mehta S, Zhang J. Biochemical Activity Architectures Visualized-Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments. Acc Chem Res 2021;54:2409-20. [PMID: 33949851 DOI: 10.1021/acs.accounts.1c00056] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
131 Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. Nanoscale 2021;13:7988-8003. [PMID: 33885099 DOI: 10.1039/d0nr08301a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
132 Wang W, Wei Q, Zhang J, Zhang M, Wang C, Qu R, Wang Y, Yang G, Wang J. A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long-Chain Fatty Acyl-CoA Esters Metabolism. Angew Chem Int Ed Engl 2021;60:13996-4004. [PMID: 33837610 DOI: 10.1002/anie.202101731] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
133 Chen K, Yan R, Xiang L, Xu K. Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing. Light Sci Appl 2021;10:97. [PMID: 33963178 DOI: 10.1038/s41377-021-00536-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
134 Zhang L, Wang L, Yuan X, Zhong M, Chen H, Zhang D, Han X, Xie S, He L, Li Y, Chen F, Liu Y, Tan W. Decoding the Complex Free Radical Cascade by Using a DNA Framework-Based Artificial DNA Encoder. Angew Chem Int Ed Engl 2021;60:10745-55. [PMID: 33555644 DOI: 10.1002/anie.202014088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
135 Guo WY, Fu YX, Liu SY, Mei LC, Sun Y, Yin J, Yang WC, Yang GF. Multienzyme-Targeted Fluorescent Probe as a Biosensing Platform for Broad Detection of Pesticide Residues. Anal Chem 2021;93:7079-85. [PMID: 33906355 DOI: 10.1021/acs.analchem.1c00553] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
136 Bousmah Y, Valenta H, Bertolin G, Singh U, Nicolas V, Pasquier H, Tramier M, Merola F, Erard M. tdLanYFP, a yellow, bright, photostable and pH insensitive fluorescent protein for live cell imaging and FRET-based sensing strategies.. [DOI: 10.1101/2021.04.27.441613] [Reference Citation Analysis]
137 Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed 2021;60:12258-63. [DOI: 10.1002/anie.202016105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
138 Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem 2021;133:12366-71. [DOI: 10.1002/ange.202016105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
139 Chen Y. Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. Anal Methods 2021;13:1778-87. [PMID: 33885636 DOI: 10.1039/d1ay00245g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
140 Marston DJ, Slattery S, Hahn KM, Tsygankov D. Correcting artifacts in ratiometric biosensor imaging; an improved approach for dividing noisy signals.. [DOI: 10.1101/2021.04.13.439673] [Reference Citation Analysis]
141 Chen K, Yan R, Xiang L, Xu K. Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing.. [DOI: 10.1101/2021.04.13.439576] [Reference Citation Analysis]
142 Lindenburg L, Hollfelder F. “NAD‐display”: Ultrahigh‐Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem 2021;133:9097-9103. [DOI: 10.1002/ange.202013486] [Reference Citation Analysis]
143 Zhang L, Wang L, Yuan X, Zhong M, Chen H, Zhang D, Han X, Xie S, He L, Li Y, Chen F, Liu Y, Tan W. Decoding the Complex Free Radical Cascade by Using a DNA Framework‐Based Artificial DNA Encoder. Angew Chem 2021;133:10840-50. [DOI: 10.1002/ange.202014088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
144 Roebroek T, Vandenberg W, Sipieter F, Hugelier S, Stove C, Zhang J, Dedecker P. Simultaneous readout of multiple FRET pairs using photochromism. Nat Commun 2021;12:2005. [PMID: 33790271 DOI: 10.1038/s41467-021-22043-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
145 Komoto Y, Ohshiro T, Taniguchi M. Development of Single-Molecule Electrical Identification Method for Cyclic Adenosine Monophosphate Signaling Pathway. Nanomaterials (Basel) 2021;11:784. [PMID: 33808592 DOI: 10.3390/nano11030784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
146 Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2020;2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
147 Shao Y, Zhao J, Yuan J, Zhao Y, Li L. Organelle‐Specific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angew Chem 2021;133:9005-13. [DOI: 10.1002/ange.202016738] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
