BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2019;119:1221-322. [DOI: 10.1021/acs.chemrev.8b00138] [Cited by in Crossref: 178] [Cited by in F6Publishing: 224] [Article Influence: 44.5] [Reference Citation Analysis]
Number Citing Articles
1 Evangelista TCS, López Ó, Puerta A, Fernandes MX, Ferreira SB, Padrón JM, Fernández-Bolaños JG, Sydnes MO, Lindbäck E. A hybrid of 1-deoxynojirimycin and benzotriazole induces preferential inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). J Enzyme Inhib Med Chem 2022;37:2395-402. [PMID: 36065944 DOI: 10.1080/14756366.2022.2117912] [Reference Citation Analysis]
2 Bacchella C, Dell'acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coordination Chemistry Reviews 2022;471:214756. [DOI: 10.1016/j.ccr.2022.214756] [Reference Citation Analysis]
3 Yi C, Chen K, Liang H, Wang Z, Wang T, Li K, Yu J, Sun J, Jin C. Novel difluoromethylated 1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole derivatives as potent 5-HT6 receptor antagonist with AMDE-improving properties: Design, synthesis, and biological evaluation. Bioorganic & Medicinal Chemistry 2022;71:116950. [DOI: 10.1016/j.bmc.2022.116950] [Reference Citation Analysis]
4 Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022;12:1344. [DOI: 10.3390/biom12101344] [Reference Citation Analysis]
5 Gonzalez P, Sabater L, Mathieu E, Faller P, Hureau C. Why the Ala-His-His Peptide Is an Appropriate Scaffold to Remove and Redox Silence Copper Ions from the Alzheimer’s-Related Aβ Peptide. Biomolecules 2022;12:1327. [DOI: 10.3390/biom12101327] [Reference Citation Analysis]
6 Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022. [PMID: 36073854 DOI: 10.1021/acs.inorgchem.2c01694] [Reference Citation Analysis]
7 Nantacharoen W, Baek SJ, Plaingam W, Charoenkiatkul S, Tencomnao T, Sukprasansap M. Cleistocalyx nervosum var. paniala Berry Promotes Antioxidant Response and Suppresses Glutamate-Induced Cell Death via SIRT1/Nrf2 Survival Pathway in Hippocampal HT22 Neuronal Cells. Molecules 2022;27:5813. [DOI: 10.3390/molecules27185813] [Reference Citation Analysis]
8 Nuzzo D, Frinchi M, Giardina C, Scordino M, Zuccarini M, De Simone C, Di Carlo M, Belluardo N, Mudò G, Di Liberto V. Neuroprotective and Antioxidant Role of Oxotremorine-M, a Non-selective Muscarinic Acetylcholine Receptors Agonist, in a Cellular Model of Alzheimer Disease. Cell Mol Neurobiol 2022. [PMID: 36056992 DOI: 10.1007/s10571-022-01274-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Song X, Ding Q, Wei W, Pu Y. LP-05 A Novel Targeted Prussian Blue-Based Nanomaterial for Inhibiting Oxidative Stress and Aβ Aggregation of Alzheimer’s Disease. Toxicology Letters 2022;368:S285. [DOI: 10.1016/j.toxlet.2022.07.749] [Reference Citation Analysis]
10 Chen H, Liu L, Qian K, Liu H, Wang Z, Gao F, Qu C, Dai W, Lin D, Chen K, Liu H, Cheng Z. Bioinspired large Stokes shift small molecular dyes for biomedical fluorescence imaging. Sci Adv 2022;8:eabo3289. [PMID: 35960804 DOI: 10.1126/sciadv.abo3289] [Reference Citation Analysis]
11 Guo J, Cheng M, Liu P, Cao D, Luo J, Wan Y, Fang Y, Jin Y, Xie SS, Liu J. A multi-target directed ligands strategy for the treatment of Alzheimer's disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur J Med Chem 2022;242:114630. [PMID: 35987018 DOI: 10.1016/j.ejmech.2022.114630] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kostenkova K, Scalese G, Gambino D, Crans DC. Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology 2022;69:102155. [DOI: 10.1016/j.cbpa.2022.102155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Han J, Yoon J, Shin J, Nam E, Qian T, Li Y, Park K, Lee SH, Lim MH. Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nat Chem 2022. [PMID: 35817963 DOI: 10.1038/s41557-022-00984-3] [Reference Citation Analysis]
14 Wang Y, Zhang H, Liu D, Li X, Long L, Peng Y, Qi F, Wang Y, Jiang W, Wang Z. Discovery of carbamate-based N-salicyloyl tryptamine derivatives as novel pleiotropic agents for the treatment of Alzheimer's disease. Bioorg Chem 2022;127:105993. [PMID: 35834980 DOI: 10.1016/j.bioorg.2022.105993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu C, Sang Z, Pan H, Wu Q, Qiu Y, Shi J. A Novel Multifunctional 5,6-Dimethoxy-Indanone-Chalcone-Carbamate Hybrids Alleviates Cognitive Decline in Alzheimer’s Disease by Dual Inhibition of Acetylcholinesterase and Inflammation. Front Aging Neurosci 2022;14:922650. [DOI: 10.3389/fnagi.2022.922650] [Reference Citation Analysis]
16 Yi C, Xue Y, Chen K, Wang T, Yu J, Wang Z, Jin C. Novel Difluoromethyl-Containing 1-((4-methoxy-3-(piperazin-1-yl)phenyl)sulfonyl)-1H-indole Scaffold as Potent 5-HT6R Antagonists: Design, Synthesis, Biological Evaluation, and Early in vivo Cognition-Enhancing Studies. Bioorganic & Medicinal Chemistry 2022. [DOI: 10.1016/j.bmc.2022.116917] [Reference Citation Analysis]
17 Rana M, Cho HJ, Arya H, Bhatt TK, Bhar K, Bhatt S, Mirica LM, Sharma AK. Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal-Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer's Disease. Inorg Chem 2022. [PMID: 35768324 DOI: 10.1021/acs.inorgchem.2c00502] [Reference Citation Analysis]
18 Spiegel M, Marino T, Prejanò M, Russo N. Antioxidant and copper-chelating power of new molecules suggested as multiple target agents against Alzheimer's disease. A theoretical comparative study. Phys Chem Chem Phys 2022. [PMID: 35762619 DOI: 10.1039/d2cp01918c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ramesh M, Balachandra C, Andhare P, Govindaraju T. Rationally Designed Molecules Synergistically Modulate Multifaceted Aβ Toxicity, Microglial Activation, and Neuroinflammation. ACS Chem Neurosci 2022. [PMID: 35759686 DOI: 10.1021/acschemneuro.2c00276] [Reference Citation Analysis]
20 Mei Y, Liu Z, Liu M, Gong J, He X, Zhang QW, Tian Y. Two-photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase-A in neurons. Chem Commun (Camb) 2022;58:6657-60. [PMID: 35593312 DOI: 10.1039/d2cc01909d] [Reference Citation Analysis]
21 Bhat BA, Almilaibary A, Mir RA, Aljarallah BM, Mir WR, Ahmad F, Mir MA. Natural Therapeutics in Aid of Treating Alzheimer's Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front Neurosci 2022;16:884345. [PMID: 35651632 DOI: 10.3389/fnins.2022.884345] [Reference Citation Analysis]
22 Liu J, Liu L, Zheng L, Feng K, Wang H, Xu J, Zhou Z. Discovery of novel 2,3-dihydro-1H-inden-1-ones as dual PDE4/AChE inhibitors with more potency against neuroinflammation for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114503] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Bortolami M, Pandolfi F, Tudino V, Messore A, Madia VN, De Vita D, Di Santo R, Costi R, Romeo I, Alcaro S, Colone M, Stringaro A, Espargaró A, Sabatè R, Scipione L. Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals 2022;15:673. [DOI: 10.3390/ph15060673] [Reference Citation Analysis]
24 Yao L, Zhou Z, Wang S, Zou Q, Wang HX, Ma LX, Wang S, Zhang X. Phosphorylation of covalent organic framework nanospheres for inhibition of amyloid-β peptide fibrillation. Chem Sci 2022;13:5902-12. [PMID: 35685783 DOI: 10.1039/d2sc00253a] [Reference Citation Analysis]
25 Liu Y, Liu Y, Chen Y, Zhao P, Yang S, He S, Long G. Sulfur fertiliser enhancement of Erigeron breviscapus (Asteraceae) quality by improving plant physiological responses and reducing soil cadmium bioavailability. Environ Sci Pollut Res Int 2022. [PMID: 35585458 DOI: 10.1007/s11356-022-20778-x] [Reference Citation Analysis]
26 Lin H, Gao Y, Zhang C, Ma B, Wu M, Cui X, Wang H. Autophagy Regulation Influences β-Amyloid Toxicity in Transgenic Caenorhabditis elegans. Front Aging Neurosci 2022;14:885145. [DOI: 10.3389/fnagi.2022.885145] [Reference Citation Analysis]
