BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2021. [PMID: 34375082 DOI: 10.1021/acs.chemrev.1c00332] [Cited by in Crossref: 84] [Cited by in F6Publishing: 105] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang M, Roth P. Flow photochemistry — from microreactors to large-scale processing. Current Opinion in Chemical Engineering 2023;39:100897. [DOI: 10.1016/j.coche.2023.100897] [Reference Citation Analysis]
2 Di Filippo M, Baumann M. Carbene-controlled regioselectivity in photochemical cascades. Org Biomol Chem 2023. [PMID: 36745509 DOI: 10.1039/d3ob00122a] [Reference Citation Analysis]
3 Alfano AI, Pelliccia S, Rossino G, Chianese O, Summa V, Collina S, Brindisi M. Continuous-Flow Technology for Chemical Rearrangements: A Powerful Tool to Generate Pharmaceutically Relevant Compounds. ACS Med Chem Lett 2023. [DOI: 10.1021/acsmedchemlett.3c00010] [Reference Citation Analysis]
4 Kundu BK, Han G, Sun Y. Derivatized Benzothiazoles as Two-Photon-Absorbing Organic Photosensitizers Active under Near Infrared Light Irradiation. J Am Chem Soc 2023. [PMID: 36731120 DOI: 10.1021/jacs.2c12244] [Reference Citation Analysis]
5 Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023;28:1421. [DOI: 10.3390/molecules28031421] [Reference Citation Analysis]
6 Caldentey X, Romero E. High‐Throughput Experimentation as an Accessible Technology for Academic Organic Chemists in Europe and Beyond**. Chemistry Methods 2023. [DOI: 10.1002/cmtd.202200059] [Reference Citation Analysis]
7 Guo Z, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang C, Wu D, Ji X. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023;28:1283. [DOI: 10.3390/molecules28031283] [Reference Citation Analysis]
8 Bellotti P, Huang HM, Faber T, Glorius F. Photocatalytic Late-Stage C-H Functionalization. Chem Rev 2023. [PMID: 36692361 DOI: 10.1021/acs.chemrev.2c00478] [Reference Citation Analysis]
9 Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023. [PMID: 36662702 DOI: 10.1021/acs.chemrev.2c00759] [Reference Citation Analysis]
10 Schulz L, Stähle P, Reining S, Sawall M, Kockmann N, Röder T. Multivariate curve resolution for kinetic modeling and scale-up prediction. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00252-y] [Reference Citation Analysis]
11 Simon K, Znidar D, Boutet J, Guillamot G, Lenoir J, Dallinger D, Kappe CO. Generation of 1,2-Difluorobenzene via a Photochemical Fluorodediazoniation Step in a Continuous Flow Mode. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00348] [Reference Citation Analysis]
12 Zhang C, Xu S, Zuo H, Zhang X, Dang Q, Niu D. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nat Synth 2023. [DOI: 10.1038/s44160-022-00214-1] [Reference Citation Analysis]
13 Kumar GS, Sha MS, Yempally S, Cabibihan JJ, Sadasivuni KK. A practical perspective for chromatic orthogonality for implementing in photolithography. Sci Rep 2023;13:694. [PMID: 36639436 DOI: 10.1038/s41598-023-27869-w] [Reference Citation Analysis]
14 Dubois MAJ, Carreras V, Adams MR, Kairouz V, Vincent-rocan J, Riley JG, Charette AB. Process Intensification and Increased Safety for the On-Demand Continuous Flow Synthesis of Dithiothreitol, a Crucial Component in Polymerase Chain Reaction Testing Kits. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00345] [Reference Citation Analysis]
15 Sherborne GJ, Kemmitt P, Prentice C, Zysman-Colman E, Smith AD, Fallan C. Visible Light-Mediated Cyclisation Reaction for the Synthesis of Highly-Substituted Tetrahydroquinolines and Quinolines. Angew Chem Int Ed Engl 2023;62:e202207829. [PMID: 36342443 DOI: 10.1002/anie.202207829] [Reference Citation Analysis]
