BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021;121:1746-803. [PMID: 33445874 DOI: 10.1021/acs.chemrev.0c00779] [Cited by in Crossref: 89] [Cited by in F6Publishing: 105] [Article Influence: 44.5] [Reference Citation Analysis]
Number Citing Articles
1 Kuznetsova OV, Kolotilina NK, Dolgonosov AM, Khamizov RK, Timerbaev AR. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta 2023;253:124035. [DOI: 10.1016/j.talanta.2022.124035] [Reference Citation Analysis]
2 Tan P, Chen X, Zhang H, Wei Q, Luo K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol 2023;89:61-75. [PMID: 36682438 DOI: 10.1016/j.semcancer.2023.01.005] [Reference Citation Analysis]
3 Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater Sci 2023;11:472-80. [PMID: 36472245 DOI: 10.1039/d2bm01604d] [Reference Citation Analysis]
4 Wan L, Cao Y, Cheng C, Tang R, Wu N, Zhou Y, Xiong X, He H, Lin X, Jiang Q, Wang X, Guo X, Wang D, Ran H, Ren J, Zhou Y, Hu Z, Li P. Biomimetic, pH-Responsive Nanoplatforms for Cancer Multimodal Imaging and Photothermal Immunotherapy. ACS Appl Mater Interfaces 2023;15:1784-97. [PMID: 36580421 DOI: 10.1021/acsami.2c16667] [Reference Citation Analysis]
5 Rani R, Malik P, Dhania S, Mukherjee TK. Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics 2023;15. [PMID: 36678856 DOI: 10.3390/pharmaceutics15010227] [Reference Citation Analysis]
6 Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023;354:167-87. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Reference Citation Analysis]
7 Mayorova OA, Gusliakova OI, Prikhozhdenko ES, Verkhovskii RA, Bratashov DN. Magnetic Platelets as a Platform for Drug Delivery and Cell Trapping. Pharmaceutics 2023;15. [PMID: 36678843 DOI: 10.3390/pharmaceutics15010214] [Reference Citation Analysis]
8 Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration 2023. [DOI: 10.1002/exp.20220045] [Reference Citation Analysis]
9 Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023;52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Reference Citation Analysis]
10 Lin YW, Su HC, Raj EN, Liu KK, Chang CJ, Hsu TC, Cheng PY, Wang RH, Lai YH, Chen CH, Lin YC, Chao JI. Targeting EGFR and Monitoring Tumorigenesis of Human Lung Cancer Cells In Vitro and In Vivo Using Nanodiamond-Conjugated Specific EGFR Antibody. Pharmaceutics 2022;15. [PMID: 36678740 DOI: 10.3390/pharmaceutics15010111] [Reference Citation Analysis]
11 Yang Z, Chi Y, Bao J, Zhao X, Zhang J, Wang L. Virus-like Particles for TEM Regulation and Antitumor Therapy. J Funct Biomater 2022;13. [PMID: 36547564 DOI: 10.3390/jfb13040304] [Reference Citation Analysis]
12 Zhang D, He J, Zhou M. Radiation-assisted strategies provide new perspectives to improve the nanoparticle delivery to tumor. Adv Drug Deliv Rev 2022;193:114642. [PMID: 36529190 DOI: 10.1016/j.addr.2022.114642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kaur N, Mimansa, Sharma P, Praveen Kumar P, Neelakandan PP, Shanavas A. Plasmonically Active Supramolecular Polymer–Metal–Organic Framework Hydrogel Nanocomposite for Localized Chemo-photothermal Therapy. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01646] [Reference Citation Analysis]
14 Izci M, Maksoudian C, Gonçalves F, Aversa L, Salembier R, Sargsian A, Pérez Gilabert I, Chu T, Rios Luci C, Bolea-Fernandez E, Nittner D, Vanhaecke F, Manshian BB, Soenen SJ. Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor microenvironment. J Nanobiotechnology 2022;20:518. [PMID: 36494816 DOI: 10.1186/s12951-022-01727-9] [Reference Citation Analysis]
15 Liu L, Yu W, Seitsonen J, Xu W, Lehto VP. Correct Identification of the Core-Shell Structure of Cell Membrane-Coated Polymeric Nanoparticles. Chemistry 2022;28:e202200947. [PMID: 36116117 DOI: 10.1002/chem.202200947] [Reference Citation Analysis]