27 Liu W, Zhang H, Dong X, Sun Y. Composite of gold nanoclusters and basified human serum albumin significantly boosts the inhibition of Alzheimer's β-amyloid by photo-oxygenation. Acta Biomater 2022;144:157-67. [PMID: 35301147 DOI: 10.1016/j.actbio.2022.03.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kumar N, Kumar V, Anand P, Kumar V, Ranjan Dwivedi A, Kumar V. Advancements in the development of multi-target directed ligands for the treatment of Alzheimer's disease. Bioorg Med Chem 2022;61:116742. [PMID: 35398739 DOI: 10.1016/j.bmc.2022.116742] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
29 Isibor H, Ajayi AM, Ben-azu B, Omeiza NA, Ademola AP, Umukoro S. D-Ribose-L-Cysteine Reduces Oxidative Stress and Inflammatory Cytokines to Mitigate Liver Damage, and Memory Decline Induced by Copper Sulfate in Mice. Journal of Trace Elements in Medicine and Biology 2022. [DOI: 10.1016/j.jtemb.2022.127001] [Reference Citation Analysis]
30 Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022;77:101619. [PMID: 35395415 DOI: 10.1016/j.arr.2022.101619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
31 Miller JJ, Kwan K, Gaiddon C, Storr T. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. J Biol Inorg Chem 2022. [PMID: 35488931 DOI: 10.1007/s00775-022-01939-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Gao N, Liu Z, Zhang H, Liu C, Yu D, Ren J, Qu X. Site-Directed Chemical Modification of Amyloid by Polyoxometalates for Inhibition of Protein Misfolding and Aggregation. Angew Chem Int Ed Engl 2022;61:e202115336. [PMID: 35137505 DOI: 10.1002/anie.202115336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Islam F, Khadija JF, Harun-or-rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS, Rai SN. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity 2022;2022:1-22. [DOI: 10.1155/2022/5100904] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
34 Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R. Fluorescence "Turn-Off" and Colorimetric Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS Omega 2022;7:11114-25. [PMID: 35415353 DOI: 10.1021/acsomega.1c07193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ahlawat J, Narayan M. Multifunctional Carbon Quantum Dots Prevent Soluble-to-Toxic Transformation of Amyloid and Oxidative Stress. ACS Sustainable Chem Eng 2022;10:4610-22. [DOI: 10.1021/acssuschemeng.1c08638] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Codony S, Pont C, Griñán-Ferré C, Di Pede-Mattatelli A, Calvó-Tusell C, Feixas F, Osuna S, Jarné-Ferrer J, Naldi M, Bartolini M, Loza MI, Brea J, Pérez B, Bartra C, Sanfeliu C, Juárez-Jiménez J, Morisseau C, Hammock BD, Pallàs M, Vázquez S, Muñoz-Torrero D. Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. J Med Chem 2022. [PMID: 35271276 DOI: 10.1021/acs.jmedchem.1c02150] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
37 Huang Y, Huynh TT, Sun L, Hu CH, Wang YC, Rogers BE, Mirica LM. Neutral Ligands as Potential 64Cu Chelators for Positron Emission Tomography Imaging Applications in Alzheimer's Disease. Inorg Chem 2022. [PMID: 35245023 DOI: 10.1021/acs.inorgchem.2c00621] [Reference Citation Analysis]
38 Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
39 Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022;37:768-80. [PMID: 35196956 DOI: 10.1080/14756366.2022.2036737] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Gao N, Liu Z, Zhang H, Liu C, Yu D, Ren J, Qu X. Site‐Directed Chemical Modification of Amyloid by Polyoxometalates for Inhibition of Protein Misfolding and Aggregation. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202115336] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Zhou Z, Chen S, Huang Y, Gu B, Li J, Wu C, Yin P, Zhang Y, Li H. Simultaneous visualization and quantification of copper (II) ions in Alzheimer's disease by a near-infrared fluorescence probe. Biosens Bioelectron 2022;198:113858. [PMID: 34871835 DOI: 10.1016/j.bios.2021.113858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Hou X, Shi J, Zhang J, Wang Z, Zhang S, Li R, Jiang W, Huang T, Guo J, Shang W. Treatment of Acute Kidney Injury Using a Dual Enzyme Embedded Zeolitic Imidazolate Frameworks Cascade That Catalyzes In Vivo Reactive Oxygen Species Scavenging. Front Bioeng Biotechnol 2021;9:800428. [PMID: 35059388 DOI: 10.3389/fbioe.2021.800428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Islas ÁA, Scior T, Torres-Ramirez O, Salinas-Stefanon EM, Lopez-Lopez G, Flores-Hernandez J. Computational Molecular Characterization of the Interaction of Acetylcholine and the NMDA Receptor to Explain the Direct Glycine-Competitive Potentiation of NMDA-Mediated Neuronal Currents. ACS Chem Neurosci 2022;13:229-44. [PMID: 34990110 DOI: 10.1021/acschemneuro.1c00639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ren B, Guo C, Liu RZ, Bian ZY, Liu RC, Huang LF, Tang JJ. Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships. Eur J Med Chem 2022;228:114031. [PMID: 34875520 DOI: 10.1016/j.ejmech.2021.114031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
45 Aksinenko AY, Sokolov VB, Gabrel’yan AV, Grigoriev VV, Bachurin SO. Modification of phenothiazine and carbazole derivatives with trifluoromethyl-containing 1,3,5-oxadiazines and imidazolidinediones. Russ Chem Bull 2021;70:2180-4. [DOI: 10.1007/s11172-021-3329-6] [Reference Citation Analysis]
46 Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022;50:102229. [PMID: 35026701 DOI: 10.1016/j.redox.2022.102229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Dou W, Han H, Sedgwick AC, Zhu G, Zang Y, Yang X, Yoon J, James TD, Li J, He X. Fluorescent probes for the detection of disease-associated biomarkers. Science Bulletin 2022. [DOI: 10.1016/j.scib.2022.01.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
48 Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. Chin J Chem 2022;40:524-38. [DOI: 10.1002/cjoc.202100646] [Reference Citation Analysis]
49 Drommi M, Rulmont C, Esmieu C, Hureau C. Hybrid Bis-Histidine Phenanthroline-Based Ligands to Lessen Aβ-Bound Cu ROS Production: An Illustration of Cu(I) Significance. Molecules 2021;26:7630. [PMID: 34946712 DOI: 10.3390/molecules26247630] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Jakusch T, Hassoon AA, Kiss T. Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer's disease therapy. J Inorg Biochem 2021;228:111692. [PMID: 34990971 DOI: 10.1016/j.jinorgbio.2021.111692] [Reference Citation Analysis]
51 Wang W, Liu M, Gao W, Sun Y, Dong X. Coassembled Chitosan-Hyaluronic Acid Nanoparticles as a Theranostic Agent Targeting Alzheimer's β-Amyloid. ACS Appl Mater Interfaces 2021;13:55879-89. [PMID: 34786930 DOI: 10.1021/acsami.1c17267] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Pfrieger FW. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 2021;13:766587. [PMID: 34803658 DOI: 10.3389/fnagi.2021.766587] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
53 Xie X, Liu G, Niu Y, Xu C, Li Y, Zhang J, Jiao X, Wang X, Tang B. Dual-Channel Imaging of Amyloid-β Plaques and Peroxynitrite To Illuminate Their Correlations in Alzheimer's Disease Using a Unimolecular Two-Photon Fluorescent Probe. Anal Chem 2021;93:15088-95. [PMID: 34729977 DOI: 10.1021/acs.analchem.1c03334] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
54 Boos J, Shubbar A, Geldenhuys WJ. Dual monoamine oxidase B and acetylcholine esterase inhibitors for treating movement and cognition deficits in a C. elegans model of Parkinson's disease. Med Chem Res 2021;30:1166-74. [PMID: 34744409 DOI: 10.1007/s00044-021-02720-x] [Reference Citation Analysis]
55 Behar AE, Sabater L, Baskin M, Hureau C, Maayan G. A Water-Soluble Peptoid Chelator that Can Remove Cu2+ from Amyloid-β Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2021;60:24588-97. [PMID: 34510664 DOI: 10.1002/anie.202109758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