16 Bortolato T, Simionato G, Vayer M, Rosso C, Paoloni L, Benetti EM, Sartorel A, Lebœuf D, Dell'Amico L. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. J Am Chem Soc 2023;145:1835-46. [PMID: 36608266 DOI: 10.1021/jacs.2c11364] [Reference Citation Analysis]
17 Cuadros S, Bortolato T, Vega-Peñaloza A, Dell'Amico L. Modern Photocatalytic Strategies in Natural Product Synthesis. Prog Chem Org Nat Prod 2023;120:1-104. [PMID: 36587307 DOI: 10.1007/978-3-031-11783-1_1] [Reference Citation Analysis]
18 Shi X, Lv Y, Zhang T, Hu Q, Shi K, Zhang W, Li Z. Polyetheretherketone fiber-supported TBD as an efficient fibrous superbase catalyst for organic conversions in continuous-flow processing. Journal of Catalysis 2023. [DOI: 10.1016/j.jcat.2023.01.010] [Reference Citation Analysis]
19 Yang L, Sun Y, Zhang L. Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. Chempluschem 2023;88:e202200349. [PMID: 36482287 DOI: 10.1002/cplu.202200349] [Reference Citation Analysis]
20 Fanini F, Luridiana A, Mazzarella D, Ilenia Alfano A, van der Heide P, Rincón JA, García-losada P, Mateos C, Frederick MO, Nuño M, Noël T. Flow photochemical Giese reaction via silane-mediated activation of alkyl bromides. Tetrahedron Letters 2023. [DOI: 10.1016/j.tetlet.2023.154380] [Reference Citation Analysis]
21 Wan T, Capaldo L, Ravelli D, Vitullo W, de Zwart FJ, de Bruin B, Noël T. Photoinduced Halogen-Atom Transfer by N-Heterocyclic Carbene-Ligated Boryl Radicals for C(sp(3))-C(sp(3)) Bond Formation. J Am Chem Soc 2023;145:991-9. [PMID: 36583709 DOI: 10.1021/jacs.2c10444] [Reference Citation Analysis]
22 Franceschi P, Cuadros S, Goti G, Dell'Amico L. Mechanisms and Synthetic Strategies in Visible Light-Driven [2+2]-Heterocycloadditions. Angew Chem Int Ed Engl 2022;:e202217210. [PMID: 36576751 DOI: 10.1002/anie.202217210] [Reference Citation Analysis]
23 Oliveira PHR, Tordato ÉA, Vélez JAC, Carneiro PS, Paixão MW. Visible-Light Mediated Carbamoylation of Nitrones under a Continuous Flow Regime. J Org Chem 2022. [PMID: 36576774 DOI: 10.1021/acs.joc.2c02266] [Reference Citation Analysis]
24 Gao MY, Bai H, Cui X, Liu S, Ling S, Kong T, Bai B, Hu C, Dai Y, Zhao Y, Zhang L, Zhang J, Xiong Y. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angew Chem Int Ed Engl 2022;:e202215540. [PMID: 36314983 DOI: 10.1002/anie.202215540] [Reference Citation Analysis]
25 Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022;14:149-61. [PMID: 36605743 DOI: 10.1039/d2sc05229f] [Reference Citation Analysis]
26 Besenhard MO, Pal S, Storozhuk L, Dawes S, Thanh NTK, Norfolk L, Staniland S, Gavriilidis A. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. Lab Chip 2022;23:115-24. [PMID: 36454245 DOI: 10.1039/d2lc00892k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Goldschmid SL, Soon Tay NE, Joe CL, Lainhart BC, Sherwood TC, Simmons EM, Sezen-Edmonds M, Rovis T. Overcoming Photochemical Limitations in Metallaphotoredox Catalysis: Red-Light-Driven C-N Cross-Coupling. J Am Chem Soc 2022. [PMID: 36417474 DOI: 10.1021/jacs.2c09745] [Reference Citation Analysis]
28 Andrei V, Wang Q, Uekert T, Bhattacharjee S, Reisner E. Solar Panel Technologies for Light-to-Chemical Conversion. Acc Chem Res 2022;55:3376-86. [PMID: 36395337 DOI: 10.1021/acs.accounts.2c00477] [Reference Citation Analysis]
29 Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c03600] [Reference Citation Analysis]
30 Wang S, Song X, Sun R, Yan H, Wang Y. Insight for the photochemical reaction of 4-aryl-4H-pyran: Experimental and theoretical studies. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133212] [Reference Citation Analysis]