148 Shao Y, Zhao J, Yuan J, Zhao Y, Li L. Organelle‐Specific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angew Chem Int Ed 2021;60:8923-31. [DOI: 10.1002/anie.202016738] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 37.0] [Reference Citation Analysis]
149 Lindenburg L, Hollfelder F. "NAD-display": Ultrahigh-Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem Int Ed Engl 2021;60:9015-21. [PMID: 33470025 DOI: 10.1002/anie.202013486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
150 Nasu Y, Murphy-royal C, Wen Y, Haidey J, Molina MRS, Aggarwal A, Zhang S, Kamijo Y, Paquet M, Podgorski K, Drobizhev M, Bains JS, Joanne Lemieux M, Gordon GR, Campbell RE. A genetically encoded fluorescent biosensor for extracellular L-lactate.. [DOI: 10.1101/2021.03.05.434048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
151 Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020;8:3460-87. [PMID: 32159202 DOI: 10.1039/c9tb02666e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
152 Pham H, Miller LW. Lanthanide-based resonance energy transfer biosensors for live-cell applications. Methods Enzymol 2021;651:291-311. [PMID: 33888207 DOI: 10.1016/bs.mie.2021.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
153 Cuevas-velazquez CL, Vellosillo T, Guadalupe K, Schmidt HB, Yu F, Moses D, Brophy JA, Cosio-acosta D, Das A, Wang L, Jones AM, Covarrubias AA, Sukenik S, Dinneny JR. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells.. [DOI: 10.1101/2021.02.17.431712] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
154 Baek K, Ji K, Peng W, Liyanaarachchi SM, Dodani SC. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng Des Sel 2021;34:gzab023. [PMID: 34581820 DOI: 10.1093/protein/gzab023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
155 Mahlandt EK, Arts JJG, van der Meer WJ, van der Linden FH, Tol S, van Buul JD, Gadella TWJ, Goedhart J. Visualizing endogenous RhoA activity with an improved localization-based, genetically encoded biosensor.. [DOI: 10.1101/2021.02.08.430250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
156 Nasu Y, Shen Y, Kramer L, Campbell RE. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat Chem Biol 2021;17:509-18. [PMID: 33558715 DOI: 10.1038/s41589-020-00718-x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 62.0] [Reference Citation Analysis]
157 Goto Y, Kondo Y, Aoki K. Visualization and Manipulation of Intracellular Signaling. Adv Exp Med Biol 2021;1293:225-34. [PMID: 33398816 DOI: 10.1007/978-981-15-8763-4_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
158 Murakoshi H. Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy. Adv Exp Med Biol 2021;1293:295-308. [PMID: 33398821 DOI: 10.1007/978-981-15-8763-4_18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
159 Klomp JE, Klomp JA, Der CJ. The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021;49:253-67. [PMID: 33544118 DOI: 10.1042/BST20200507] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
160 Hewett SJ, Prado VF, Robinson MB. The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2021;144:104980. [PMID: 33524471 DOI: 10.1016/j.neuint.2021.104980] [Reference Citation Analysis]
161 Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable protein biosensors. Nature 2021;591:482-7. [PMID: 33503651 DOI: 10.1038/s41586-021-03258-z] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 71.0] [Reference Citation Analysis]
162 Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021;178:113007. [PMID: 33556807 DOI: 10.1016/j.bios.2021.113007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
163 Jaqaman K, Ditlev JA. Biomolecular condensates in membrane receptor signaling. Curr Opin Cell Biol 2021;69:48-54. [PMID: 33461072 DOI: 10.1016/j.ceb.2020.12.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
164 Roebroek T, Vandenberg W, Sipieter F, Hugelier S, Stove C, Zhang J, Dedecker P. Simultaneous readout of multiple FRET pairs using photochromism.. [DOI: 10.1101/2021.01.06.425528] [Reference Citation Analysis]
165 Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA Advances 2021;1:100012. [DOI: 10.1016/j.bbadva.2021.100012] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Weiss CA, Winkler WC. Riboswitch-Mediated Detection of Metabolite Fluctuations During Live Cell Imaging of Bacteria. Methods Mol Biol 2021;2323:153-70. [PMID: 34086280 DOI: 10.1007/978-1-0716-1499-0_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