56 Sun S, Deng P, Mu L, Hu X, Guo S. Bionanoscale Recognition Underlies Cell Fate and Therapy. Adv Healthc Mater 2021;10:e2101260. [PMID: 34523248 DOI: 10.1002/adhm.202101260] [Reference Citation Analysis]
57 Sonawane PM, Lee W, Kim Y, Roychaudhury A, Bhosale VK, Kim D, Park HS, Kim CH, Churchill DG. Phosphinate-benzoindocyanin fluorescent probe for endogenous mitochondrial peroxynitrite detection in living cells and gallbladder access in inflammatory zebrafish animal models. Spectrochim Acta A Mol Biomol Spectrosc 2021;:120568. [PMID: 34774434 DOI: 10.1016/j.saa.2021.120568] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
58 Galano A, Guzmán-López EG, Reiter RJ. Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021;22:11584. [PMID: 34769013 DOI: 10.3390/ijms222111584] [Reference Citation Analysis]
59 Han J, Du Z, Lim MH. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease. Acc Chem Res 2021;54:3930-40. [PMID: 34606227 DOI: 10.1021/acs.accounts.1c00457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
60 Devonport J, Bodnár N, McGown A, Bukar Maina M, Serpell LC, Kállay C, Spencer J, Kostakis GE. Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorg Chem 2021;60:15310-20. [PMID: 34609139 DOI: 10.1021/acs.inorgchem.1c01912] [Reference Citation Analysis]
61 Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021;116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Yuan X, Jia Z, Li J, Liu Y, Huang Y, Gong Y, Guo X, Chen X, Cen J, Liu J. A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve growth factor for Alzheimer's disease management by repairing and promoting neuron regeneration. J Mater Chem B 2021;9:7835-47. [PMID: 34586144 DOI: 10.1039/d1tb01290h] [Reference Citation Analysis]
63 Liu Z, Liu Q, Zhang B, Liu Q, Fang L, Gou S. Blood-Brain Barrier Permeable and NO-Releasing Multifunctional Nanoparticles for Alzheimer's Disease Treatment: Targeting NO/cGMP/CREB Signaling Pathways. J Med Chem 2021;64:13853-72. [PMID: 34517696 DOI: 10.1021/acs.jmedchem.1c01240] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Nam G, Suh JM, Yi Y, Lim MH. Drug repurposing: small molecules against Cu(II)-amyloid-β and free radicals. J Inorg Biochem 2021;224:111592. [PMID: 34482237 DOI: 10.1016/j.jinorgbio.2021.111592] [Reference Citation Analysis]
65 Wang Y, Huynh TT, Cho HJ, Wang YC, Rogers BE, Mirica LM. Amyloid β-Binding Bifunctional Chelators with Favorable Lipophilicity for 64Cu Positron Emission Tomography Imaging in Alzheimer's Disease. Inorg Chem 2021;60:12610-20. [PMID: 34351146 DOI: 10.1021/acs.inorgchem.1c02079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
66 Ma M, Liu Z, Gao N, Dong K, Pi Z, Kang L, Du X, Ren J, Qu X. Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer's disease model. Biomaterials 2021;276:121065. [PMID: 34391018 DOI: 10.1016/j.biomaterials.2021.121065] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
67 Kim M, Lim MH. Redox Properties of Small Molecules Essential for Multiple Reactivities with Pathological Factors in Alzheimer's Disease. Bull Korean Chem Soc 2021;42:1272-80. [DOI: 10.1002/bkcs.12372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Nam E, Han J, Choi S, Lim MH. Distinct impact of glycation towards the aggregation and toxicity of murine and human amyloid-β. Chem Commun (Camb) 2021;57:7637-40. [PMID: 34254069 DOI: 10.1039/d1cc02695j] [Reference Citation Analysis]
69 Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. Adv NanoBio Res 2021;1:2100008. [DOI: 10.1002/anbr.202100008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
70 Li S, Jia C, Li T, Le W. Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neurosci Bull 2021. [PMID: 34313916 DOI: 10.1007/s12264-021-00749-x] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
71 Nozal V, García-Rubia A, Cuevas EP, Pérez C, Tosat-Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From Kinase Inhibitors to Multitarget Ligands as Powerful Drug Leads for Alzheimer's Disease using Protein-Templated Synthesis. Angew Chem Int Ed Engl 2021;60:19344-54. [PMID: 34169618 DOI: 10.1002/anie.202106295] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Chen HY, Lin YF. DFT mechanistic study on the formation of 8-oxoguanine and spiroiminodihydantoin mediated by iron Fenton reactions. Dalton Trans 2021;50:9842-50. [PMID: 34190261 DOI: 10.1039/d1dt01508g] [Reference Citation Analysis]
73 Kim N, Lee HJ. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021;22:7697. [PMID: 34299316 DOI: 10.3390/ijms22147697] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
74 Oliveira de Santana QL, Santos Evangelista TC, Imhof P, Ferreira SB, Fernández-Bolaños JG, Sydnes MO, Lopéz Ó, Lindbäck E. Tacrine-sugar mimetic conjugates as enhanced cholinesterase inhibitors. Org Biomol Chem 2021;19:2322-37. [PMID: 33645607 DOI: 10.1039/d0ob02588g] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
75 Zhang B, Zhao J, Wang Z, Guo P, Liu A, Du G. Identification of Multi-Target Anti-AD Chemical Constituents From Traditional Chinese Medicine Formulae by Integrating Virtual Screening and In Vitro Validation. Front Pharmacol 2021;12:709607. [PMID: 34335272 DOI: 10.3389/fphar.2021.709607] [Reference Citation Analysis]
76 Liu J, Ye W, Xu JP, Wang HT, Li XF, Wang WY, Zhou ZZ. Discovery of novel trimethoxyphenylbenzo[d]oxazoles as dual tubulin/PDE4 inhibitors capable of inducing apoptosis at G2/M phase arrest in glioma and lung cancer cells. Eur J Med Chem 2021;224:113700. [PMID: 34311158 DOI: 10.1016/j.ejmech.2021.113700] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
77 Sun L, Cho HJ, Sen S, Arango AS, Huynh TT, Huang Y, Bandara N, Rogers BE, Tajkhorshid E, Mirica LM. Amphiphilic Distyrylbenzene Derivatives as Potential Therapeutic and Imaging Agents for Soluble and Insoluble Amyloid β Aggregates in Alzheimer's Disease. J Am Chem Soc 2021;143:10462-76. [PMID: 34213901 DOI: 10.1021/jacs.1c05470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
78 Yin G, Gan Y, Jiang H, Yu T, Liu M, Zhang Y, Li H, Yin P, Yao S. Direct Quantification and Visualization of Homocysteine, Cysteine, and Glutathione in Alzheimer's and Parkinson's Disease Model Tissues. Anal Chem 2021;93:9878-86. [PMID: 34229430 DOI: 10.1021/acs.analchem.1c01945] [Cited by in F6Publishing: 25] [Reference Citation Analysis]
79 Shen J, Lu Z, Wang J, Hao Q, Ji W, Wu Y, Peng H, Zhao R, Yang J, Li Y, Shi Z, Zhang X. Traceable Nano-Biohybrid Complexes by One-Step Synthesis as CRISPR-Chem Vectors for Neurodegenerative Diseases Synergistic Treatment. Adv Mater 2021;33:e2101993. [PMID: 34046943 DOI: 10.1002/adma.202101993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
80 Wang H, Su H, Wang N, Wang J, Zhang J, Wang J, Zhao W. Recent development of reactional small-molecule fluorescent probes based on resorufin. Dyes and Pigments 2021;191:109351. [DOI: 10.1016/j.dyepig.2021.109351] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
81 Matos MJ. Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Med Chem 2021;13:1301-9. [PMID: 34137271 DOI: 10.4155/fmc-2021-0119] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
82 Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021;114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
83 Son SH, Do JM, Yoo JN, Lee HW, Kim NK, Yoo HS, Gee MS, Kim JH, Seong JH, Inn KS, Seo MD, Lee JK, Kim NJ. Identification of ortho catechol-containing isoflavone as a privileged scaffold that directly prevents the aggregation of both amyloid β plaques and tau-mediated neurofibrillary tangles and its in vivo evaluation. Bioorg Chem 2021;113:105022. [PMID: 34098397 DOI: 10.1016/j.bioorg.2021.105022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