31 Jiang Y, Yorimitsu H. Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. JACS Au 2022;2:2514-2521. [DOI: 10.1021/jacsau.2c00375] [Reference Citation Analysis]
32 Aelterman M, Biremond T, Jubault P, Poisson T. Electrochemical Synthesis of gem-Difluoro- and γ-Fluoro-Allyl Boronates and Silanes. Chemistry 2022;28:e202202194. [PMID: 36067044 DOI: 10.1002/chem.202202194] [Reference Citation Analysis]
33 Reynard G, Wimmer E, Richelet J, Fourquez J, Lebel H. Chemoselective borylation of bromoiodoarene in continuous flow: synthesis of bromoarylboronic acids. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00246-w] [Reference Citation Analysis]
34 Schulte R, Löcker M, Ihmels H, Heide M, Engelhard C. Pushing Photochemistry into Water: Acceleration of the Di-π-Methane Rearrangement and the Paternó-Büchi Reaction "On-Water". Chemistry 2022;:e202203203. [PMID: 36398899 DOI: 10.1002/chem.202203203] [Reference Citation Analysis]
35 Wang P, Xiao W, Chen J. Light-empowered contra-thermodynamic stereochemical editing. Nat Rev Chem 2022. [DOI: 10.1038/s41570-022-00441-2] [Reference Citation Analysis]
36 Liu Y, Okada I, Tsuda A. Flow Photo-On-Demand Phosgenation Reactions with Chloroform. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00322] [Reference Citation Analysis]
37 Braga FC, Ramos TO, Brocksom TJ, de Oliveira KT. Synthesis of Fentanyl under Continuous Photoflow Conditions. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c03338] [Reference Citation Analysis]
38 Sarkar S, Banerjee A, Shah JA, Mukherjee U, Frederiks NC, Johnson CJ, Ngai M. Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c09006] [Reference Citation Analysis]
39 Jacobs M, Meir G, Hakki A, Thomassen LC, Kuhn S, Leblebici ME. Scaling up multiphase photochemical reactions using translucent monoliths. Chemical Engineering and Processing - Process Intensification 2022;181:109138. [DOI: 10.1016/j.cep.2022.109138] [Reference Citation Analysis]
40 Tang D, Lu G, Shen Z, Hu Y, Yao L, Li B, Zhao G, Peng B, Huang X. A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. Journal of Energy Chemistry 2022. [DOI: 10.1016/j.jechem.2022.10.038] [Reference Citation Analysis]
41 Lai X, Chen M, Wang Y, Song J, Xu H. Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c09050] [Reference Citation Analysis]
42 Simić S, Jakštaitė M, Huck WTS, Winkler CK, Kroutil W. Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04444] [Reference Citation Analysis]
43 Monbaliu JM, Legros J. Will the next generation of chemical plants be in miniaturized flow reactors? Lab Chip 2022. [PMID: 36278262 DOI: 10.1039/d2lc00796g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Zhou H, Fan R, Yang J, Sun X, Liu X, Wang XC. N,N-Diisopropylethylamine-Mediated Electrochemical Reduction of Azobenzenes in Dichloromethane. J Org Chem 2022. [PMID: 36269896 DOI: 10.1021/acs.joc.2c01949] [Reference Citation Analysis]
45 Girvin ZC, Cotter LF, Yoon H, Chapman SJ, Mayer JM, Yoon TP, Miller SJ. Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. J Am Chem Soc 2022. [PMID: 36264837 DOI: 10.1021/jacs.2c09690] [Reference Citation Analysis]
46 Ming M, Yuan H, Yang S, Wei Z, Lei Q, Lei J, Han Z. Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. J Am Chem Soc 2022. [PMID: 36260355 DOI: 10.1021/jacs.2c08171] [Reference Citation Analysis]
47 Wen Z, Pintossi D, Nuño M, Noël T. Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations. Nat Commun 2022;13:6147. [PMID: 36257941 DOI: 10.1038/s41467-022-33821-9] [Reference Citation Analysis]
48 Li C, Liu Q, Tao S. Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow. Nat Commun 2022;13:6034. [PMID: 36229467 DOI: 10.1038/s41467-022-33857-x] [Reference Citation Analysis]