167 Bondar A, Lazar J. Optical sensors of heterotrimeric G protein signaling. FEBS J 2021;288:2570-84. [DOI: 10.1111/febs.15655] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
168 Montecinos-Franjola F, Lin JY, Rodriguez EA. Fluorescent proteins for in vivo imaging, where's the biliverdin? Biochem Soc Trans 2020;48:2657-67. [PMID: 33196077 DOI: 10.1042/BST20200444] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
169 Voigt O, Knabe N, Nitsche S, Erdmann EA, Schumacher J, Gorbushina AA. An advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus Knufia petricola. Sci Rep 2020;10:22021. [PMID: 33328531 DOI: 10.1038/s41598-020-79120-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
170 Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2021;349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
171 Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, Frommer WB, Nakamura M. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J 2021;105:542-57. [PMID: 33231903 DOI: 10.1111/tpj.15096] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
172 Yang J, Chi W, Liang J, Iglesias P, Huang C. Highly multiplexed imaging of biosensors in live cells.. [DOI: 10.1101/2020.12.11.419655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
173 Dai Y. Chemical Translational Biology‐Guided Molecular Diagnostics: The Front Line To Mediate the Current SARS‐CoV‐2 Pandemic. ChemBioChem 2020;21:3492-3494. [DOI: 10.1002/cbic.202000518] [Reference Citation Analysis]
174 Gräwe A, Stein V. Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends Biotechnol 2021;39:731-44. [PMID: 33293101 DOI: 10.1016/j.tibtech.2020.11.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
175 Myšková J, Rybakova O, Brynda J, Khoroshyy P, Bondar A, Lazar J. Directionality of light absorption and emission in representative fluorescent proteins. Proc Natl Acad Sci U S A 2020;117:32395-401. [PMID: 33273123 DOI: 10.1073/pnas.2017379117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
176 Krishnan Y, Zou J, Jani MS. Quantitative Imaging of Biochemistry in Situ and at the Nanoscale. ACS Cent Sci 2020;6:1938-54. [PMID: 33274271 DOI: 10.1021/acscentsci.0c01076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
177 Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Mol Biol Cell 2021;32:186-210. [PMID: 33237849 DOI: 10.1091/mbc.E20-08-0530] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
178 Gielen V, Mönkemöller V, Bierbuesse F, Bourges AC, Vandenberg W, Shen Y, Hofkens J, Vanden Berghe P, Campbell RE, Moeyaert B, Dedecker P. Absolute measurement of cellular activities using photochromic single-fluorophore biosensors.. [DOI: 10.1101/2020.10.29.360214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
179 Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020;84:e00008-20. [PMID: 33115939 DOI: 10.1128/MMBR.00008-20] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
180 Vollmer KM, Doncheck EM, Grant RI, Winston KT, Romanova EV, Bowen CW, Siegler PN, Bobadilla A, Trujillo-pisanty I, Kalivas PW, Otis JM. Drug self-administration in head-restrained mice for simultaneous multiphoton imaging.. [DOI: 10.1101/2020.10.25.354209] [Reference Citation Analysis]
181 Adamson H, Jeuken LJC. Engineering Protein Switches for Rapid Diagnostic Tests. ACS Sens 2020;5:3001-12. [PMID: 33052043 DOI: 10.1021/acssensors.0c01831] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
182 Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020;49:8315-34. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
183 Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Rajabzadeh AR. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends in Analytical Chemistry 2020;131:116006. [DOI: 10.1016/j.trac.2020.116006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
184 Zhang JF, Liu B, Hong I, Mo A, Roth RH, Tenner B, Lin W, Zhang JZ, Molina RS, Drobizhev M, Hughes TE, Tian L, Huganir RL, Mehta S, Zhang J. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat Chem Biol 2021;17:39-46. [PMID: 32989297 DOI: 10.1038/s41589-020-00660-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