84 Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021;67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
85 Chaparro D, Flores-Gaspar A, Alí-Torres J. Computational Design of Copper Ligands with Controlled Metal Chelating, Pharmacokinetics, and Redox Properties for Alzheimer's Disease. J Alzheimers Dis 2021;82:S179-93. [PMID: 34032611 DOI: 10.3233/JAD-200911] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Guo J, Zhang Y, Zhang C, Yao C, Zhang J, Jiang X, Zhong Z, Ge J, Zhou T, Bai R, Xie Y. N-Propargylamine-hydroxypyridinone hybrids as multitarget agents for the treatment of Alzheimer's disease. Bioorg Chem 2021;113:105013. [PMID: 34062405 DOI: 10.1016/j.bioorg.2021.105013] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
87 Li X, Chen C, Zhan X, Li B, Zhang Z, Li S, Xie Y, Song X, Shen Y, Liu J, Liu P, Liu GP, Yang X. R13 preserves motor performance in SOD1G93A mice by improving mitochondrial function. Theranostics 2021;11:7294-307. [PMID: 34158851 DOI: 10.7150/thno.56070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
88 Makhaeva GF, Lushchekina SV, Kovaleva NV, Yu Astakhova T, Boltneva NP, Rudakova EV, Serebryakova OG, Proshin AN, Serkov IV, Trofimova TP, Tafeenko VA, Radchenko EV, Palyulin VA, Fisenko VP, Korábečný J, Soukup O, Richardson RJ. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment. Bioorg Chem 2021;112:104974. [PMID: 34029971 DOI: 10.1016/j.bioorg.2021.104974] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
89 Wang WW, Liu T, Lv YM, Zhang WY, Liu ZG, Gao JM, Li D. Design, Synthesis, and Biological Evaluation of Novel 3-Aminomethylindole Derivatives as Potential Multifunctional Anti-Inflammatory and Neurotrophic Agents. ACS Chem Neurosci 2021;12:1593-605. [PMID: 33884870 DOI: 10.1021/acschemneuro.1c00079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Ke J, Tian Q, Xu Q, Fu Z, Fu Q. Mitochondrial dysfunction: A potential target for Alzheimer's disease intervention and treatment. Drug Discov Today 2021;26:1991-2002. [PMID: 33962036 DOI: 10.1016/j.drudis.2021.04.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Du Z, Li M, Ren J, Qu X. Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents. Acc Chem Res 2021;54:2172-84. [PMID: 33881820 DOI: 10.1021/acs.accounts.1c00055] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 31.0] [Reference Citation Analysis]
92 Bataglioli JC, Gomes LMF, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Modification of amyloid-beta peptide aggregation via photoactivation of strained Ru(ii) polypyridyl complexes. Chem Sci 2021;12:7510-20. [PMID: 34163842 DOI: 10.1039/d1sc00004g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
93 Ji W, Dong S, Fan W, Lv C, Nie J, Du B. Functional Microgel for Selective and Sensitive Colorimetric Detection of Fe 2+ Ions in HEPES Buffer Aqueous Solutions. ACS Appl Polym Mater 2021;3:2489-97. [DOI: 10.1021/acsapm.1c00073] [Reference Citation Analysis]
94 Queda F, Calò S, Gwizdala K, Magalhães JD, Cardoso SM, Chaves S, Piemontese L, Santos MA. Novel Donepezil-Arylsulfonamide Hybrids as Multitarget-Directed Ligands for Potential Treatment of Alzheimer's Disease. Molecules 2021;26:1658. [PMID: 33809771 DOI: 10.3390/molecules26061658] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
95 Guan Y, Yu D, Sun H, Ren J, Qu X. Aβ aggregation behavior at interfaces with switchable wettability: a bioinspired perspective to understand amyloid formation. Chem Commun (Camb) 2021;57:2641-4. [PMID: 33587062 DOI: 10.1039/d0cc07546a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coordination Chemistry Reviews 2021;430:213659. [DOI: 10.1016/j.ccr.2020.213659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
97 Li X, Yu Y, Tu Z. Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011-2020). Molecules 2021;26:1202. [PMID: 33668128 DOI: 10.3390/molecules26051202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
98 Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021;30:305-52. [PMID: 33613018 DOI: 10.1007/s00044-020-02687-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
99 Peng Y, Yuan M, Xin J, Liu X, Wang J. Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis. Bioinformatics 2020;36:4626-32. [PMID: 32516365 DOI: 10.1093/bioinformatics/btaa563] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
100 Samanta S, Rajasekhar K, Ramesh M, Murugan NA, Alam S, Shah D, Clement JP, Govindaraju T. Naphthalene Monoimide Derivative Ameliorates Amyloid Burden and Cognitive Decline in a Transgenic Mouse Model of Alzheimer's Disease. Adv Therap 2021;4:2000225. [DOI: 10.1002/adtp.202000225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
101 Romanucci V, Giordano M, De Tommaso G, Iuliano M, Bernini R, Clemente M, Garcia-Viñuales S, Milardi D, Zarrelli A, Di Fabio G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem 2021;16:1172-83. [PMID: 33326184 DOI: 10.1002/cmdc.202000807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 Esmieu C, Balderrama-Martínez-Sotomayor R, Conte-Daban A, Iranzo O, Hureau C. Unexpected Trends in Copper Removal from Aβ Peptide: When Less Ligand Is Better and Zn Helps. Inorg Chem 2021;60:1248-56. [PMID: 33400522 DOI: 10.1021/acs.inorgchem.0c03407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
103 Barani M, Bilal M, Rahdar A, Arshad R, Kumar A, Hamishekar H, Kyzas GZ. Nanodiagnosis and nanotreatment of colorectal cancer: an overview. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-020-05129-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
104 Zhang Z, Guo J, Cheng M, Zhou W, Wan Y, Wang R, Fang Y, Jin Y, Liu J, Xie SS. Design, synthesis, and biological evaluation of novel xanthone-alkylbenzylamine hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021;213:113154. [PMID: 33476932 DOI: 10.1016/j.ejmech.2021.113154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
105 Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021;50:1219-50. [DOI: 10.1039/d0cs00115e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
106 Huang J, Li Z, Liu Z. Functionalized Upconversion Nanoparticles for Disassembly of β‑Amyloid Aggregation with Near-Infrared Excitation. Acta Chimica Sinica 2021;79:1049. [DOI: 10.6023/a21050194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
107 Reina M, Guzmán-lópez EG, Romeo I, Marino T, Russo N, Galano A. Computationally designed p -coumaric acid analogs: searching for neuroprotective antioxidants. New J Chem 2021;45:14369-80. [DOI: 10.1039/d1nj01235e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
108 Akawa OB, Subair TI, Soremekun OS, Olotu FA, Soliman MES. Structural alterations in the catalytic core of hSIRT2 enzyme predict therapeutic benefits of Garcinia mangostana derivatives in Alzheimer's disease: molecular dynamics simulation study. RSC Adv 2021;11:8003-18. [DOI: 10.1039/d0ra10459k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
109 Storr T. Multifunctional compounds for the treatment of Alzheimer’s disease. Can J Chem 2021;99:1-9. [DOI: 10.1139/cjc-2020-0279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Ferlin F, Zangarelli A, Lilli S, Santoro S, Vaccaro L. Waste-minimized synthesis of C2 functionalized quinolines exploiting iron-catalysed C–H activation. Green Chem 2021;23:490-5. [DOI: 10.1039/d0gc03351k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
111 Tehrani T, Meghdadi S, Salarvand Z, Tavakoli B, Eskandari K, Amirnasr M. An anthracene–quinoline based dual-mode fluorometric–colorimetric sensor for the detection of Fe 3+ and its application in live cell imaging. New J Chem 2021;45:8109-17. [DOI: 10.1039/d1nj00178g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