49 Forchetta M, Sabuzi F, Stella L, Conte V, Galloni P. KuQuinone as a Highly Stable and Reusable Organic Photocatalyst in Selective Oxidation of Thioethers to Sulfoxides. J Org Chem 2022. [PMID: 36219841 DOI: 10.1021/acs.joc.2c01648] [Reference Citation Analysis]
50 Cai C, Lai X, Wang Y, Hu H, Song J, Yang Y, Wang C, Xu H. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds. Nat Catal. [DOI: 10.1038/s41929-022-00855-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redox‐Tag Strategy. Chemistry A European J 2022. [DOI: 10.1002/chem.202202018] [Reference Citation Analysis]
52 Kumar S, Singh AK. Micro-photo-flow reactor system for fused N-heteroaryl scaffold synthesis and late-stage functionalization of pyrazolopyridines. Chem Commun (Camb) 2022. [PMID: 36112131 DOI: 10.1039/d2cc03713k] [Reference Citation Analysis]
53 Eisenreich F, Palmans ARA. Direct C−H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredox‐Active Amphiphilic Nanoparticles. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202201322] [Reference Citation Analysis]
54 Griffiths OM, Ley SV. Multicomponent Direct Assembly of N -Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. J Org Chem . [DOI: 10.1021/acs.joc.2c01684] [Reference Citation Analysis]
55 Lee DS, Soni VK, Cho EJ. N-O Bond Activation by Energy Transfer Photocatalysis. Acc Chem Res 2022;55:2526-41. [PMID: 35986693 DOI: 10.1021/acs.accounts.2c00444] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Luridiana A, Mazzarella D, Capaldo L, Rincón JA, García-losada P, Mateos C, Frederick MO, Nuño M, Jan Buma W, Noël T. The Merger of Benzophenone HAT Photocatalysis and Silyl Radical-Induced XAT Enables Both Nickel-Catalyzed Cross-Electrophile Coupling and 1,2-Dicarbofunctionalization of Olefins. ACS Catal . [DOI: 10.1021/acscatal.2c03805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Pasha M, Liu S, Zhang J, Qiu M, Su Y. Recent Advancements on Hydrodynamics and Mass Transfer Characteristics for CO2 Absorption in Microreactors. Ind Eng Chem Res 2022;61:12249-12268. [DOI: 10.1021/acs.iecr.2c01982] [Reference Citation Analysis]
58 Hsu W, Reischauer S, Seeberger PH, Pieber B, Cambié D. Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein J Org Chem 2022;18:1123-30. [DOI: 10.3762/bjoc.18.115] [Reference Citation Analysis]
59 Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal . [DOI: 10.1021/acscatal.2c02934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Swords WB, Chapman SJ, Hofstetter H, Dunn AL, Yoon TP. Variable Temperature LED-NMR: Rapid Insights into a Photocatalytic Mechanism from Reaction Progress Kinetic Analysis. J Org Chem 2022. [PMID: 35969669 DOI: 10.1021/acs.joc.2c01479] [Reference Citation Analysis]
61 Masson TM, Zondag SDA, Debije MG, Noël T. Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03390] [Reference Citation Analysis]
62 Steiner A, Nelson RC, Dallinger D, Kappe CO. Synthesis of Thiomorpholine via a Telescoped Photochemical Thiol–Ene/Cyclization Sequence in Continuous Flow. Org Process Res Dev . [DOI: 10.1021/acs.oprd.2c00214] [Reference Citation Analysis]
63 Luo H, Ren J, Sun Y, Liu Y, Zhou F, Shi G, Zhou J. Recent advances in chemical fixation of CO2 based on flow chemistry. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107782] [Reference Citation Analysis]
64 Zhang L, Zheng K, Zhang P, Jiang M, Shen J, Chen C, Shen C. Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin-2(1H)-ones without external photocatalysis. Green Synthesis and Catalysis 2022. [DOI: 10.1016/j.gresc.2022.08.002] [Reference Citation Analysis]
