BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, Kowalczuk M, Martin C, Radecka I. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules 2020;21:1802-11. [PMID: 31967794 DOI: 10.1021/acs.biomac.9b01724] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhu H, Mah Jian Qiang J, Wang CG, Chan CY, Zhu Q, Ye E, Li Z, Loh XJ. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioactive Materials 2022;18:471-91. [DOI: 10.1016/j.bioactmat.2022.03.034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Pan M, Wu M, Shui T, Xiang L, Yang W, Wang W, Liu X, Wang J, Chen X, Zeng H. Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science 2022;622:612-24. [DOI: 10.1016/j.jcis.2022.04.119] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 de Amorim JDP, da Silva Junior CJG, de Medeiros ADM, do Nascimento HA, Sarubbo M, de Medeiros TPM, Costa AFDS, Sarubbo LA. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022;27:5580. [DOI: 10.3390/molecules27175580] [Reference Citation Analysis]
4 Kim Anh LT, Dai Vuong L, Quoc Bao V, Phuong Nga NT, Luan LV. Biosynthesis of silver nanoparticles using nanocurcumin extracted from fresh turmeric of Vietnam. International Journal of Materials Research 2022;0. [DOI: 10.1515/ijmr-2021-8377] [Reference Citation Analysis]
5 Navya PV, Gayathri V, Samanta D, Sampath S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. Int J Biol Macromol 2022;220:435-61. [PMID: 35963354 DOI: 10.1016/j.ijbiomac.2022.08.056] [Reference Citation Analysis]
6 Zhao N, Yuan W. Functionally integrated bioglass microspheres-composited double-network hydrogel with good tissue adhesion and electrical conductivity for efficient wound treatment and health detection. Composites Part B: Engineering 2022;242:110095. [DOI: 10.1016/j.compositesb.2022.110095] [Reference Citation Analysis]
7 Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. Journal of Drug Delivery Science and Technology 2022;73:103484. [DOI: 10.1016/j.jddst.2022.103484] [Reference Citation Analysis]
8 Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022;14:1377. [DOI: 10.3390/pharmaceutics14071377] [Reference Citation Analysis]
9 El-Kattan N, Emam AN, Mansour AS, Ibrahim MA, Abd El-Razik AB, Allam KAM, Riad NY, Ibrahim SA. Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria. RSC Adv 2022;12:18022-38. [PMID: 35874032 DOI: 10.1039/d2ra00231k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal 2022;173:111293. [DOI: 10.1016/j.eurpolymj.2022.111293] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials 2022;12:1841. [DOI: 10.3390/nano12111841] [Reference Citation Analysis]
12 Huang Y, Zhang M, Wang J, Xu D, Zhong C. Engineering microbial systems for the production and functionalization of biomaterialsBiomaterials engineering with microorganisms. Curr Opin Microbiol 2022;68:102154. [PMID: 35568018 DOI: 10.1016/j.mib.2022.102154] [Reference Citation Analysis]
13 Yang Q, Lai X, Ling J, Chen D, Liu P, Mao T, Shang X, Wang L. Facile Preparation of Hydrogel Glue with High Strength and Antibacterial Activity from Physically Linked Network. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121843] [Reference Citation Analysis]
14 Wang G, Jiang G, Zhu Y, Cheng W, Cao K, Zhou J, Lei H, Xu G, Zhao D. Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydrate Polymers 2022;283:119160. [DOI: 10.1016/j.carbpol.2022.119160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Li L, Li G, Wu Y, Lin Y, Qu Y, Wu Y, Lu K, Zou Y, Chen H, Yu Q, Zhang Y. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties. Journal of Materials Science & Technology 2022;110:14-23. [DOI: 10.1016/j.jmst.2021.10.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022;13:820806. [PMID: 35401176 DOI: 10.3389/fphar.2022.820806] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Huang Q, Wu T, Wang L, Zhu J, Guo Y, Yu X, Fan L, Xin JH, Yu H. A multifunctional 3D dressing unit based on the core-shell hydrogel microfiber for diabetic foot wound healing. Biomater Sci 2022. [PMID: 35389411 DOI: 10.1039/d2bm00029f] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kamal T, Khalil A, Bakhsh EM, Khan SB, Chani MTS, Ul-Islam M. Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. Int J Biol Macromol 2022;206:917-26. [PMID: 35304202 DOI: 10.1016/j.ijbiomac.2022.03.067] [Reference Citation Analysis]