112 Kaur A, Goyal D, Goyal B. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ42 monomer aggregation and destabilizes protofibril structures: insights from molecular dynamics simulations. Phys Chem Chem Phys 2020;22:28055-73. [PMID: 33289734 DOI: 10.1039/d0cp04672h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Yi Y, Lin Y, Han J, Lee HJ, Park N, Nam G, Park YS, Lee YH, Lim MH. Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chem Sci 2020;12:2456-66. [PMID: 34164011 DOI: 10.1039/d0sc04366d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
114 Ma M, Liu Z, Gao N, Pi Z, Du X, Ren J, Qu X. Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer’s Disease Model. J Am Chem Soc 2020;142:21702-11. [DOI: 10.1021/jacs.0c08395] [Cited by in Crossref: 13] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
115 Bellia F, Grasso GI, Ahmed IMM, Oliveri V, Vecchio G. Carnoquinolines Target Copper Dyshomeostasis, Aberrant Protein-Protein Interactions, and Oxidative Stress. Chemistry 2020;26:16690-705. [PMID: 32627921 DOI: 10.1002/chem.202001591] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
116 Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020;30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
117 Park S, Yi Y, Lim MH. Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metal‐Free and Metal‐Associated Amyloid‐β. Bull Korean Chem Soc 2021;42:17-24. [DOI: 10.1002/bkcs.12172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
118 Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Faingold II, Poletaeva DA, Soldatova YV, Kotelnikova RA, Serkov IV, Ustinov AK, Proshin AN, Radchenko EV, Palyulin VA, Richardson RJ. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer's Disease Treatment. Molecules 2020;25:E5891. [PMID: 33322783 DOI: 10.3390/molecules25245891] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
119 Toublet FX, Lalut J, Hatat B, Lecoutey C, Davis A, Since M, Corvaisier S, Freret T, Sopková-de Oliveira Santos J, Claeysen S, Boulouard M, Dallemagne P, Rochais C. Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT6 receptor antagonist with therapeutic interest in Alzheimer's disease. Eur J Med Chem 2021;210:113059. [PMID: 33310288 DOI: 10.1016/j.ejmech.2020.113059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
120 Ju Y, Tam KY. 9R, the cholinesterase and amyloid beta aggregation dual inhibitor, as a multifunctional agent to improve cognitive deficit and neuropathology in the triple-transgenic Alzheimer's disease mouse model. Neuropharmacology 2020;181:108354. [DOI: 10.1016/j.neuropharm.2020.108354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
121 Qin J, Kim S, Cho M, Lee Y. Hierarchical and ultra-sensitive amyloid beta oligomer sensor for practical applications. Chemical Engineering Journal 2020;401:126055. [DOI: 10.1016/j.cej.2020.126055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
122 Qin XJ, Liu H, Li PP, Ni W, He L, Khan A, Hao XJ, Liu HY. Polymethylated acylphloroglucinols from Rhodomyrtus tomentosa exert acetylcholinesterase inhibitory effects. Bioorg Chem 2021;107:104519. [PMID: 33293058 DOI: 10.1016/j.bioorg.2020.104519] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
123 Kim N, Lee HJ. Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's Disease. Biomed Res Int 2020;2020:2010728. [PMID: 33224974 DOI: 10.1155/2020/2010728] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
124 Feldmann C, Yonchev D, Stumpfe D, Bajorath J. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity. Mol Pharm 2020;17:4652-66. [PMID: 33151084 DOI: 10.1021/acs.molpharmaceut.0c00901] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
125 Nam G, Lin Y, Lim MH, Lee Y. Key Physicochemical and Biological Factors of the Phase Behavior of Tau. Chem 2020;6:2924-63. [DOI: 10.1016/j.chempr.2020.09.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
126 Wu X, Li H, Lee E, Yoon J. Sensors for In Situ Real-Time Fluorescence Imaging of Enzymes. Chem 2020;6:2893-901. [DOI: 10.1016/j.chempr.2020.10.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
127 Ju Y, Chakravarty H, Tam KY. An Isoquinolinium Dual Inhibitor of Cholinesterases and Amyloid β Aggregation Mitigates Neuropathological Changes in a Triple-Transgenic Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2020;11:3346-57. [PMID: 33001625 DOI: 10.1021/acschemneuro.0c00464] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
128 Wang C, Cai X, Wang R, Zhai S, Zhang Y, Hu W, Zhang Y, Wang D. Neuroprotective effects of verbascoside against Alzheimer's disease via the relief of endoplasmic reticulum stress in Aβ-exposed U251 cells and APP/PS1 mice. J Neuroinflammation 2020;17:309. [PMID: 33070776 DOI: 10.1186/s12974-020-01976-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
129 Liu ZQ. Multicomponent Reactions for Integrating Multiple Functional Groups into an Antioxidant. Chem Rec 2020;20:1516-29. [PMID: 33063420 DOI: 10.1002/tcr.202000080] [Reference Citation Analysis]
130 Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020;21:E7660. [PMID: 33081348 DOI: 10.3390/ijms21207660] [Cited by in Crossref: 9] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
131 Wu X, An JM, Shang J, Huh E, Qi S, Lee E, Li H, Kim G, Ma H, Oh MS, Kim D, Yoon J. A molecular approach to rationally constructing specific fluorogenic substrates for the detection of acetylcholinesterase activity in live cells, mice brains and tissues. Chem Sci 2020;11:11285-92. [PMID: 34094370 DOI: 10.1039/d0sc04213g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
132 Sun X, Zhang H, Xie L, Qian C, Ye Y, Mao H, Wang B, Zhang H, Zhang Y, He X, Zhang S. Tristetraprolin destabilizes NOX2 mRNA and protects dopaminergic neurons from oxidative damage in Parkinson's disease. FASEB J 2020;34:15047-61. [PMID: 32954540 DOI: 10.1096/fj.201902967R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
133 Nam G, Hong M, Lee J, Lee HJ, Ji Y, Kang J, Baik MH, Lim MH. Multiple reactivities of flavonoids towards pathological elements in Alzheimer's disease: structure-activity relationship. Chem Sci 2020;11:10243-54. [PMID: 34094290 DOI: 10.1039/d0sc02046j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
134 Sun L, Sharma AK, Han BH, Mirica LM. Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Aβ42 Oligomers. ACS Chem Neurosci 2020;11:2741-52. [PMID: 32786307 DOI: 10.1021/acschemneuro.0c00376] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
135 Xie S, Liu J, Tang C, Pang C, Li Q, Qin Y, Nong X, Zhang Z, Guo J, Cheng M, Tang W, Liang N, Jiang N. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-B and amyloid-β aggregation against Alzheimer’s disease. European Journal of Medicinal Chemistry 2020;202:112475. [DOI: 10.1016/j.ejmech.2020.112475] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
136 Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Astakhova TY, Rudakova EV, Proshin AN, Serkov IV, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020;25:E3915. [PMID: 32867324 DOI: 10.3390/molecules25173915] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
137 Antonoglou O, Giannousi K, Mourdikoudis S, Dendrinou-samara C. Magnetic nanoemulsions as candidates for Alzheimer’s disease dual imaging theranostics. Nanotechnology 2020;31:465702. [DOI: 10.1088/1361-6528/abac35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
138 Ma M, Gao N, Li X, Liu Z, Pi Z, Du X, Ren J, Qu X. A Biocompatible Second Near-Infrared Nanozyme for Spatiotemporal and Non-Invasive Attenuation of Amyloid Deposition through Scalp and Skull. ACS Nano 2020;14:9894-903. [PMID: 32806077 DOI: 10.1021/acsnano.0c02733] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 17.5] [Reference Citation Analysis]
139 Lee S, Chung CY, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020;142:14993-5003. [PMID: 32815370 DOI: 10.1021/jacs.0c05727] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
