BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Noviana E, Ozer T, Carrell CS, Link JS, Mcmahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021;121:11835-85. [DOI: 10.1021/acs.chemrev.0c01335] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Yu H, Tan X, Zhang L, Yang H, Zhu P, Yan Z, Gao C, Yu J. Metal-organic framework-enabled surface state passivation integrating with single-nuclease-propelled multistage amplification for ultrasensitive lab-on-paper photoelectrochemical biosensing. Chemical Engineering Journal 2022;450:137955. [DOI: 10.1016/j.cej.2022.137955] [Reference Citation Analysis]
2 Ranjbaran M, Verma MS. Microfluidics at the interface of bacteria and fresh produce. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.07.014] [Reference Citation Analysis]
3 Musile G, Agard Y, Wang L, De Palo EF, Mccord B, Tagliaro F. Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC Trends in Analytical Chemistry 2021;143:116406. [DOI: 10.1016/j.trac.2021.116406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Mikolei JJ, Neuenfeld L, Paech S, Langhans M, Biesalski M, Meckel T, Andrieu‐brunsen A. Mechanistic Understanding and Three‐Dimensional Tuning of Fluid Imbibition in Silica‐Coated Cotton Linter Paper Sheets. Adv Materials Inter. [DOI: 10.1002/admi.202200064] [Reference Citation Analysis]
5 de Carvalho Oliveira G, Machado CCS, Inácio DK, Silveira Petruci JFD, Silva SG. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. J Agric Food Chem 2022. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Reference Citation Analysis]
7 Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry 2022;909:116140. [DOI: 10.1016/j.jelechem.2022.116140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Juang YJ, Chiu YJ. Fabrication of Polymer Microfluidics: An Overview. Polymers (Basel) 2022;14:2028. [PMID: 35631909 DOI: 10.3390/polym14102028] [Reference Citation Analysis]
9 Ozer T, Henry CS. Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt Chem 2021;144:116424. [PMID: 34462612 DOI: 10.1016/j.trac.2021.116424] [Reference Citation Analysis]
10 González del Campo MM, Vaquer A, de la Rica R. Polymer Components for Paper‐Based Analytical Devices. Adv Materials Technologies. [DOI: 10.1002/admt.202200140] [Reference Citation Analysis]
11 Fabiani L, Mazzaracchio V, Moscone D, Fillo S, De Santis R, Monte A, Amatore D, Lista F, Arduini F. Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosens Bioelectron 2022;200:113909. [PMID: 34995838 DOI: 10.1016/j.bios.2021.113909] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
12 Ortiz-Gómez I, González-Alfaro S, Sánchez-Ruiz A, de Orbe-Payá I, Capitán-Vallvey LF, Navarro A, Salinas-Castillo A, García-Martínez JC. Reversal of a Fluorescent Fluoride Chemosensor from Turn-Off to Turn-On Based on Aggregation Induced Emission Properties. ACS Sens 2022;7:37-43. [PMID: 35020353 DOI: 10.1021/acssensors.1c02196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Placer L, Lavilla I, Pena-pereira F, Bendicho C. Bromine speciation by a paper-based sensor integrated with a citric acid/cysteamine fluorescent probe and smartphone detection. Sensors and Actuators B: Chemical 2022;358:131499. [DOI: 10.1016/j.snb.2022.131499] [Reference Citation Analysis]
14 Barbosa JA, Freitas VMS, Vidotto LHB, Schleder GR, de Oliveira RAG, da Rocha JF, Kubota LT, Vieira LCS, Tolentino HCN, Neckel IT, Gobbi AL, Santhiago M, Lima RS. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Appl Mater Interfaces 2022. [PMID: 35311272 DOI: 10.1021/acsami.2c02943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang L, Li B, Wang J, Qi J, Li J, Ma J, Chen L. A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. J Hazard Mater 2022;428:128165. [PMID: 35007967 DOI: 10.1016/j.jhazmat.2021.128165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
16 Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS Au 2021;1:1815-33. [PMID: 34841402 DOI: 10.1021/jacsau.1c00318] [Reference Citation Analysis]
17 Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022;189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ruiz RA, Gonzalez JL, Vazquez-Alvarado M, Martinez NW, Martinez AW. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Anal Chem 2022. [PMID: 35694851 DOI: 10.1021/acs.analchem.2c01534] [Reference Citation Analysis]
19 Khaliliazar S, Toldrà A, Chondrogiannis G, Hamedi MM. Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Anal Chem 2021;93:14187-95. [PMID: 34648274 DOI: 10.1021/acs.analchem.1c02900] [Reference Citation Analysis]
20 Tan W, Zhang L, Jarujamrus P, C G Doery J, Shen W. Improvement Strategies on Colorimetric Performance and Practical Applications of Paper-based Analytical Devices. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107562] [Reference Citation Analysis]