20 Zhang R, Yu B, Tian Y, Pang L, Xu T, Cong H, Shen Y. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare. Applied Materials Today 2022;26:101396. [DOI: 10.1016/j.apmt.2022.101396] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Kailasa SK, Joshi DJ, Kateshiya MR, Koduru JR, Malek NI. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry 2022;23:100746. [DOI: 10.1016/j.mtchem.2021.100746] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
22 Chen T, Wang Y, Xie J, Qu X, Liu C. Lysozyme Amyloid Fibril-Integrated PEG Injectable Hydrogel Adhesive with Improved Antiswelling and Antibacterial Capabilities. Biomacromolecules 2022. [PMID: 35195006 DOI: 10.1021/acs.biomac.1c01597] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Karan T, Erenler R, Moran Bozer B. Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines. Z Naturforsch C J Biosci 2022. [PMID: 35212493 DOI: 10.1515/znc-2021-0298] [Reference Citation Analysis]
24 Zmejkoski DZ, Marković ZM, Mitić DD, Zdravković NM, Kozyrovska NO, Bugárová N, Todorović Marković BM. Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35191591 DOI: 10.1002/jbm.b.35037] [Reference Citation Analysis]
25 Raduly FM, Rădiţoiu V, Rădiţoiu A, Purcar V, Ispas G, Frone AN, Gabor RA, Nicolae C. Optical Behavior of Curcuminoid Hybrid Systems as Coatings Deposited on Polyester Fibers. Coatings 2022;12:271. [DOI: 10.3390/coatings12020271] [Reference Citation Analysis]
26 Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022;14:769. [PMID: 35215680 DOI: 10.3390/polym14040769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Liu J, Miao J, Zhao L, Liu Z, Leng K, Xie W, Yu Y. Versatile Bilayer Hydrogel for Wound Dressing through PET-RAFT Polymerization. Biomacromolecules 2022. [PMID: 35171579 DOI: 10.1021/acs.biomac.1c01428] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Chen C, Ding W, Zhang H, Zhang L, Huang Y, Fan M, Yang J, Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr Polym 2022;278:118995. [PMID: 34973797 DOI: 10.1016/j.carbpol.2021.118995] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
29 Moradpoor H, Mohammadi H, Safaei M, Mozaffari HR, Sharifi R, Gorji P, Sulong AB, Muhamad N, Ebadi M, Wu Q. Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. International Journal of Polymer Science 2022;2022:1-24. [DOI: 10.1155/2022/1214734] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Huang K, Wang Y. Recent applications of regenerated cellulose films and hydrogels in food packaging. Current Opinion in Food Science 2022;43:7-17. [DOI: 10.1016/j.cofs.2021.09.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
31 Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, Li J, Li Z, Liu W. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 2022;277:118871. [PMID: 34893276 DOI: 10.1016/j.carbpol.2021.118871] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
32 Niculescu AG, Grumezescu AM. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers (Basel) 2022;14:421. [PMID: 35160411 DOI: 10.3390/polym14030421] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