65 Riddell A, Kvist P, Bernin D. A 3D printed photoreactor for investigating variable reaction geometry, wavelength, and fluid flow. Rev Sci Instrum 2022;93:084103. [PMID: 36050099 DOI: 10.1063/5.0087107] [Reference Citation Analysis]
66 Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐ivanšić B, Streb C. Comparative Evaluation of Light‐Driven Catalysis: A Framework for Standardized Reporting of Data**. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202114106] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Bottecchia C, Lehnherr D, Lévesque F, Reibarkh M, Ji Y, Rodrigues VL, Wang H, Lam Y, Vickery TP, Armstrong BM, Mattern KA, Stone K, Wismer MK, Singh AN, Regalado EL, Maloney KM, Strotman NA. Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Org Process Res Dev . [DOI: 10.1021/acs.oprd.2c00111] [Reference Citation Analysis]
68 Guo Y, Zhuang Z, Liu Y, Yang X, Tan C, Zhao X, Tan J. Advances in C1-deuterated aldehyde synthesis. Coordination Chemistry Reviews 2022;463:214525. [DOI: 10.1016/j.ccr.2022.214525] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Kamat S, Indi Y, Kumbhar A, Kamble S. An aqueous hydrotropic solution as environmentally benign reaction medium for organic transformations: a short review. Res Chem Intermed. [DOI: 10.1007/s11164-022-04761-2] [Reference Citation Analysis]
70 Mouthaan MLMC, Pouwer K, Borst MLG, Witte MD, Minnaard AJ. α-C–H Photoalkylation of a Glucose Derivative in Continuous Flow. Synthesis. [DOI: 10.1055/a-1840-5483] [Reference Citation Analysis]
71 Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐ivanšić B, Streb C. Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angewandte Chemie. [DOI: 10.1002/ange.202114106] [Reference Citation Analysis]
72 Herbrik F, Sanz M, Puglisi A, Rossi S, Benaglia M. Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chemistry 2022;28:e202200164. [PMID: 35239197 DOI: 10.1002/chem.202200164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Charboneau DJ, Hazari N, Huang H, Uehling MR, Zultanski SL. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J Org Chem 2022. [PMID: 35671350 DOI: 10.1021/acs.joc.2c00462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Tateno H, Chen S, Miseki Y, Nakajima T, Mochizuki T, Sayama K. Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO 4 Photoanode. ACS Sustainable Chem Eng 2022;10:7586-94. [DOI: 10.1021/acssuschemeng.2c01282] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
75 Ziegenbalg D, Guba F. Dynamically triggering photoreactions for high performance and efficiency. Current Opinion in Chemical Engineering 2022;36:100789. [DOI: 10.1016/j.coche.2021.100789] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 Zhang Y, Tian H, Cui Z, Yin Z, Hui H, Wang H, Zhang L, Pei H, Li Z, Mamba BB, Li J. Enhanced flow electrochemistry for cyclohexane Conversion: From simulation to application. Journal of Catalysis 2022;410:84-92. [DOI: 10.1016/j.jcat.2022.04.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Holtze C, Boehling R. Batch or flow chemistry? – a current industrial opinion on process selection. Current Opinion in Chemical Engineering 2022;36:100798. [DOI: 10.1016/j.coche.2022.100798] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
78 Williams JD, Pöchlauer P, Okumura Y, Inami Y, Kappe CO. Photochemical Deracemization of a Medicinally-Relevant Benzopyran using an Oscillatory Flow Reactor. Chemistry 2022;28:e202200741. [PMID: 35293645 DOI: 10.1002/chem.202200741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