16 Luo Y, Wang J, Xu L, Du Q, Fang N, Wu H, Liu F, Hu L, Xu J, Hou J, Zhong Y, Liu Y, Wang Z, Ran H, Guo D. A theranostic metallodrug modulates immunovascular crosstalk to combat immunosuppressive liver cancer. Acta Biomater 2022;154:478-96. [PMID: 36280029 DOI: 10.1016/j.actbio.2022.10.032] [Reference Citation Analysis]
17 Li P, Liu J, He K, Gong S, Chi C, Liu P, Su G, Li W, Duan H, Liu P, Tian J, Chen C. Tumor lesion detection in patients with cervical cancer by indocyanine green near-infrared imaging. Eur J Nucl Med Mol Imaging 2022. [DOI: 10.1007/s00259-022-06030-1] [Reference Citation Analysis]
18 Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, Xie N, Huang C, Liu L. Nanoengineering a Zeolitic Imidazolate Framework-8 Capable of Manipulating Energy Metabolism against Cancer Chemo-Phototherapy Resistance. Small 2022;18:e2204926. [PMID: 36260824 DOI: 10.1002/smll.202204926] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang Z, Xia T, Ran P, Wei J, Meng J, Zhang G, Li X. Persistent luminescence-activated Janus nanomotors with integration of photodynamic and photothermal cancer therapies. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141226] [Reference Citation Analysis]
20 Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022;191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Reference Citation Analysis]
21 Sun R, Xiang J, Zhou Q, Piao Y, Tang J, Shao S, Zhou Z, Bae YH, Shen Y. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Adv Drug Deliv Rev 2022;191:114614. [PMID: 36347432 DOI: 10.1016/j.addr.2022.114614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Chen Y, Zeng L, Zhu H, Wu Q, Liu R, Liang Q, Chen B, Dai H, Tang K, Liao C, Huang Y, Yan X, Fan K, Du J, Lin R, Wang J. Ferritin Nanocaged Doxorubicin Potentiates Chemo‐Immunotherapy against Hepatocellular Carcinoma via Immunogenic Cell Death. Small Methods 2022. [DOI: 10.1002/smtd.202201086] [Reference Citation Analysis]
23 Zelepukin IV, Griaznova OY, Shevchenko KG, Ivanov AV, Baidyuk EV, Serejnikova NB, Volovetskiy AB, Deyev SM, Zvyagin AV. Flash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment. Nat Commun 2022;13:6910. [PMID: 36376302 DOI: 10.1038/s41467-022-34718-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Zhang F, Xia B, Sun J, Wang Y, Wang J, Xu F, Chen J, Lu M, Yao X, Timashev P, Zhang Y, Chen M, Che J, Li F, Liang X. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. Research 2022;2022:1-21. [DOI: 10.34133/2022/9808429] [Reference Citation Analysis]
25 Huang L, Wang W, Wang Z, Zhang H, Liu H, Wu G, Nie W, Xie H. Engineering Oncolytic Adenoviruses with VSVG‐Decorated Tumor Cell Membranes for Synergistically Enhanced Antitumor Therapy. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209056] [Reference Citation Analysis]
26 Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022;27:232. [DOI: 10.1186/s40001-022-00833-6] [Reference Citation Analysis]
27 Alshammari MK, Alshehri MM, Alshehri AM, Alshlali OM, Mahzari AM, Almalki HH, Kulaybi OY, Alghazwni MK, Kamal M, Imran M. Camptothecin loaded nano-delivery systems in the cancer therapeutic domains: A critical examination of the literature. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104034] [Reference Citation Analysis]
28 Wang T, Lin M, Mao J, Tian L, Gan H, Hu X, Yan L, Long H, Cai J, Zheng X, Xiao Y, Li D, Shuai X, Pang P. Inflammation-Regulated Nanodrug Sensitizes Hepatocellular Carcinoma to Checkpoint Blockade Therapy by Reprogramming the Tumor Microenvironment. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14448] [Reference Citation Analysis]