33 Zhang L, Zhang Y, Ma F, Liu X, Liu Y, Cao Y, Pei R. A low-swelling and toughened adhesive hydrogel with anti-microbial and hemostatic capacities for wound healing. J Mater Chem B 2022. [PMID: 35050296 DOI: 10.1039/d1tb01871j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Arshad H, Sadaf S, Hassan U. De-novo fabrication of sunlight irradiated silver nanoparticles and their efficacy against E. coli and S. epidermidis. Sci Rep 2022;12:676. [PMID: 35027620 DOI: 10.1038/s41598-021-04674-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Volova TG, Prudnikova SV, Kiselev EG, Nemtsev IV, Vasiliev AD, Kuzmin AP, Shishatskaya EI. Bacterial Cellulose (BC) and BC Composites: Production and Properties. Nanomaterials (Basel) 2022;12:192. [PMID: 35055211 DOI: 10.3390/nano12020192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Aditya T, Allain JP, Jaramillo C, Restrepo AM. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 2022;23:610. [PMID: 35054792 DOI: 10.3390/ijms23020610] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
37 Liu J, Tian B, Liu Y, Wan JB. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int J Mol Sci 2021;22:13516. [PMID: 34948312 DOI: 10.3390/ijms222413516] [Reference Citation Analysis]
38 Wang Y, Sun H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics 2021;13:2108. [PMID: 34959388 DOI: 10.3390/pharmaceutics13122108] [Reference Citation Analysis]
39 Xu Z, Deng B, Wang X, Yu J, Xu Z, Liu P, Liu C, Cai Y, Wang F, Zong R, Chen Z, Xing H, Chen G. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J Nanobiotechnology 2021;19:404. [PMID: 34865643 DOI: 10.1186/s12951-021-01152-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Silva JM, Silva E, Reis RL. Therapeutic deep eutectic solvents assisted the encapsulation of curcumin in alginate-chitosan hydrogel beads. Sustainable Chemistry and Pharmacy 2021;24:100553. [DOI: 10.1016/j.scp.2021.100553] [Reference Citation Analysis]
41 Mbituyimana B, Liu L, Ye W, Ode Boni BO, Zhang K, Chen J, Thomas S, Vasilievich RV, Shi Z, Yang G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr Polym 2021;273:118565. [PMID: 34560976 DOI: 10.1016/j.carbpol.2021.118565] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Xu T, Tian Y, Zhang R, Yu B, Cong H, Shen Y. Hydrogel vectors based on peptide and peptide-like substances: For treating bacterial infections and promoting wound healing. Applied Materials Today 2021;25:101224. [DOI: 10.1016/j.apmt.2021.101224] [Reference Citation Analysis]
43 de Moraes DC. Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021;32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Reference Citation Analysis]
44 Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021;13:2029. [PMID: 34959311 DOI: 10.3390/pharmaceutics13122029] [Reference Citation Analysis]
45 Bhubhanil S, Talodthaisong C, Khongkow M, Namdee K, Wongchitrat P, Yingmema W, Hutchison JA, Lapmanee S, Kulchat S. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci Rep 2021;11:21836. [PMID: 34750447 DOI: 10.1038/s41598-021-01262-x] [Reference Citation Analysis]
46 Ran B, Wang Z, Cai W, Ran L, Xia W, Liu W, Peng X. Organic Photo-antimicrobials: Principles, Molecule Design, and Applications. J Am Chem Soc 2021;143:17891-909. [PMID: 34677069 DOI: 10.1021/jacs.1c08679] [Reference Citation Analysis]
47 He W, Wu J, Xu J, Mosselhy DA, Zheng Y, Yang S. Bacterial Cellulose: Functional Modification and Wound Healing Applications. Adv Wound Care (New Rochelle) 2021;10:623-40. [PMID: 32870775 DOI: 10.1089/wound.2020.1219] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
48 Aytac Z, Xu J, Raman Pillai SK, Eitzer BD, Xu T, Vaze N, Ng KW, White JC, Chan-Park MB, Luo Y, Demokritou P. Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS Appl Mater Interfaces 2021;13:50298-308. [PMID: 34648257 DOI: 10.1021/acsami.1c12319] [Reference Citation Analysis]
49 Ahmad B, Shireen F, Rauf A, Shariati MA, Bashir S, Patel S, Khan A, Rebezov M, Khan MU, Mubarak MS, Zhang H. Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver. IET Nanobiotechnol 2021;15:1-18. [PMID: 34694726 DOI: 10.1049/nbt2.12007] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Shaheen TI, El-gamal MS, Desouky SE, Hassan SED, Alemam AM. Benign Production of AgNPs/Bacterial Nanocellulose for Wound Healing Dress: Antioxidant, Cytotoxicity and In Vitro Studies. J Clust Sci. [DOI: 10.1007/s10876-021-02190-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Fatima A, Yasir S, Ul-islam M, Kamal T, Ahmad MW, Abbas Y, Manan S, Ullah MW, Yang G. Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv Compos Hybrid Mater 2022;5:307-21. [DOI: 10.1007/s42114-021-00369-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