79 Han Q, Wang Q, Wu H, Ge X, Gao A, Bai Y, Gao S, Wang G, Cao X. Novel Naphthalimide‐Based Self‐Assembly Systems with Different Terminal Groups for Sensitive Detection of Thionyl Chloride and Oxalyl Chloride in Two Modes. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200298] [Reference Citation Analysis]
80 Pang L, Li X, Ren S, Lin H, Wang Y, Pan Y, Tang H. Trace amount of single-atom palladium-catalyzed selective hydrosilylation of allenes. Nano Res . [DOI: 10.1007/s12274-022-4395-2] [Reference Citation Analysis]
81 Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. Trends in Chemistry 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zhang J, Mo Y. A scalable light-diffusing photochemical reactor for continuous processing of photoredox reactions. Chemical Engineering Journal 2022;435:134889. [DOI: 10.1016/j.cej.2022.134889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Radjagobalou R, Imbratta M, Bergraser J, Gaudeau M, Lyvinec G, Delbrayelle D, Jentzer O, Roudin J, Laroche B, Ognier S, Tatoulian M, Cossy J, Echeverria P. Selective Photochemical Continuous Flow Benzylic Monochlorination. Org Process Res Dev 2022;26:1496-505. [DOI: 10.1021/acs.oprd.2c00065] [Reference Citation Analysis]
84 Phull MS, Jadav SS, Bohara CS, Gundla R, Mainkar PS. Continuous flow process for preparing budesonide. J Flow Chem. [DOI: 10.1007/s41981-022-00221-5] [Reference Citation Analysis]
85 Cuadros S, Rosso C, Barison G, Costa P, Kurbasic M, Bonchio M, Prato M, Filippini G, Dell'Amico L. The Photochemical Activity of a Halogen-Bonded Complex Enables the Microfluidic Light-Driven Alkylation of Phenols. Org Lett 2022. [PMID: 35437017 DOI: 10.1021/acs.orglett.2c00604] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Chaudhuri A, Zondag SDA, Schuurmans JHA, van der Schaaf J, Noël T. Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor-Stator Spinning Disk Reactor. Org Process Res Dev 2022;26:1279-88. [PMID: 35464822 DOI: 10.1021/acs.oprd.2c00012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
87 Nova-Fernández JL, García MJ, Mollari L, Pascual-Coca G, Cabrera S, Alemán J. Continuous-flow synthesis of alkyl zinc sulfinates for the direct photofunctionalization of heterocycles. Chem Commun (Camb) 2022;58:4611-4. [PMID: 35315862 DOI: 10.1039/d2cc01065h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Claraz A, Masson G. Recent Advances in C(sp 3 )–C(sp 3 ) and C(sp 3 )–C(sp 2 ) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS Org Inorg Au 2022;2:126-47. [DOI: 10.1021/acsorginorgau.1c00037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
89 Kodura D, Rodrigues LL, Walden SL, Goldmann AS, Frisch H, Barner-Kowollik C. Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. J Am Chem Soc 2022. [PMID: 35364816 DOI: 10.1021/jacs.2c00156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
90 Y. S. Ibrahim M, Bennett JA, Mason D, Rodgers J, Abolhasani M. Flexible Homogeneous Hydroformylation: On-Demand Tuning of Aldehyde Branching with a Cyclic Fluorophosphite Ligand. Journal of Catalysis 2022. [DOI: 10.1016/j.jcat.2022.03.030] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Zhang A, Xu J, Li Y, Hu M, Lin Z, Song Y, Qi J, Chen W, Liu Z, Cheng Y. Three-Dimensional Large-Scale Fused Silica Microfluidic Chips Enabled by Hybrid Laser Microfabrication for Continuous-Flow UV Photochemical Synthesis. Micromachines 2022;13:543. [DOI: 10.3390/mi13040543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Rosso C, Cuadros S, Barison G, Costa P, Kurbasic M, Bonchio M, Prato M, Dell’amico L, Filippini G. Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catal 2022;12:4290-5. [DOI: 10.1021/acscatal.2c00565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Sokol KP, Andrei V. Automated synthesis and characterization techniques for solar fuel production. Nat Rev Mater. [DOI: 10.1038/s41578-022-00432-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Kumar VB, Porat Z, Gedanken A. Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials 2022;12:898. [DOI: 10.3390/nano12060898] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