185 Zhang S, Ai HW. A general strategy to red-shift green fluorescent protein-based biosensors. Nat Chem Biol 2020;16:1434-9. [PMID: 32929278 DOI: 10.1038/s41589-020-0641-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
186 Zhao Y, Shen Y, Wen Y, Campbell RE. High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate. ACS Cent Sci 2020;6:1441-50. [PMID: 32875085 DOI: 10.1021/acscentsci.0c00518] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
187 Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell 2020;182:1531-1544.e15. [PMID: 32846158 DOI: 10.1016/j.cell.2020.07.043] [Cited by in Crossref: 87] [Cited by in F6Publishing: 96] [Article Influence: 43.5] [Reference Citation Analysis]
188 Menaesse A, Sumetsky D, Emanuely N, Stein JL, Gates EM, Hoffman BD, Boustany NN. Simplified Instrument Calibration for Wide-Field Fluorescence Resonance Energy Transfer (FRET) Measured by the Sensitized Emission Method. Cytometry A 2021;99:407-16. [PMID: 32700451 DOI: 10.1002/cyto.a.24194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
189 Huey J, Keutler K, Schultz C. Chemical Biology Toolbox for Studying Pancreatic Islet Function - A Perspective. Cell Chem Biol 2020;27:1015-31. [PMID: 32822616 DOI: 10.1016/j.chembiol.2020.07.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
190 Seitz K, Krysan PJ. Expanding the Toolkit of Fluorescent Biosensors for Studying Mitogen Activated Protein Kinases in Plants. Int J Mol Sci 2020;21:E5350. [PMID: 32731410 DOI: 10.3390/ijms21155350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
191 Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein Spherical Nucleic Acids for Live-Cell Chemical Analysis. J Am Chem Soc 2020;142:13350-5. [PMID: 32706250 DOI: 10.1021/jacs.0c06866] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
192 Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable allosteric biosensors. bioRxiv 2020:2020. [PMID: 32743576 DOI: 10.1101/2020.07.18.206946] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
193 Sharma A, Sun J, Singaram I, Ralko A, Lee D, Cho W. Photostable and Orthogonal Solvatochromic Fluorophores for Simultaneous In Situ Quantification of Multiple Cellular Signaling Molecules. ACS Chem Biol 2020;15:1913-20. [PMID: 32525312 DOI: 10.1021/acschembio.0c00241] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
194 Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
195 Pinkin NK, Liu B, Pimenta FM, Hahn KM. Using SNAP-tag for facile construction of dye-based biosensors in living cells.. [DOI: 10.1101/2020.07.16.206748] [Reference Citation Analysis]
196 Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020;45:889-905. [PMID: 32660810 DOI: 10.1016/j.tibs.2020.06.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
197 Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020;85:1487-97. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
198 Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020;8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
199 Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM. The Roles of Space and Stochasticity in Computational Simulations of Cellular Biochemistry: Quantitative Analysis and Qualitative Insights.. [DOI: 10.1101/2020.07.02.185595] [Reference Citation Analysis]
200 Dhada KS, Hernandez DS, Huang W, Suggs LJ. Gold Nanorods as Photoacoustic Nanoprobes to Detect Proinflammatory Macrophages and Inflammation. ACS Appl Nano Mater 2020;3:7774-80. [DOI: 10.1021/acsanm.0c01324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
201 Chang J, Lv W, Li Q, Li H, Li F. One-Step Synthesis of Methylene Blue-Encapsulated Zeolitic Imidazolate Framework for Dual-Signal Fluorescent and Homogeneous Electrochemical Biosensing. Anal Chem 2020;92:8959-64. [PMID: 32478502 DOI: 10.1021/acs.analchem.0c00952] [Cited by in Crossref: 64] [Cited by in F6Publishing: 73] [Article Influence: 32.0] [Reference Citation Analysis]
202 Inoue M. Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo. Neurosci Res 2021;169:2-8. [PMID: 32531233 DOI: 10.1016/j.neures.2020.05.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