52 Salleh MSN, Ali RR, Shameli K, Hamzah MY, Kasmani RM, Nasef MM. Interaction Insight of Pullulan-Mediated Gamma-Irradiated Silver Nanoparticle Synthesis and Its Antibacterial Activity. Polymers (Basel) 2021;13:3578. [PMID: 34685342 DOI: 10.3390/polym13203578] [Reference Citation Analysis]
53 Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. Adv Mater 2021;33:e2102520. [PMID: 34510571 DOI: 10.1002/adma.202102520] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
54 Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021;13:3365. [PMID: 34641185 DOI: 10.3390/polym13193365] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Rahmani S, Ghaemi F, Khaleghi M, Haghi F. Synthesis of novel silver nanocomposite hydrogels based on polyurethane/poly(ethylene glycol) via aqueous extract of oak fruit and their antibacterial and mechanical properties. Polymer Composites 2021;42:6719-35. [DOI: 10.1002/pc.26334] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into Shape-Based Silver Nanoparticles: A Weapon to Cope with Pathogenic Attacks. ACS Sustainable Chem Eng 2021;9:12476-507. [DOI: 10.1021/acssuschemeng.1c03797] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
57 Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021;9:1235. [PMID: 34572421 DOI: 10.3390/biomedicines9091235] [Reference Citation Analysis]
58 Yu J, Cheng L, Jia Z, Han X, Xu H, Jiang J. Injectable Methylcellulose and Hyaluronic Acid Hydrogel Containing Silver Nanoparticles for Their Effective Anti-microbial and Wound Healing Activity After Fracture Surgery. J Polym Environ 2022;30:1330-43. [DOI: 10.1007/s10924-021-02257-5] [Reference Citation Analysis]
59 Adamska E, Niska K, Wcisło A, Grobelna B. Characterization and Cytotoxicity Comparison of Silver- and Silica-Based Nanostructures. Materials (Basel) 2021;14:4987. [PMID: 34501076 DOI: 10.3390/ma14174987] [Reference Citation Analysis]
60 Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnology 2021;19:256. [PMID: 34446005 DOI: 10.1186/s12951-021-00996-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Reference Citation Analysis]
62 Hedayati N, Montazer M, Mahmoudirad M, Toliyat T. Cotton fabric incorporated with β-cyclodextrin/ketoconazole/Ag NPs generating outstanding antifungal and antibacterial performances. Cellulose 2021;28:8095-113. [DOI: 10.1007/s10570-021-04001-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021;69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
64 Giacobbe DR, Magnasco L, Sepulcri C, Mikulska M, Koehler P, Cornely OA, Bassetti M. Recent advances and future perspectives in the pharmacological treatment of Candida auris infections. Expert Rev Clin Pharmacol 2021;:1-16. [PMID: 34176393 DOI: 10.1080/17512433.2021.1949285] [Reference Citation Analysis]
65 Nor Azlan AYH, Katas H, Mh Busra MF, Salleh NAM, Smandri A. Metal nanoparticles and biomaterials: The multipronged approach for potential diabetic wound therapy. Nanotechnology Reviews 2021;10:653-70. [DOI: 10.1515/ntrev-2021-0046] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Wahid F, Zhao XJ, Zhao XQ, Ma XF, Xue N, Liu XZ, Wang FP, Jia SR, Zhong C. Fabrication of Bacterial Cellulose-Based Dressings for Promoting Infected Wound Healing. ACS Appl Mater Interfaces 2021;13:32716-28. [PMID: 34227797 DOI: 10.1021/acsami.1c06986] [Reference Citation Analysis]
67 Kumar A, Kumar S, Kiran K, Banerjee S, Pande V, Dandapat A. Myco-nanotechnological approach to synthesize silver oxide nanocuboids using endophytic fungus isolated from Citrus pseudolimon plant. Colloids Surf B Biointerfaces 2021;206:111948. [PMID: 34224931 DOI: 10.1016/j.colsurfb.2021.111948] [Reference Citation Analysis]