29 Liu L, Pan D, Chen S, Martikainen MV, Kårlund A, Ke J, Pulkkinen H, Ruhanen H, Roponen M, Käkelä R, Xu W, Wang J, Lehto VP. Systematic design of cell membrane coating to improve tumor targeting of nanoparticles. Nat Commun 2022;13:6181. [PMID: 36261418 DOI: 10.1038/s41467-022-33889-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wang R, Zhao C, Jiang S, Zhang Z, Ban C, Zheng G, Hou Y, Jin B, Shi Y, Wu X, Zhao Q. Advanced nanoparticles that can target therapy and reverse drug resistance may be the dawn of leukemia treatment: A bibliometrics study. Front Bioeng Biotechnol 2022;10:1027868. [DOI: 10.3389/fbioe.2022.1027868] [Reference Citation Analysis]
31 Hu R, Yang Y, Song G, Zhao F, Chen S, Zhou Z, Zheng J, Shen W. In vivo targeting capacities of different nanoparticles to prostate tissues based on a mouse model of chronic bacterial prostatitis. Front Bioeng Biotechnol 2022;10:1021385. [DOI: 10.3389/fbioe.2022.1021385] [Reference Citation Analysis]
32 Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022;189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Yang R, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo-chemo-chemodynamic therapy. Nano Today 2022;46:101615. [DOI: 10.1016/j.nantod.2022.101615] [Reference Citation Analysis]
34 Mei Y, Tang L, Zhang L, Hu J, Zhang Z, He S, Zang J, Wang W. A minimally designed PD-L1-targeted nanocomposite for positive feedback-based multimodal cancer therapy. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.09.009] [Reference Citation Analysis]
35 Hou L, Zhong T, Cheng P, Long B, Shi L, Meng X, Yao H. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer. Front Bioeng Biotechnol 2022;10:938662. [DOI: 10.3389/fbioe.2022.938662] [Reference Citation Analysis]
36 Li Z, Chu Z, Yang J, Qian H, Xu J, Chen B, Tian T, Chen H, Xu Y, Wang F. Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. ACS Nano 2022;16:15471-83. [PMID: 35981098 DOI: 10.1021/acsnano.2c08013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
37 Ren L, Liu Y, Yao T, Nguyen KT, Yuan B. In vivo tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles. Nano Res . [DOI: 10.1007/s12274-022-4846-9] [Reference Citation Analysis]
38 Su J, Sun Q, Lin S, Lu S, Zhang Q, Li Y, Li B, Sun Y, Liu K, Zhang H, Wang F, Li J, Wei Y. Biosynthetic and Unfolded Protein Nanocarriers for Chemotherapeutic Drugs in Oral Cancers: Improved Bioavailability and Safety of Chemotherapeutics. Adv Funct Materials. [DOI: 10.1002/adfm.202204271] [Reference Citation Analysis]
39 Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Reference Citation Analysis]
40 Singh A, Yadagiri G, Javaid A, Sharma KK, Verma A, Singh OP, Sundar S, Mudavath SL. Hijacking the intrinsic vitamin B12 pathway for the oral delivery of nanoparticles, resulting in enhanced in vivo anti-leishmanial activity. Biomater Sci 2022. [PMID: 36017751 DOI: 10.1039/d2bm00979j] [Reference Citation Analysis]
41 Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Reference Citation Analysis]
42 Issaka E, Amu-darko JNO, Adams M, Yakubu S, Gyimah E, Ali N, Cui J, Bilal M. Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Lett. [DOI: 10.1007/s10562-022-04140-x] [Reference Citation Analysis]
43 Li P, Liu J, He K, Gong S, Chi C, Liu P, Su G, Li W, Duan H, Liu P, Tian J, Chen C. Tumor Lesion Detection in Patients with Cervical Cancer by Indocyanine Green Near-Infrared Imaging.. [DOI: 10.21203/rs.3.rs-1938352/v1] [Reference Citation Analysis]
44 Shekhar S, Chauhan M, Sonali, Yadav B, Dutt R, Hu L, Muthu MS, Singh RP. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective. Nanomedicine (Lond) 2022;17:1213-6. [PMID: 36136592 DOI: 10.2217/nnm-2022-0065] [Reference Citation Analysis]