95 Gordeev EG, Erokhin KS, Kobelev AD, Burykina JV, Novikov PV, Ananikov VP. Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Sci Rep 2022;12:3780. [PMID: 35260601 DOI: 10.1038/s41598-022-07583-9] [Reference Citation Analysis]
96 Nguyen HT, Nguyen TD, Nguyen DP, Thai NTT, Nguyen TH. Synthesis efficiency of silver nanoparticles by light-emitting diode and microwave irradiation using starch as a reducing agent. Nanotechnol Environ Eng 2022;7:297-306. [DOI: 10.1007/s41204-022-00231-7] [Reference Citation Analysis]
97 Bozan M, Schmid A, Bühler K. Evaluation of self-sustaining cyanobacterial biofilms for technical applications. Biofilm 2022. [DOI: 10.1016/j.bioflm.2022.100073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
98 Donnelly K, Baumann M. Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography. Beilstein J Org Chem 2022;18:232-9. [DOI: 10.3762/bjoc.18.27] [Reference Citation Analysis]
99 Roseau M, Chausset-Boissarie L, Gremetz S, Roth PMC, Penhoat M. Multiple wavelength (365-475 nm) complete actinometric characterization of Corning® Lab Photo Reactor using azobenzene as a highly soluble, cheap and robust chemical actinometer. Photochem Photobiol Sci 2022. [PMID: 35147919 DOI: 10.1007/s43630-022-00171-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Harper KC, Zhang E, Liu Z, Grieme T, Towne TB, Mack DJ, Griffin J, Zheng S, Zhang N, Gangula S, Yuan J, Miller R, Huang P, Gage J, Diwan M, Ku Y. Commercial-Scale Visible Light Trifluoromethylation of 2-Chlorothiophenol Using CF 3 I Gas. Org Process Res Dev . [DOI: 10.1021/acs.oprd.1c00436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
101 Lemir ID, Oksdath-Mansilla G, Castro-Godoy WD, Schmidt LC, Argüello JE. Photochemical Csp2-H bond thiocyanation and selenocyanation of activated arenes, batch and continuous-flow approaches. Photochem Photobiol Sci 2022. [PMID: 35113403 DOI: 10.1007/s43630-021-00167-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
102 Fukuyama T, Kasakado T, Hyodo M, Ryu I. Improved efficiency of photo-induced synthetic reactions enabled by advanced photo flow technologies. Photochem Photobiol Sci. [DOI: 10.1007/s43630-021-00151-6] [Reference Citation Analysis]
103 DiLuzio S, Connell TU, Mdluli V, Kowalewski JF, Bernhard S. Understanding Ir(III) Photocatalyst Structure-Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. J Am Chem Soc 2022;144:1431-44. [PMID: 35025486 DOI: 10.1021/jacs.1c12059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
104 Wan T, Wen Z, Laudadio G, Capaldo L, Lammers R, Rincón JA, García-Losada P, Mateos C, Frederick MO, Broersma R, Noël T. Accelerated and Scalable C(sp3)-H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs. ACS Cent Sci 2022;8:51-6. [PMID: 35106372 DOI: 10.1021/acscentsci.1c01109] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
105 Gambacorta G, Baxendale IR. Continuous-Flow Hofmann Rearrangement Using Trichloroisocyanuric Acid for the Preparation of 2-Benzoxazolinone. Org Process Res Dev . [DOI: 10.1021/acs.oprd.1c00440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 de Oliveira GX, Lira JODB, Riella HG, Soares C, Padoin N. Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. Front Chem Eng 2022;3:788653. [DOI: 10.3389/fceng.2021.788653] [Reference Citation Analysis]