203 Moeyaert B, Dedecker P. Genetically encoded biosensors based on innovative scaffolds. Int J Biochem Cell Biol 2020;125:105761. [PMID: 32504671 DOI: 10.1016/j.biocel.2020.105761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
204 Diehl KL, Muir TW. Chromatin as a key consumer in the metabolite economy. Nat Chem Biol 2020;16:620-9. [PMID: 32444835 DOI: 10.1038/s41589-020-0517-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
205 Urmey AR, Zondlo NJ. Cysteine oxidation to the sulfinic acid induces oxoform-specific lanthanide binding and fluorescence in a designed peptide. Free Radic Biol Med 2020;152:166-74. [PMID: 32097680 DOI: 10.1016/j.freeradbiomed.2020.02.020] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
206 Valenta H, Erard M, Dupré-crochet S, Nüβe O. The NADPH Oxidase and the Phagosome. In: Hallett MB, editor. Molecular and Cellular Biology of Phagocytosis. Cham: Springer International Publishing; 2020. pp. 153-77. [DOI: 10.1007/978-3-030-40406-2_9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
207 Reissaus CA, Day KH, Mirmira RG, Dunn KW, Pavalko FM, Day RN. PIE-FLIM Measurements of Two Different FRET-Based Biosensor Activities in the Same Living Cells. Biophys J 2020;118:1820-9. [PMID: 32191861 DOI: 10.1016/j.bpj.2020.03.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
208 Nakamura A, Oki C, Kato K, Fujinuma S, Maryu G, Kuwata K, Yoshii T, Matsuda M, Aoki K, Tsukiji S. Engineering Orthogonal, Plasma Membrane-Specific SLIPT Systems for Multiplexed Chemical Control of Signaling Pathways in Living Single Cells. ACS Chem Biol 2020;15:1004-15. [PMID: 32162909 DOI: 10.1021/acschembio.0c00024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
209 Zhao Y, Shen Y, Wen Y, Campbell RE. High performance intensiometric direct- and inverse-response genetically encoded biosensors for citrate.. [DOI: 10.1101/2020.04.12.038547] [Reference Citation Analysis]
210 Zhang S, Ai H. A general strategy to red-shift green fluorescent protein based biosensors.. [DOI: 10.1101/2020.04.09.034561] [Reference Citation Analysis]
211 Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, Zhang Y, Li C, Wang Q. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Adv Sci (Weinh) 2020;7:1903783. [PMID: 32328436 DOI: 10.1002/advs.201903783] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
212 Ando R, Sakaue-sawano A, Shoda K, Miyawaki A. Two new coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression.. [DOI: 10.1101/2020.03.30.015156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
213 Watabe T, Terai K, Sumiyama K, Matsuda M. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. ACS Sens 2020;5:719-30. [PMID: 32101394 DOI: 10.1021/acssensors.9b01941] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
214 Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020;133:jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
215 Hanko EKR, Paiva AC, Jonczyk M, Abbott M, Minton NP, Malys N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun 2020;11:1213. [PMID: 32139676 DOI: 10.1038/s41467-020-14941-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
216 Yudushkin I. Control of Akt activity and substrate phosphorylation in cells. IUBMB Life 2020;72:1115-25. [PMID: 32125765 DOI: 10.1002/iub.2264] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
217 Gold MG. Swimming regulations for protein kinase A catalytic subunit. Biochem Soc Trans 2019;47:1355-66. [PMID: 31671183 DOI: 10.1042/BST20190230] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
218 Su Y, Hammond MC. RNA-based fluorescent biosensors for live cell imaging of small molecules and RNAs. Curr Opin Biotechnol 2020;63:157-66. [PMID: 32086101 DOI: 10.1016/j.copbio.2020.01.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 16.5] [Reference Citation Analysis]
219 Pietraszewska-Bogiel A, Joosen L, Chertkova AO, Goedhart J. Not So Dry After All: DRY Mutants of the AT1A Receptor and H1 Receptor Can Induce G-Protein-Dependent Signaling. ACS Omega 2020;5:2648-59. [PMID: 32095688 DOI: 10.1021/acsomega.9b03146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
220 Petchiappan A, Naik SY, Chatterji D. Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Biophys Rev 2020;12:719-30. [PMID: 32060735 DOI: 10.1007/s12551-020-00636-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