68 Buldum G, Mantalaris A. Systematic Understanding of Recent Developments in Bacterial Cellulose Biosynthesis at Genetic, Bioprocess and Product Levels. Int J Mol Sci 2021;22:7192. [PMID: 34281246 DOI: 10.3390/ijms22137192] [Reference Citation Analysis]
69 Vasil'kov A, Rubina M, Naumkin A, Buzin M, Dorovatovskii P, Peters G, Zubavichus Y. Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization. Gels 2021;7:82. [PMID: 34287283 DOI: 10.3390/gels7030082] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021;22:7130. [PMID: 34281181 DOI: 10.3390/ijms22137130] [Reference Citation Analysis]
71 Seiler ERD, Koyama K, Iijima T, Saito T, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Simple and Fast One-Pot Cellulose Gel Preparation in Aqueous Pyrrolidinium Hydroxide Solution-Cellulose Solvent and Antibacterial Agent. Polymers (Basel) 2021;13:1942. [PMID: 34208065 DOI: 10.3390/polym13121942] [Reference Citation Analysis]
72 Xu Z, Zhang C, Yu Y, Li W, Ma Z, Wang J, Zhang X, Gao H, Liu D. Photoactive Silver Nanoagents for Backgroundless Monitoring and Precision Killing of Multidrug-Resistant Bacteria. Nanotheranostics 2021;5:472-87. [PMID: 34150471 DOI: 10.7150/ntno.62364] [Reference Citation Analysis]
73 Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. Materials (Basel) 2021;14:2654. [PMID: 34070218 DOI: 10.3390/ma14102654] [Reference Citation Analysis]
74 Raduly FM, Raditoiu V, Raditoiu A, Purcar V. Curcumin: Modern Applications for a Versatile Additive. Coatings 2021;11:519. [DOI: 10.3390/coatings11050519] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
75 Wang Y, Guo M, He B, Gao B. Intelligent Patches for Wound Management: In Situ Sensing and Treatment. Anal Chem 2021;93:4687-96. [PMID: 33715353 DOI: 10.1021/acs.analchem.0c04956] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021;9:634. [PMID: 33803604 DOI: 10.3390/microorganisms9030634] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
77 Arshad H, Sami MA, Sadaf S, Hassan U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci Rep 2021;11:5996. [PMID: 33727607 DOI: 10.1038/s41598-021-85584-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
78 Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel Strategy to Combat Antibiotic Resistance: A Sight into the Combination of CRISPR/Cas9 and Nanoparticles. Pharmaceutics 2021;13:352. [PMID: 33800235 DOI: 10.3390/pharmaceutics13030352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials (Basel) 2021;14:1095. [PMID: 33652859 DOI: 10.3390/ma14051095] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
80 Fourmann O, Hausmann MK, Neels A, Schubert M, Nyström G, Zimmermann T, Siqueira G. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydr Polym 2021;259:117716. [PMID: 33673992 DOI: 10.1016/j.carbpol.2021.117716] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
81 Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers (Basel) 2021;13:412. [PMID: 33525406 DOI: 10.3390/polym13030412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
82 Geurds L, Lauko J, Rowan AE, Amiralian N. Tailored nanocellulose-grafted polymer brush applications. J Mater Chem A 2021;9:17173-88. [DOI: 10.1039/d1ta03264j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
83 Lin PH, Dong Q, Chew SY. Injectable hydrogels in stroke and spinal cord injury treatment: a review on hydrogel materials, cell–matrix interactions and glial involvement. Mater Adv 2021;2:2561-83. [DOI: 10.1039/d0ma00732c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
84 Alven S, Aderibigbe BA. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci 2020;21:E9656. [PMID: 33352826 DOI: 10.3390/ijms21249656] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