45 Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022. [PMID: 35876959 DOI: 10.1007/s12015-022-10426-9] [Reference Citation Analysis]
46 Lenders V, Escudero R, Koutsoumpou X, Armengol Álvarez L, Rozenski J, Soenen SJ, Zhao Z, Mitragotri S, Baatsen P, Allegaert K, Toelen J, Manshian BB. Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. J Nanobiotechnology 2022;20:333. [PMID: 35842697 DOI: 10.1186/s12951-022-01544-0] [Reference Citation Analysis]
47 Lee M, Shelke A, Singh S, Fan J, Zaleski P, Afkhami S. Numerical simulation of superparamagnetic nanoparticle motion in blood vessels for magnetic drug delivery. Phys Rev E 2022;106. [DOI: 10.1103/physreve.106.015104] [Reference Citation Analysis]
48 Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. IJMS 2022;23:7683. [DOI: 10.3390/ijms23147683] [Reference Citation Analysis]
49 Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022;188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022;186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Xu Y, Chen P, Tang L, Zhang X, Shi F, Ning X, Bi J, Qu Y, Liu H. Hypoxia responsive and tumor-targeted mixed micelles for enhanced cancer therapy and real-time imaging. Colloids Surf B Biointerfaces 2022;215:112526. [PMID: 35512561 DOI: 10.1016/j.colsurfb.2022.112526] [Reference Citation Analysis]
52 Ejigah V, Owoseni O, Bataille-backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022;14:2601. [DOI: 10.3390/polym14132601] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Spector DV, Pavlov KG, Akasov RA, Vaneev AN, Erofeev AS, Gorelkin PV, Nikitina VN, Lopatukhina EV, Semkina AS, Vlasova KY, Skvortsov DA, Roznyatovsky VA, Ul'yanovskiy NV, Pikovskoi II, Sypalov SA, Garanina AS, Vodopyanov SS, Abakumov MA, Volodina YL, Markova AA, Petrova AS, Mazur DM, Sakharov DA, Zyk NV, Beloglazkina EK, Majouga AG, Krasnovskaya OO. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J Med Chem 2022;65:8227-44. [PMID: 35675651 DOI: 10.1021/acs.jmedchem.1c02136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Seo YH, Kim S. Aggregation-induced emission nanoparticles with improved optical absorption for boosting fluorescence signal of tumors in vivo. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121534. [PMID: 35752040 DOI: 10.1016/j.saa.2022.121534] [Reference Citation Analysis]
55 Mansur AAP, Paiva MRB, Cotta OAL, Silva LM, Carvalho IC, Capanema NSV, Carvalho SM, Costa ÉA, Martin NR, Ecco R, Santos BS, Fialho SL, Lobato ZIP, Mansur HS. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int J Biol Macromol 2022;210:530-44. [PMID: 35513094 DOI: 10.1016/j.ijbiomac.2022.04.207] [Reference Citation Analysis]
56 Sharifi M, Cho WC, Ansariesfahani A, Tarharoudi R, Malekisarvar H, Sari S, Bloukh SH, Edis Z, Amin M, Gleghorn JP, Hagen TLMT, Falahati M. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers (Basel) 2022;14:2868. [PMID: 35740534 DOI: 10.3390/cancers14122868] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
57 Timerbaev AR. Analytical methodology for developing nanomaterials designed for magnetically-guided delivery of platinum anticancer drugs. Talanta 2022;243:123371. [DOI: 10.1016/j.talanta.2022.123371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Huang X, Liu Y, Feng A, Cheng X, Xiong X, Wang Z, He Z, Guo J, Wang S, Yan X. Photoactivated Organic Nanomachines for Programmable Enhancement of Antitumor Efficacy. Small 2022;:e2201525. [PMID: 35560973 DOI: 10.1002/smll.202201525] [Reference Citation Analysis]