140 De Falco A, Kincheski GC, Atrián-Blasco E, Hureau C, Ferreira ST, Rey NA. The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behav Pharmacol 2020;31:738-47. [PMID: 32773452 DOI: 10.1097/FBP.0000000000000578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
141 Quintanar L, Lim MH. Metal ions and degenerative diseases. J Biol Inorg Chem 2019;24:1137-9. [PMID: 31758264 DOI: 10.1007/s00775-019-01744-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
142 Wang C, Hao J, Liu X, Li C, Yuan X, Lee RJ, Bai T, Wang D. Isoforsythiaside Attenuates Alzheimer's Disease via Regulating Mitochondrial Function Through the PI3K/AKT Pathway. Int J Mol Sci 2020;21:E5687. [PMID: 32784451 DOI: 10.3390/ijms21165687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
143 Martinez Pomier K, Ahmed R, Melacini G. Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules 2020;25:E3571. [PMID: 32781559 DOI: 10.3390/molecules25163571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
144 Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020;25:E3337. [PMID: 32717806 DOI: 10.3390/molecules25153337] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
145 Guglielmi P, Mathew B, Secci D, Carradori S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur J Med Chem 2020;205:112650. [PMID: 32920430 DOI: 10.1016/j.ejmech.2020.112650] [Cited by in Crossref: 14] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
146 Kola A, Hecel A, Lamponi S, Valensin D. Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life (Basel) 2020;10:E118. [PMID: 32698429 DOI: 10.3390/life10070118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
147 Chen Q, Tu Y, Mak S, Chen J, Lu J, Chen C, Yang X, Wang S, Wen S, Ma S, Li M, Han Y, Wah-Keung Tsim K, Pi R. Discovery of a novel small molecule PT109 with multi-targeted effects against Alzheimer's disease in vitro and in vivo. Eur J Pharmacol 2020;883:173361. [PMID: 32673674 DOI: 10.1016/j.ejphar.2020.173361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
148 Ma H, Huang B, Zhang Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov Today 2020;25:1682-92. [PMID: 32652312 DOI: 10.1016/j.drudis.2020.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
149 Huang Y, Cho HJ, Bandara N, Sun L, Tran D, Rogers BE, Mirica LM. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation. Chem Sci 2020;11:7789-99. [PMID: 34094152 DOI: 10.1039/d0sc02641g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
150 Lopera A, Gil-Martínez A, Pitarch-Jarque J, Verdejo B, Blasco S, Clares MP, Jiménez HR, García-España E. Influence of the chain length and metal : ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles. Dalton Trans 2020;49:8614-24. [PMID: 32543616 DOI: 10.1039/d0dt01056a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
151 Liu Z, Xie L, Qiu K, Liao X, Rees TW, Zhao Z, Ji L, Chao H. An Ultrasmall RuO 2 Nanozyme Exhibiting Multienzyme-like Activity for the Prevention of Acute Kidney Injury. ACS Appl Mater Interfaces 2020;12:31205-16. [DOI: 10.1021/acsami.0c07886] [Cited by in Crossref: 11] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
152 Atrián-Blasco E, Cerrada E, Faller P, Laguna M, Hureau C. Role of PTA in the prevention of Cu(amyloid-β) induced ROS formation and amyloid-β oligomerisation in the presence of Zn. Metallomics 2019;11:1154-61. [PMID: 31098605 DOI: 10.1039/c9mt00011a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
153 Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coordination Chemistry Reviews 2020;412:213255. [DOI: 10.1016/j.ccr.2020.213255] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
154 Benek O, Korabecny J, Soukup O. A Perspective on Multi-target Drugs for Alzheimer's Disease. Trends Pharmacol Sci 2020;41:434-45. [PMID: 32448557 DOI: 10.1016/j.tips.2020.04.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 72] [Article Influence: 22.5] [Reference Citation Analysis]
155 Crooks EJ, Irizarry BA, Ziliox M, Kawakami T, Victor T, Xu F, Hojo H, Chiu K, Simmerling C, Van Nostrand WE, Smith SO, Miller LM. Copper stabilizes antiparallel β-sheet fibrils of the amyloid β40 (Aβ40)-Iowa variant. J Biol Chem 2020;295:8914-27. [PMID: 32376688 DOI: 10.1074/jbc.RA119.011955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
156 Song Y, Xu T, Zhu Q, Zhang X. Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer's biomarkers. Biosens Bioelectron 2020;162:112253. [PMID: 32392158 DOI: 10.1016/j.bios.2020.112253] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
157 Cieslikiewicz-Bouet M, Naldi M, Bartolini M, Pérez B, Servent D, Jean L, Aráoz R, Renard PY. Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochem Pharmacol 2020;177:114010. [PMID: 32360492 DOI: 10.1016/j.bcp.2020.114010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
158 Zhang G, Li Z, Chen F, Zhang D, Ji W, Yang Z, Wu Q, Zhang C, Li L, Huang W. A novel fluorogenic probe for visualizing the hydrogen peroxide in Parkinson’s disease models. J Innov Opt Health Sci 2020;13:2050013. [DOI: 10.1142/s1793545820500133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
159 Kim M, Kang J, Lee M, Han J, Nam G, Tak E, Kim MS, Lee HJ, Nam E, Park J, Oh SJ, Lee JY, Lee JY, Baik MH, Lim MH. Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia. J Am Chem Soc 2020;142:8183-93. [PMID: 32233474 DOI: 10.1021/jacs.9b13100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
160 Makhaeva GF, Shevtsova EF, Aksinenko AY, Kovaleva NV, Boltneva NP, Lushchekina SV, Rudakova ЕV, Pushkareva EA, Serkova TP, Dubova LG, Shevtsov PN, Sokolov VB, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Bis-γ-carbolines as new potential multitarget agents for Alzheimer’s disease. Pure and Applied Chemistry 2020;92:1057-80. [DOI: 10.1515/pac-2019-1206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
161 Košak U, Strašek N, Knez D, Jukič M, Žakelj S, Zahirović A, Pišlar A, Brazzolotto X, Nachon F, Kos J, Gobec S. N-alkylpiperidine carbamates as potential anti-Alzheimer's agents. Eur J Med Chem 2020;197:112282. [PMID: 32380361 DOI: 10.1016/j.ejmech.2020.112282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
162 Yepremyan A, Mekhail MA, Niebuhr BP, Pota K, Sadagopan N, Schwartz TM, Green KN. Synthesis of 12-Membered Tetra-aza Macrocyclic Pyridinophanes Bearing Electron-Withdrawing Groups. J Org Chem 2020;85:4988-98. [PMID: 32208700 DOI: 10.1021/acs.joc.0c00188] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
163 Liu Y, Gong Y, Xie W, Huang A, Yuan X, Zhou H, Zhu X, Chen X, Liu J, Liu J, Qin X. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer's disease. Nanoscale 2020;12:6498-511. [PMID: 32154811 DOI: 10.1039/c9nr09713a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
164 Stelitano G, Sammartino JC, Chiarelli LR. Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis. Molecules 2020;25:E1239. [PMID: 32182964 DOI: 10.3390/molecules25051239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
165 Han J, Lee HJ, Kim KY, Nam G, Chae J, Lim MH. Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes. Proc Natl Acad Sci U S A 2020;117:5160-7. [PMID: 32102914 DOI: 10.1073/pnas.1916944117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
166 Chaves S, Resta S, Rinaldo F, Costa M, Josselin R, Gwizdala K, Piemontese L, Capriati V, Pereira-Santos AR, Cardoso SM, Santos MA. Design, Synthesis, and In Vitro Evaluation of Hydroxybenzimidazole-Donepezil Analogues as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease. Molecules 2020;25:E985. [PMID: 32098407 DOI: 10.3390/molecules25040985] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
167 Xiang H, Feng W, Chen Y. Single-Atom Catalysts in Catalytic Biomedicine. Adv Mater 2020;32:e1905994. [PMID: 31930751 DOI: 10.1002/adma.201905994] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 58.5] [Reference Citation Analysis]