221 Lee HN, Mehta S, Zhang J. Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Curr Opin Cell Biol 2020;63:114-24. [PMID: 32058267 DOI: 10.1016/j.ceb.2020.01.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
222 McCullock TW, MacLean DM, Kammermeier PJ. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLoS One 2020;15:e0219886. [PMID: 32023253 DOI: 10.1371/journal.pone.0219886] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
223 Kaur A, Dhakal S. Recent applications of FRET-based multiplexed techniques. TrAC Trends in Analytical Chemistry 2020;123:115777. [DOI: 10.1016/j.trac.2019.115777] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
224 Shen Y, Nasu Y, Shkolnikov I, Kim A, Campbell RE. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: Progress and prospects. Neurosci Res 2020;152:3-14. [PMID: 31991206 DOI: 10.1016/j.neures.2020.01.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
225 Ohata J, Krishnamoorthy L, Gonzalez MA, Xiao T, Iovan DA, Toste FD, Miller EW, Chang CJ. An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. ACS Cent Sci 2020;6:32-40. [PMID: 31989024 DOI: 10.1021/acscentsci.9b01038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
226 Hertel F, Li S, Chen M, Pott L, Mehta S, Zhang J. Fluorescent Biosensors for Multiplexed Imaging of Phosphoinositide Dynamics. ACS Chem Biol 2020;15:33-8. [PMID: 31855412 DOI: 10.1021/acschembio.9b00691] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
227 Reissaus C, Day K, Mirmira R, Dunn K, Pavalko F, Day R. PIE-FLIM measurements of two different FRET-based biosensor activities in the same living cells.. [DOI: 10.1101/2020.01.10.902213] [Reference Citation Analysis]
228 Lee SN, Choi JH, Cho HY, Choi JW. Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals. Pharmaceutics 2020;12:E50. [PMID: 31936079 DOI: 10.3390/pharmaceutics12010050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
229 Schmitt DL, Mehta S, Zhang J. Illuminating the kinome: Visualizing real-time kinase activity in biological systems using genetically encoded fluorescent protein-based biosensors. Curr Opin Chem Biol 2020;54:63-9. [PMID: 31911398 DOI: 10.1016/j.cbpa.2019.11.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
230 Wu Y, Du G, Chen J, Liu L. Genetically Encoded Biosensors and Their Applications in the Development of Microbial Cell Factories. Engineering of Microbial Biosynthetic Pathways 2020. [DOI: 10.1007/978-981-15-2604-6_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
231 Hernandez DS, Schunk HC, Shankar KM, Rosales AM, Suggs LJ. Poly-d-lysine coated nanoparticles to identify pro-inflammatory macrophages. Nanoscale Adv 2020;2:3849-3857. [DOI: 10.1039/d0na00373e] [Reference Citation Analysis]
232 Dumas J, Jiang JY, Gates EM, Hoffman BD, Pierce MC, Boustany NN. FRET Efficiency Measurement with a Low-Cost Frequency Domain Fluorescence Lifetime Imaging Microscope. Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN) 2020. [DOI: 10.1364/microscopy.2020.mtu4a.7] [Reference Citation Analysis]
233 Lu K, Vu CQ, Matsuda T, Nagai T. Fluorescent Protein-Based Indicators for Functional Super-Resolution Imaging of Biomolecular Activities in Living Cells. Int J Mol Sci 2019;20:E5784. [PMID: 31744242 DOI: 10.3390/ijms20225784] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
234 Czar MF, Breitgoff FD, Sahoo D, Sajid M, Ramezanian N, Polyhach Y, Jeschke G, Godt A, Zenobi R. Linear and Kinked Oligo(phenyleneethynylene)s as Ideal Molecular Calibrants for Förster Resonance Energy Transfer. J Phys Chem Lett 2019;10:6942-7. [DOI: 10.1021/acs.jpclett.9b02621] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
235 Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020;77:1031-47. [PMID: 31562563 DOI: 10.1007/s00018-019-03310-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
236 French AR, Tesmer AL, Tantama M. Dual-Mode FRET and BRET Sensors for Detecting cAMP Dynamics. ACS Omega 2019;4:15504-11. [PMID: 31572851 DOI: 10.1021/acsomega.9b01770] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
237 Pietraszewska-bogiel A, Joosen L, Goedhart J. Not so dry after all – DRY mutants of the AT1A receptor and H1 receptor can induce G protein-dependent signaling.. [DOI: 10.1101/773044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