59 Dai X, Li X, Liu Y, Yan F. Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy. Materials & Design 2022;217:110656. [DOI: 10.1016/j.matdes.2022.110656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Qian R, Wang K, Guo Y, Li H, Zhu Z, Huang X, Gong C, Gao Y, Guo R, Yang B, Wang C, Jiang D, Lan X, An R, Gao Z. Minimizing adverse effects of Cerenkov radiation induced photodynamic therapy with transformable photosensitizer-loaded nanovesicles. J Nanobiotechnology 2022;20:203. [PMID: 35477389 DOI: 10.1186/s12951-022-01401-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Myers JZ, Navarro-Becerra JA, Borden MA. Nanobubbles are Non-Echogenic for Fundamental-Mode Contrast-Enhanced Ultrasound Imaging. Bioconjug Chem 2022. [PMID: 35476906 DOI: 10.1021/acs.bioconjchem.2c00155] [Reference Citation Analysis]
62 Yuan H, Zhang L, Ma T, Huang J, Nie C, Cao S, Xiang X, Ma L, Cheng C, Qiu L. Spiky Cascade Biocatalysts as Peroxisome-Mimics for Ultrasound-Augmented Tumor Ablation. ACS Appl Mater Interfaces 2022;14:15970-81. [PMID: 35348330 DOI: 10.1021/acsami.1c25072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Parodi A, Kostyushev D, Brezgin S, Kostyusheva A, Borodina T, Akasov R, Frolova A, Chulanov V, Zamyatnin AA. Biomimetic approaches for targeting tumor inflammation. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
64 Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022;183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Hu M, Huang L. Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022;183:114137. [PMID: 35143893 DOI: 10.1016/j.addr.2022.114137] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
67 Song L, Chen B, Qin Z, Liu X, Guo Z, Lou H, Liu H, Sun W, Guo C, Li C. Temperature-Dependent CAT-Like RGD-BPNS@SMFN Nanoplatform for PTT-PDT Self-Synergetic Tumor Phototherapy. Adv Healthc Mater 2022;11:e2102298. [PMID: 34918483 DOI: 10.1002/adhm.202102298] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
68 Myers JZ, Navarro-becerra JA, Borden MA. Nanobubbles are Non-Echogenic for Fundamental-Mode Contrast-Enhanced Ultrasound Imaging.. [DOI: 10.1101/2022.03.25.485890] [Reference Citation Analysis]
69 Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022;284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS Appl Mater Interfaces 2022;14:11078-91. [PMID: 35196008 DOI: 10.1021/acsami.1c21655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
71 Wang Y, Huo J, Li S, Huang R, Fan D, Cheng H, Wan B, Du Y, He H, Zhang G. Self-Rectifiable and Hypoxia-Assisted Chemo-Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. ACS Appl Mater Interfaces 2022;14:10092-101. [PMID: 35170301 DOI: 10.1021/acsami.1c23121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Xiong J, Wang P, Son S, Zhong C, Zhang F, Mao Z, Liu Z, Kim JS. Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter 2022. [DOI: 10.1016/j.matt.2022.02.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
73 Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharmaceutica Sinica B 2022;12:2658-71. [DOI: 10.1016/j.apsb.2022.02.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
74 Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
75 Li Z, Chen Z, Chen H, Chen K, Tao W, Ouyang X, Mei L, Zeng X. Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.01.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
76 Mohammed SA, Shaaban EIA. Efficacious nanomedicine track toward combating COVID-19. Nanotechnology Reviews 2022;11:680-98. [DOI: 10.1515/ntrev-2022-0036] [Reference Citation Analysis]
77 Li J, Liu P. Facile Synthesis of a Redox-Responsive Hyperbranched Polymer Prodrug as a Unimolecular Micelle for the Tumor-Selective Drug Delivery. Bioconjug Chem 2022. [PMID: 35090123 DOI: 10.1021/acs.bioconjchem.2c00013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2021;11:786913. [PMID: 35070992 DOI: 10.3389/fonc.2021.786913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Dubey P, Sertorio M, Takiar V. Therapeutic Advancements in Metal and Metal Oxide Nanoparticle-Based Radiosensitization for Head and Neck Cancer Therapy. Cancers (Basel) 2022;14. [PMID: 35158781 DOI: 10.3390/cancers14030514] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