168 Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020;21:1052-79. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
169 Qian C, Yuan C, Li C, Liu H, Wang X. Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomater Sci 2020;8:5538-54. [DOI: 10.1039/d0bm00756k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
170 Tripathi A, Choubey PK, Sharma P, Seth A, Saraf P, Shrivastava SK. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorganic Chemistry 2020;95:103506. [DOI: 10.1016/j.bioorg.2019.103506] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
171 Rana M, Pareek A, Bhardwaj S, Arya G, Nimesh S, Arya H, Bhatt TK, Yaragorla S, Sharma AK. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ 42 aggregation and cholinesterase activity related to Alzheimer's disease. RSC Adv 2020;10:28827-37. [DOI: 10.1039/d0ra05172a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
172 Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Rudakova EV, Stupina TS, Terentiev AA, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorganic Chemistry 2020;94:103387. [DOI: 10.1016/j.bioorg.2019.103387] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
173 Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer's Aβ 42 monomer and Aβ 42 protofibril: a systematic molecular dynamics study. Phys Chem Chem Phys 2020;22:1543-56. [DOI: 10.1039/c9cp04775a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
174 Kim G, Lelong E, Kang J, Suh J, Le Bris N, Bernard H, Kim D, Tripier R, Lim MH. Reactivities of cyclam derivatives with metal–amyloid-β. Inorg Chem Front 2020;7:4222-38. [DOI: 10.1039/d0qi00791a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
175 Wang Z, Cao M, Xiang H, Wang W, Feng X, Yang X. WBQ5187, a Multitarget Directed Agent, Ameliorates Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease and Modulates Cerebral β-Amyloid, Gliosis, cAMP Levels, and Neurodegeneration. ACS Chem Neurosci 2019;10:4787-99. [PMID: 31697472 DOI: 10.1021/acschemneuro.9b00409] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
176 Shi CJ, Peng W, Zhao JH, Yang HL, Qu LL, Wang C, Kong LY, Wang XB. Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors. Eur J Med Chem 2020;187:111961. [PMID: 31865017 DOI: 10.1016/j.ejmech.2019.111961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
177 Gomes LMF, Bataglioli JC, Jussila AJ, Smith JR, Walsby CJ, Storr T. Modification of Aβ Peptide Aggregation via Covalent Binding of a Series of Ru(III) Complexes. Front Chem 2019;7:838. [PMID: 31921764 DOI: 10.3389/fchem.2019.00838] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
178 Zhou Y, Sun W, Peng J, Yan H, Zhang L, Liu X, Zuo Z. Design, synthesis and biological evaluation of novel copper-chelating acetylcholinesterase inhibitors with pyridine and N-benzylpiperidine fragments. Bioorganic Chemistry 2019;93:103322. [DOI: 10.1016/j.bioorg.2019.103322] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
179 Johnston HM, Pota K, Barnett MM, Kinsinger O, Braden P, Schwartz TM, Hoffer E, Sadagopan N, Nguyen N, Yu Y, Gonzalez P, Tircsó G, Wu H, Akkaraju G, Chumley MJ, Green KN. Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorg Chem 2019;58:16771-84. [PMID: 31774280 DOI: 10.1021/acs.inorgchem.9b02932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
180 Carneiro P, Morais S, Pereira MC. Nanomaterials towards Biosensing of Alzheimer's Disease Biomarkers. Nanomaterials (Basel) 2019;9:E1663. [PMID: 31766693 DOI: 10.3390/nano9121663] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
181 Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opinion on Drug Discovery 2020;15:53-62. [DOI: 10.1080/17460441.2020.1691165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
182 Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
183 Park MH, Lee M, Nam G, Kim M, Kang J, Choi BJ, Jeong MS, Park KH, Han WH, Tak E, Kim MS, Lee J, Lin Y, Lee YH, Song IS, Choi MK, Lee JY, Jin HK, Bae JS, Lim MH. N,N'-Diacetyl-p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 2019;116:23426-36. [PMID: 31685616 DOI: 10.1073/pnas.1916318116] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
184 Zhao J, Li K, Wan K, Sun T, Zheng N, Zhu F, Ma J, Jiao J, Li T, Ni J, Shi X, Wang H, Peng Q, Ai J, Xu W, Liu S. Organoplatinum-Substituted Polyoxometalate Inhibits β-amyloid Aggregation for Alzheimer's Therapy. Angew Chem Int Ed Engl 2019;58:18032-9. [PMID: 31591753 DOI: 10.1002/anie.201910521] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
185 Zhao J, Li K, Wan K, Sun T, Zheng N, Zhu F, Ma J, Jiao J, Li T, Ni J, Shi X, Wang H, Peng Q, Ai J, Xu W, Liu S. Organoplatinum‐Substituted Polyoxometalate Inhibits β‐amyloid Aggregation for Alzheimer's Therapy. Angew Chem 2019;131:18200-7. [DOI: 10.1002/ange.201910521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
186 Nam E, Nam G, Lim MH. Synaptic Copper, Amyloid-β, and Neurotransmitters in Alzheimer's Disease. Biochemistry 2020;59:15-7. [PMID: 31603659 DOI: 10.1021/acs.biochem.9b00775] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
187 Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019;10:10802-14. [PMID: 32055386 DOI: 10.1039/c9sc04151f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
188 Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coordination Chemistry Reviews 2019;397:168-87. [DOI: 10.1016/j.ccr.2019.06.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
189 Zhang C, Yang K, Yu S, Su J, Yuan S, Han J, Chen Y, Gu J, Zhou T, Bai R, Xie Y. Design, synthesis and biological evaluation of hydroxypyridinone-coumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer's disease. European Journal of Medicinal Chemistry 2019;180:367-82. [DOI: 10.1016/j.ejmech.2019.07.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
190 Du Z, Yu D, Du X, Scott P, Ren J, Qu X. Self-triggered click reaction in an Alzheimer's disease model: in situ bifunctional drug synthesis catalyzed by neurotoxic copper accumulated in amyloid-β plaques. Chem Sci 2019;10:10343-50. [PMID: 32110322 DOI: 10.1039/c9sc04387j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
191 Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019;10:4076-101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
192 Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019;24:1159-70. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
193 Yang B, Chen Y, Shi J. Nanocatalytic Medicine. Adv Mater 2019;31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Cited by in Crossref: 207] [Cited by in F6Publishing: 215] [Article Influence: 69.0] [Reference Citation Analysis]
194 Chen HY. Why the Reactive Oxygen Species of the Fenton Reaction Switches from Oxoiron(IV) Species to Hydroxyl Radical in Phosphate Buffer Solutions? A Computational Rationale. ACS Omega 2019;4:14105-13. [PMID: 31497730 DOI: 10.1021/acsomega.9b02023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
195 Nam G, Ji Y, Lee HJ, Kang J, Yi Y, Kim M, Lin Y, Lee YH, Lim MH. Orobol: An Isoflavone Exhibiting Regulatory Multifunctionality against Four Pathological Features of Alzheimer's Disease. ACS Chem Neurosci 2019;10:3386-90. [PMID: 31199606 DOI: 10.1021/acschemneuro.9b00232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
196 Samanta S, Rajasekhar K, Babagond V, Govindaraju T. Small Molecule Inhibits Metal-Dependent and -Independent Multifaceted Toxicity of Alzheimer's Disease. ACS Chem Neurosci 2019;10:3611-21. [PMID: 31140779 DOI: 10.1021/acschemneuro.9b00216] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
197 Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug Dev Res 2020;81:165-83. [PMID: 31820476 DOI: 10.1002/ddr.21587] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