238 Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 2019;16:815-29. [DOI: 10.1038/s41592-019-0530-8] [Cited by in Crossref: 188] [Cited by in F6Publishing: 197] [Article Influence: 62.7] [Reference Citation Analysis]
239 Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS. Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. Int J Mol Sci 2019;20:E4200. [PMID: 31461959 DOI: 10.3390/ijms20174200] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 17.7] [Reference Citation Analysis]
240 Bertolin G, Sizaire F, Déméautis C, Chapuis C, Mérola F, Erard M, Tramier M. Optimized FRET Pairs and Quantification Approaches To Detect the Activation of Aurora Kinase A at Mitosis. ACS Sens 2019;4:2018-27. [PMID: 31317736 DOI: 10.1021/acssensors.9b00486] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
241 Lin W, Mehta S, Zhang J. Genetically encoded fluorescent biosensors illuminate kinase signaling in cancer. J Biol Chem 2019;294:14814-22. [PMID: 31434714 DOI: 10.1074/jbc.REV119.006177] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
242 Trull KJ, Miller P, Tat K, Varney SA, Conley JM, Tantama M. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP. Sensors (Basel) 2019;19:E3253. [PMID: 31344821 DOI: 10.3390/s19153253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
243 Zheng D, Zhang Y, Liu X, Wang J. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynth Res 2020;143:221-31. [PMID: 31317382 DOI: 10.1007/s11120-019-00660-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
244 Chavez-Abiega S, Goedhart J, Bruggeman FJ. Physical biology of GPCR signalling dynamics inferred from fluorescence spectroscopy and imaging. Curr Opin Struct Biol 2019;55:204-11. [PMID: 31319372 DOI: 10.1016/j.sbi.2019.05.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
245 Mccullock TW, Maclean DM, Kammermeier PJ. Comparing the Performance of mScarlet-I, mRuby3, and mCherry as FRET Acceptors for mNeonGreen.. [DOI: 10.1101/694190] [Reference Citation Analysis]
246 Haynes EP, Rajendran M, Henning CK, Mishra A, Lyon AM, Tantama M. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor. Anal Chem 2019;91:8466-75. [PMID: 31247720 DOI: 10.1021/acs.analchem.9b01562] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
247 Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019;8:E492. [PMID: 31121936 DOI: 10.3390/cells8050492] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 15.3] [Reference Citation Analysis]
248 Yeh HW, Xiong Y, Wu T, Chen M, Ji A, Li X, Ai HW. ATP-Independent Bioluminescent Reporter Variants To Improve in Vivo Imaging. ACS Chem Biol 2019;14:959-65. [PMID: 30969754 DOI: 10.1021/acschembio.9b00150] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
249 Slocum JD, Palmer AE, Jimenez R. Intramolecular Fluorescent Protein Association in a Class of Zinc FRET Sensors Leads to Increased Dynamic Range. J Phys Chem B 2019;123:3079-85. [PMID: 30942588 DOI: 10.1021/acs.jpcb.9b02479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
250 Bertolin G, Sizaire F, Déméautis C, Chapuis C, Mérola F, Erard M, Tramier M. Optimised FRET pairs and quantification approaches to detect the activation of Aurora kinase A at mitosis.. [DOI: 10.1101/562603] [Reference Citation Analysis]
251 Ferdinandus, Arai S. The ABC Guide to Fluorescent Toolsets for the Development of Future Biomaterials. Front Bioeng Biotechnol 2019;7:5. [PMID: 30729108 DOI: 10.3389/fbioe.2019.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
252 Piatkevich KD, Murdock MH, Subach FV. Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. Applied Sciences 2019;9:562. [DOI: 10.3390/app9030562] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
253 Mattocks JA, Ho JV, Cotruvo JA. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements. J Am Chem Soc 2019;141:2857-61. [DOI: 10.1021/jacs.8b12155] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 21.0] [Reference Citation Analysis]
254 Inamdar K, Floderer C, Favard C, Muriaux D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019;11:E72. [PMID: 30654596 DOI: 10.3390/v11010072] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
255 [DOI: 10.1101/635839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]