85 Kundu R, Payal P. Antimicrobial Hydrogels: Promising Soft Biomaterials. ChemistrySelect 2020;5:14800-10. [DOI: 10.1002/slct.202003666] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
86 Zheng L, Li S, Luo J, Wang X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front Bioeng Biotechnol 2020;8:593768. [PMID: 33330424 DOI: 10.3389/fbioe.2020.593768] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
87 Pasaribu KM, Gea S, Ilyas S, Tamrin T, Radecka I. Characterization of Bacterial Cellulose-Based Wound Dressing in Different Order Impregnation of Chitosan and Collagen. Biomolecules 2020;10:E1511. [PMID: 33153209 DOI: 10.3390/biom10111511] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
88 Hasan N, Rahman L, Kim S, Cao J, Arjuna A, Lallo S, Jhun BH, Yoo J. Recent advances of nanocellulose in drug delivery systems. J Pharm Investig 2020;50:553-72. [DOI: 10.1007/s40005-020-00499-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
89 Yan J, Ji Y, Huang M, Li T, Liu Y, Lü S, Liu M. Nucleobase-Inspired Self-Adhesive and Inherently Antibacterial Hydrogel for Wound Dressing. ACS Materials Lett 2020;2:1375-80. [DOI: 10.1021/acsmaterialslett.0c00304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
90 Zhang L, Liu M, Zhang Y, Pei R. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020;21:3966-83. [DOI: 10.1021/acs.biomac.0c01069] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
91 Khan M, Al-Hamoud K, Liaqat Z, Shaik MR, Adil SF, Kuniyil M, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH, Mondeshki M, Tremel W, Khan M, Tahir MN. Synthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles Using Pulicaria undulata Extract and Their Catalytic Activity for the Reduction of 4-Nitrophenol. Nanomaterials (Basel) 2020;10:E1885. [PMID: 32962292 DOI: 10.3390/nano10091885] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
92 Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials (Basel) 2020;10:E1566. [PMID: 32784939 DOI: 10.3390/nano10081566] [Cited by in Crossref: 51] [Cited by in F6Publishing: 35] [Article Influence: 25.5] [Reference Citation Analysis]
93 Sharma S, Banjare MK, Singh N, Korábečný J, Fišar Z, Kuča K, Ghosh KK. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer's drugs within the hydrophobic pockets of β-cycloamylose. Journal of Molecular Liquids 2020;311:113269. [DOI: 10.1016/j.molliq.2020.113269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Zhong Y, Xiao H, Seidi F, Jin Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020;21:2983-3006. [PMID: 32672446 DOI: 10.1021/acs.biomac.0c00760] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
95 Makvandi P, Ghomi M, Padil VVT, Shalchy F, Ashrafizadeh M, Askarinejad S, Pourreza N, Zarrabi A, Nazarzadeh Zare E, Kooti M, Mokhtari B, Borzacchiello A, Tay FR. Biofabricated Nanostructures and Their Composites in Regenerative Medicine. ACS Appl Nano Mater 2020;3:6210-38. [DOI: 10.1021/acsanm.0c01164] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 10.5] [Reference Citation Analysis]
96 Stoica AE, Chircov C, Grumezescu AM. Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials (Basel) 2020;13:E2853. [PMID: 32630503 DOI: 10.3390/ma13122853] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
97 Nešović K, Mišković‐stanković V. A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. Polym Eng Sci 2020;60:1393-419. [DOI: 10.1002/pen.25410] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
98 Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, Kesharwani P, Gorain B. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl 2020;112:110925. [PMID: 32409075 DOI: 10.1016/j.msec.2020.110925] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
99 Marestoni LD, Barud HDS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and potential applications of bacterial cellulose in Brazil: ten years review. Polímeros 2020;30:e2020047. [DOI: 10.1590/0104-1428.09420] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]