198 Kaur A, Narang SS, Kaur A, Mann S, Priyadarshi N, Goyal B, Singhal NK, Goyal D. Multifunctional Mono-Triazole Derivatives Inhibit Aβ 42 Aggregation and Cu 2+ -Mediated Aβ 42 Aggregation and Protect Against Aβ 42 -Induced Cytotoxicity. Chem Res Toxicol 2019;32:1824-39. [DOI: 10.1021/acs.chemrestox.9b00168] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
199 Nam G, Lim MH. Intertwined Pathologies of Amyloid-β and Metal Ions in Alzheimer’s Disease: Metal–Amyloid-β. Chem Lett 2019;48:951-60. [DOI: 10.1246/cl.190281] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
200 Sokolov VB, Aksinenko AY, Gabrel’yan AV, Grigoriev VV. Methyl N-(carbazolyl)acetyl-2-aminotetrahydrobenzothiophene-3-carboxylates as modulators of NMDA receptors. Russ Chem Bull 2019;68:1629-32. [DOI: 10.1007/s11172-019-2602-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
201 Green KN, Pota K, Tircsó G, Gogolák RA, Kinsinger O, Davda C, Blain K, Brewer SM, Gonzalez P, Johnston HM, Akkaraju G. Dialing in on pharmacological features for a therapeutic antioxidant small molecule. Dalton Trans 2019;48:12430-9. [PMID: 31342985 DOI: 10.1039/c9dt01800j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
202 Pérez-Areales FJ, Turcu AL, Barniol-Xicota M, Pont C, Pivetta D, Espargaró A, Bartolini M, De Simone A, Andrisano V, Pérez B, Sabate R, Sureda FX, Vázquez S, Muñoz-Torrero D. A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. Eur J Med Chem 2019;180:613-26. [PMID: 31351393 DOI: 10.1016/j.ejmech.2019.07.051] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
203 Wu X, Shi W, Li X, Ma H. Recognition Moieties of Small Molecular Fluorescent Probes for Bioimaging of Enzymes. Acc Chem Res 2019;52:1892-904. [PMID: 31243972 DOI: 10.1021/acs.accounts.9b00214] [Cited by in Crossref: 128] [Cited by in F6Publishing: 127] [Article Influence: 42.7] [Reference Citation Analysis]
204 Stefaniak E, Bal W. CuII Binding Properties of N-Truncated Aβ Peptides: In Search of Biological Function. Inorg Chem 2019;58:13561-77. [PMID: 31304745 DOI: 10.1021/acs.inorgchem.9b01399] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
205 Huo J, He G, Chen W, Hu X, Deng Q, Chen D. A minireview of hydroamination catalysis: alkene and alkyne substrate selective, metal complex design. BMC Chem 2019;13:89. [PMID: 31384836 DOI: 10.1186/s13065-019-0606-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
206 Lu Y, Zhu S, He Y, Peng C, Wang Z, Tang Q. Phytochemical Profile and Antidepressant Effect of Ormosia henryi Prain Leaf Ethanol Extract. Int J Mol Sci 2019;20:E3396. [PMID: 31295954 DOI: 10.3390/ijms20143396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
207 Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019;9:E269. [PMID: 31324037 DOI: 10.3390/biom9070269] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
208 Lee HJ, Lee YG, Kang J, Yang SH, Kim JH, Ghisaidoobe ABT, Kang HJ, Lee SR, Lim MH, Chung SJ. Correction: Monitoring metal-amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening. Chem Sci 2019;10:6390-2. [PMID: 31367302 DOI: 10.1039/c9sc90118c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
209 Tao D, Wang Y, Bao X, Yang B, Gao F, Wang L, Zhang D, Li L. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson's disease. European Journal of Medicinal Chemistry 2019;173:203-12. [DOI: 10.1016/j.ejmech.2019.04.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
210 Gascon JM, Oliveri V, McGown A, Kaya E, Chen YL, Austin C, Walker M, Platt FM, Vecchio G, Spencer J. Synthesis and Study of Multifunctional Cyclodextrin-Deferasirox Hybrids. ChemMedChem 2019;14:1484-92. [PMID: 31162826 DOI: 10.1002/cmdc.201900334] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
211 Hunsaker EW, Franz KJ. Emerging Opportunities To Manipulate Metal Trafficking for Therapeutic Benefit. Inorg Chem 2019;58:13528-45. [PMID: 31247859 DOI: 10.1021/acs.inorgchem.9b01029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
212 Esmieu C, Guettas D, Conte-daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019;58:13509-27. [DOI: 10.1021/acs.inorgchem.9b00995] [Cited by in Crossref: 22] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
213 Kang J, Nam JS, Lee HJ, Nam G, Rhee HW, Kwon TH, Lim MH. Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: coordination and photo-induced oxidation. Chem Sci 2019;10:6855-62. [PMID: 31391908 DOI: 10.1039/c9sc00931k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
214 Kaur A, Mann S, Kaur A, Priyadarshi N, Goyal B, Singhal NK, Goyal D. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s disease. Bioorganic Chemistry 2019;87:572-84. [DOI: 10.1016/j.bioorg.2019.03.058] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
215 Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019;62:8881-914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Cited by in Crossref: 64] [Cited by in F6Publishing: 91] [Article Influence: 21.3] [Reference Citation Analysis]
216 Yi Y, Han J, Park MH, Park N, Nam E, Jin HK, Bae JS, Lim MH. Tunable regulatory activities of 1,10-phenanthroline derivatives towards acid sphingomyelinase and Zn(ii)-amyloid-β. Chem Commun (Camb) 2019;55:5847-50. [PMID: 31042246 DOI: 10.1039/c9cc01005j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
217 Sales TA, Prandi IG, Castro AA, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019;20:E1829. [PMID: 31013856 DOI: 10.3390/ijms20081829] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
218 Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev 2019;119:4881-985. [DOI: 10.1021/acs.chemrev.8b00626] [Cited by in Crossref: 465] [Cited by in F6Publishing: 759] [Article Influence: 155.0] [Reference Citation Analysis]
219 Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019;119:6956-93. [DOI: 10.1021/acs.chemrev.8b00731] [Cited by in Crossref: 50] [Cited by in F6Publishing: 72] [Article Influence: 16.7] [Reference Citation Analysis]
220 Rana M, Sharma AK. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019;11:64-84. [DOI: 10.1039/c8mt00203g] [Cited by in Crossref: 38] [Cited by in F6Publishing: 51] [Article Influence: 12.7] [Reference Citation Analysis]
221 Wang J, Wang K, Zhu Z, He Y, Zhang C, Guo Z, Wang X. Inhibition of metal-induced amyloid β-peptide aggregation by a blood–brain barrier permeable silica–cyclen nanochelator. RSC Adv 2019;9:14126-31. [DOI: 10.1039/c9ra02358e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
222 Suh JM, Kim G, Kang J, Lim MH. Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation. Inorg Chem 2019;58:8-17. [PMID: 30556393 DOI: 10.1021/acs.inorgchem.8b02813] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
223 Hao C, Qu A, Xu L, Sun M, Zhang H, Xu C, Kuang H. Chiral Molecule-mediated Porous Cu x O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease. J Am Chem Soc 2019;141:1091-9. [DOI: 10.1021/jacs.8b11856] [Cited by in Crossref: 89] [Cited by in F6Publishing: 126] [Article Influence: 22.3] [Reference Citation Analysis]
224 Lee HJ, Lee YG, Kang J, Yang SH, Kim JH, Ghisaidoobe ABT, Kang HJ, Lee SR, Lim MH, Chung SJ. Monitoring metal-amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening. Chem Sci 2019;10:1000-7. [PMID: 30774894 DOI: 10.1039/c8sc04943b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
225 Lu L, Zhou S, Sun M, Chen J, Xia W, Yu X, Xu X, He W. Metal- and Solvent-Free Ultrasonic Multicomponent Synthesis of ( Z )-β-Iodo Vinylthiocyanates. ACS Sustainable Chem Eng 2019;7:1574-9. [DOI: 10.1021/acssuschemeng.8b05344] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 17.8] [Reference Citation Analysis]
226 Wang F, Feng J, Yang Y, Liu J, Liu M, Wang Z, Pei H, Wei Y, Li H. The Chinese herbal formula Fuzheng Quxie Decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018;14:3037-51. [PMID: 30519025 DOI: 10.2147/NDT.S175484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]