21 Caratelli V, Di Meo E, Colozza N, Fabiani L, Fiore L, Moscone D, Arduini F. Nanomaterials and paper-based electrochemical devices: merging strategies for fostering sustainable detection of biomarkers. J Mater Chem B 2022. [PMID: 35899594 DOI: 10.1039/d2tb00387b] [Reference Citation Analysis]
22 Shojaeifard Z, Hemmateenejad B. Deep and dip: Immobilization on paper substrate using Deep Eutectic solvent to fabricate reusable dip immersion colorimetric sensor arrays. Sensors and Actuators B: Chemical 2022;356:131379. [DOI: 10.1016/j.snb.2022.131379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Arduini F. Electrochemical paper-based devices: when the simple replacement of the support to print ecodesigned electrodes radically improves the features of the electrochemical devices. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101090] [Reference Citation Analysis]
24 Tarara M, Giokas DL, Tsogas GZ. Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices. Chemosensors 2022;10:155. [DOI: 10.3390/chemosensors10050155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Bendicho C, Lavilla I, Pena-Pereira F, la Calle I, Romero V. Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview. Sensors (Basel) 2021;21:7571. [PMID: 34833647 DOI: 10.3390/s21227571] [Reference Citation Analysis]
26 Kumawat N, Soman SS, Vijayavenkataraman S, Kumar S. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process. Lab Chip 2022. [PMID: 35801817 DOI: 10.1039/d2lc00452f] [Reference Citation Analysis]
27 Juang YJ, Hsu SK. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers (Basel) 2022;14:639. [PMID: 35160629 DOI: 10.3390/polym14030639] [Reference Citation Analysis]
28 Martínez-pérez-cejuela H, Mesquita RB, Couto JA, Simó-alfonso E, Herrero-martínez J, Rangel AOS. Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta 2022;250:123747. [DOI: 10.1016/j.talanta.2022.123747] [Reference Citation Analysis]
29 Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Reference Citation Analysis]
30 Jaewjaroenwattana J, Phoolcharoen W, Pasomsub E, Teengam P, Chailapakul O. Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123783] [Reference Citation Analysis]
31 Shimizu FM, Pasqualeti AM, Nicoliche CYN, Gobbi AL, Santhiago M, Lima RS. Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sens 2021;6:3125-32. [PMID: 34399053 DOI: 10.1021/acssensors.1c01302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
32 Guinati BGS, Sousa LR, Oliveira KA, Coltro WKT. Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. Anal Methods 2021;13:5383-90. [PMID: 34734929 DOI: 10.1039/d1ay01339d] [Reference Citation Analysis]
33 Oliveira ACM, Araújo DAG, Pradela-Filho LA, Takeuchi RM, Trindade MAG, Dos Santos AL. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip 2022. [PMID: 35833547 DOI: 10.1039/d2lc00387b] [Reference Citation Analysis]
34 Lizama JH, Tseng H, Shen Y, Chen C. Microfluidic flow modulation with digitized sizing pattern in Xuan paper-based analytical devices. Alexandria Engineering Journal 2022;61:7171-81. [DOI: 10.1016/j.aej.2021.12.056] [Reference Citation Analysis]
35 Zhuang J, Zhao Z, Lian K, Yin L, Wang J, Man S, Liu G, Ma L. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens Bioelectron 2022;207:114167. [PMID: 35325722 DOI: 10.1016/j.bios.2022.114167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Deroco PB, Wachholz Junior D, Kubota LT. Paper‐based Wearable Electrochemical Sensors: a New Generation of Analytical Devices. Electroanalysis. [DOI: 10.1002/elan.202200177] [Reference Citation Analysis]
37 Nicoliche CYN, Pascon AM, Bezerra ÍRS, de Castro ACH, Martos GR, Bettini J, Alves WA, Santhiago M, Lima RS. In Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Appl Mater Interfaces 2022;14:2522-33. [PMID: 34990106 DOI: 10.1021/acsami.1c18778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Wu J, Jing X, Liu Y, Zhao L, Ji X, Fu H, Zhang B, Zhang Y, Wang S. A paper origami-based micro-total electrochemical immunoassay (μTEI) for the detection of total malachite green in aquatic products. Sensors and Actuators B: Chemical 2022;361:131748. [DOI: 10.1016/j.snb.2022.131748] [Reference Citation Analysis]
39 Kim S, Lee J. Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BioChip J. [DOI: 10.1007/s13206-022-00078-9] [Reference Citation Analysis]
40 Xia M, Shen T, Li C, Fan R, Feng L, Chen Q. 2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions. Materials Chemistry and Physics 2022;286:126208. [DOI: 10.1016/j.matchemphys.2022.126208] [Reference Citation Analysis]