107 Khositanon C, Deepracha S, Assabumrungrat S, Ogawa M, Weeranoppanant N. Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Ind Eng Chem Res . [DOI: 10.1021/acs.iecr.1c04303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
108 Chanquia SN, Valotta A, Gruber-woelfler H, Kara S. Photobiocatalysis in Continuous Flow. Front Catal 2022;1:816538. [DOI: 10.3389/fctls.2021.816538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
109 Shaoyu L, Jie W. Photoelectrocatalytic Site- and Enantioselective Cyanation of Benzylic C—H Bonds. Chinese Journal of Organic Chemistry 2022;42:3903. [DOI: 10.6023/cjoc202200064] [Reference Citation Analysis]
110 Roider T, Frommknecht N, Höltzel A, Tallarek U. Device for automated screening of irradiation wavelength and intensity – investigation of the wavelength dependence of photoreactions with an arylazo sulfone in continuous flow. React Chem Eng . [DOI: 10.1039/d2re00142j] [Reference Citation Analysis]
111 Capaldo L, Bonciolini S, Pulcinella A, Nuño M, Noël T. Modular allylation of C(sp 3 )–H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chem Sci 2022;13:7325-31. [DOI: 10.1039/d2sc01581a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
112 Sanjosé-orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chem Sci 2022;13:12527-12532. [DOI: 10.1039/d2sc04990b] [Reference Citation Analysis]
113 Hong Z, Kao S, Cheng Y, Chen C, Wu Y. Photoinduced arylation of chloroarenes in flow: synthesis of unsymmetrical biaryls. Org Biomol Chem 2022;20:8212-8216. [DOI: 10.1039/d2ob01710e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
114 Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022;9:3598-623. [DOI: 10.1039/d2qo00551d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
115 Purwa M, Rana A, Singh AK. The assembly of integrated continuous flow platform for on-demand rosiglitazone and pioglitazone synthesis. React Chem Eng . [DOI: 10.1039/d2re00228k] [Reference Citation Analysis]
116 Nandiwale KY, Hart T, Zahrt AF, Nambiar AMK, Mahesh PT, Mo Y, Nieves-remacha MJ, Johnson MD, García-losada P, Mateos C, Rincón JA, Jensen KF. Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. React Chem Eng 2022;7:1315-27. [DOI: 10.1039/d2re00054g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Knoll S, Jusner CE, Sagmeister P, Williams JD, Hone CA, Horn M, Kappe CO. Autonomous model-based experimental design for rapid reaction development. React Chem Eng . [DOI: 10.1039/d2re00208f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Qi N, Wismer MK, Conway DV, Krska SW, Dreher SD, Lin S. Development of a high intensity parallel photoreactor for high throughput screening. React Chem Eng 2022;7:354-60. [DOI: 10.1039/d1re00317h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
119 He D, Cao D, Ben C, Lan Y, Zhang H, Jiang M, Wu S, Zhang Y, Meng QB, Song X. Ionic liquid gel microspheres as an emerging platform for constructing liquid compartment microreactors. Green Chem 2022;24:5952-64. [DOI: 10.1039/d2gc01763f] [Reference Citation Analysis]
120 Di Filippo M, Baumann M. Continuous Flow Synthesis of Anticancer Drugs. Molecules 2021;26:6992. [PMID: 34834084 DOI: 10.3390/molecules26226992] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Zondag SDA, Masson TM, Debije MG, Noël T. The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochem Photobiol Sci 2021. [PMID: 34767247 DOI: 10.1007/s43630-021-00130-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
122 Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021;19:7737-53. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]