80 Wang T, Niu K, Ni S, Zhang W, Liu Z, Zhang X. Hyaluronic Acid-Modified Gold-Polydopamine Complex Nanomedicine for Tumor-Targeting Drug Delivery and Chemo-Photothermal-Therapy Synergistic Therapy. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.1c07231] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
81 Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022;14:351. [PMID: 35054758 DOI: 10.3390/polym14020351] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 31.0] [Reference Citation Analysis]
82 Pandian SRK, Theivendren P, Ravishankar V, Pavadai P, Vellaichamy S, Palanisamy P, Sankaranarayanan M, Kunjiappan S. Emerging Nanomaterials for Cancer Targeting and Drug Delivery. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-82918-6_14] [Reference Citation Analysis]
83 Guan X, Meng F, Tan H, Wang X, Li J, Wei J, Ouyang J, Na N. Modular and hierarchical self-assembly of siRNAs into supramolecular nanomaterials for soft and homogeneous siRNA loading and precise and visualized intracellular delivery. Chem Sci 2022;13:8657-66. [DOI: 10.1039/d2sc02488h] [Reference Citation Analysis]
84 Kuznetsova OV, Timerbaev AR. Magnetic nanoparticles for highly robust, facile and efficient loading of metal-based drugs. J Inorg Biochem 2021;227:111685. [PMID: 34902764 DOI: 10.1016/j.jinorgbio.2021.111685] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
85 Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021;22:13141. [PMID: 34884946 DOI: 10.3390/ijms222313141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
87 Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int J Mol Sci 2021;22:12405. [PMID: 34830287 DOI: 10.3390/ijms222212405] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
89 Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021;60:25128-34. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
90 Qin S, Xue J, Jia E, Ren N, Dong Y, Zhou C. Achieving NIR Light-Mediated Tumor-Specific Fenton Reaction-Assisted Oncotherapy by Using Magnetic Nanoclusters. Front Oncol 2021;11:777295. [PMID: 34760710 DOI: 10.3389/fonc.2021.777295] [Reference Citation Analysis]
91 Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021;9:8906-36. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
92 Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg 2021;8:34. [PMID: 34727233 DOI: 10.1186/s40580-021-00282-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
93 Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021;178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
94 Zhao L, Song X, Ouyang X, Zhou J, Li J, Deng D. Bioinspired Virus-like Fe3O4/Au@C Nanovector for Programmable Drug Delivery via Hierarchical Targeting. ACS Appl Mater Interfaces 2021;13:49631-41. [PMID: 34636534 DOI: 10.1021/acsami.1c11261] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
95 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
96 Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Qiao L, Yuan X, Peng H, Shan G, Gao M, Yi X, He X. Targeted delivery and stimulus-responsive release of anticancer drugs for efficient chemotherapy. Drug Deliv 2021;28:2218-28. [PMID: 34668829 DOI: 10.1080/10717544.2021.1986602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem 2021;133:25332-8. [DOI: 10.1002/ange.202111839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Zheng X, Bian S, Liu W, Zhang C, Wu J, Ren H, Zhang W, Lee CS, Wang P. Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS Omega 2021;6:26575-82. [PMID: 34661012 DOI: 10.1021/acsomega.1c03947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
100 Koseki Y, Ikuta Y, Taemaitree F, Saito N, Suzuki R, Dao ATN, Onodera T, Oikawa H, Kasai H. Fabrication of size-controlled SN-38 pure drug nanocrystals through an ultrasound-assisted reprecipitation method toward efficient drug delivery for cancer treatment. Journal of Crystal Growth 2021;572:126265. [DOI: 10.1016/j.jcrysgro.2021.126265] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
101 Barani M, Reza Hajinezhad M, Sargazi S, Zeeshan M, Rahdar A, Pandey S, Khatami M, Zargari F. Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers (Basel) 2021;13:3153. [PMID: 34578054 DOI: 10.3390/polym13183153] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
102 Addonizio CJ, Gates BD, Webber MJ. Supramolecular "Click Chemistry" for Targeting in the Body. Bioconjug Chem 2021;32:1935-46. [PMID: 34415139 DOI: 10.1021/acs.bioconjchem.1c00326] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
103 Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. Nanoscale 2021;13:13943-61. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Guo Y, Zheng X, Gai T, Wei Z, Zhang S. Co-biomembrane-coated Fe3O4/MnO2 multifunctional nanoparticles for targeted delivery and enhanced chemodynamic/photothermal/chemo therapy. Chem Commun (Camb) 2021;57:5754-7. [PMID: 34036980 DOI: 10.1039/d1cc01375k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
105 Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics 2021;13:1167. [PMID: 34452128 DOI: 10.3390/pharmaceutics13081167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
106 Liu J, Wang J, Si S, Xu J, Xue P. Hydrogean Peroxide Inducible Acid-Activatable Prodrug for Targeted Cancer Treatment. ChemMedChem 2021. [PMID: 34288492 DOI: 10.1002/cmdc.202100354] [Reference Citation Analysis]
107 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
108 Kang RH, Park J, Kim J, Chowdhury T, Oh JH, Kim J, Shin J, Kim M, Park CK, Lee S, Lee JY, Kim D. A Deep Dive: SIWV Tetra-Peptide Enhancing the Penetration of Nanotherapeutics into the Glioblastoma. ACS Biomater Sci Eng 2021. [PMID: 34196517 DOI: 10.1021/acsbiomaterials.1c00653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
109 Mastrobattista E. Formulation and delivery solutions for the next generation biotherapeutics. J Control Release 2021;336:583-97. [PMID: 34174354 DOI: 10.1016/j.jconrel.2021.06.029] [Reference Citation Analysis]
110 He Y, Li Z, Cong C, Ye F, Yang J, Zhang X, Yuan Y, Ma Z, Zhang K, Lin Y, Zheng L, Liang XJ, Gao D. Pyroelectric Catalysis-Based "Nano-Lymphatic" Reduces Tumor Interstitial Pressure for Enhanced Penetration and Hydrodynamic Therapy. ACS Nano 2021;15:10488-501. [PMID: 34018736 DOI: 10.1021/acsnano.1c03048] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
111 Gao Y, Chen L, Ge J, Cui J, Zeng J, Gao M. A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective. Chem Res Chin Univ 2021;37:870-9. [DOI: 10.1007/s40242-021-1179-2] [Reference Citation Analysis]
112 Paramio I, Torres T, de la Torre G. Self-Assembled Porphyrinoids: One-Component Nanostructured Photomedicines. ChemMedChem 2021;16:2441-51. [PMID: 33900022 DOI: 10.1002/cmdc.202100201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
113 Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021;26:2846. [PMID: 34064789 DOI: 10.3390/molecules26102846] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
114 Silva ALG, Carvalho NV, Paterno LG, Moura LD, Filomeno CL, de Paula E, Báo SN. Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00083-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]