BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2021;93:311-31. [DOI: 10.1021/acs.analchem.0c04366] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Luo G, Shi L, Song H, Li M, Zhong Y, He X, Fu H. Microfluidic switches driven by mechanically guided multistable buckling. Extreme Mechanics Letters 2022. [DOI: 10.1016/j.eml.2022.101763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Cesur S, Cam ME, Sayın FS, Su S, Harker A, Edirisinghe M, Gunduz O. Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus. Langmuir 2021. [PMID: 34096296 DOI: 10.1021/acs.langmuir.1c00587] [Reference Citation Analysis]
3 Shao F, Hsieh K, Zhang P, Kaushik AM, Wang TH. Facile and scalable tubing-free sample loading for droplet microfluidics. Sci Rep 2022;12:13340. [PMID: 35922529 DOI: 10.1038/s41598-022-17352-3] [Reference Citation Analysis]
4 Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116693] [Reference Citation Analysis]
5 Chiriac E, Avram M, Balan C. Investigation of Multiphase Flow in a Trifurcation Microchannel-A Benchmark Problem. Micromachines (Basel) 2022;13:974. [PMID: 35744588 DOI: 10.3390/mi13060974] [Reference Citation Analysis]
6 Tang M, Chen J, Lei J, Ai Z, Liu F, Hong SL, Liu K. Precise and convenient size barcode on microfluidic chip for multiplex biomarker detection. Analyst 2021;146:5892-7. [PMID: 34494037 DOI: 10.1039/d1an01265g] [Reference Citation Analysis]
7 Al-Aqbi ZT, Albukhaty S, Zarzoor AM, Sulaiman GM, Khalil KAA, Belali T, Soliman MTA. A Novel Microfluidic Device for Blood Plasma Filtration. Micromachines (Basel) 2021;12:336. [PMID: 33810143 DOI: 10.3390/mi12030336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? Lab Chip 2022. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Arrabito G, Gulli D, Alfano C, Pignataro B. "Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms. Analyst 2022;147:1294-312. [PMID: 35275148 DOI: 10.1039/d1an02295d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS Au 2021;1:1815-33. [PMID: 34841402 DOI: 10.1021/jacsau.1c00318] [Reference Citation Analysis]
11 Bhaskar R, Kumar Gupta M, Soon Han S. Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. European Polymer Journal 2022;174:111318. [DOI: 10.1016/j.eurpolymj.2022.111318] [Reference Citation Analysis]
12 Chen J, Tang M, Xu D. Integrated microfluidic chip coupled to mass spectrometry: A minireview of chip pretreatment methods and applications. Journal of Chromatography Open 2021;1:100021. [DOI: 10.1016/j.jcoa.2021.100021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Melliou S, Sangster KT, Djuric U, Diamandis P. The promise of organoids for unraveling the proteomic landscape of the developing human brain. Mol Psychiatry 2021. [PMID: 34703024 DOI: 10.1038/s41380-021-01354-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021;146:7070-86. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Reference Citation Analysis]
15 Alsharhan AT, M Young O, Xu X, Stair AJ, Sochol RD. Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing. J Micromech Microeng 2021;31:044001. [DOI: 10.1088/1361-6439/abec1c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lin CH, Luo SC. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. Langmuir 2021;37:12476-86. [PMID: 34648298 DOI: 10.1021/acs.langmuir.1c02230] [Reference Citation Analysis]
17 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
18 Wu L, Dias A, Diéguez L. Surface enhanced Raman spectroscopy for tumor nucleic acid: Towards cancer diagnosis and precision medicine. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114075] [Reference Citation Analysis]
19 Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021;10:e2100371. [PMID: 34033239 DOI: 10.1002/adhm.202100371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Song X, Yu S, Zhao L, Guo Y, Ren X, Ma H, Wang S, Luo C, Li Y, Wei Q. Efficient ABEI-Dissolved O2-Ce(III, IV)-MOF Ternary Electrochemiluminescent System Combined with Self-Assembled Microfluidic Chips for Bioanalysis. Anal Chem 2022. [PMID: 35723440 DOI: 10.1021/acs.analchem.2c01199] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Visaveliya NR, Mazetyte‐stasinskiene R, Köhler JM. Stationary, Continuous, and Sequential Surface‐Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymer‐Metal Composite Sensor Particles through Microfluidics: A Review. Advanced Optical Materials 2022;10:2102757. [DOI: 10.1002/adom.202102757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang Y, Cole T, Yun G, Li Y, Zhao Q, Lu H, Zheng J, Li W, Tang SY. Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators. Micromachines (Basel) 2021;12:604. [PMID: 34071082 DOI: 10.3390/mi12060604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Trinh TND, Lee NY. Advances in Nucleic Acid Amplification-Based Microfluidic Devices for Clinical Microbial Detection. Chemosensors 2022;10:123. [DOI: 10.3390/chemosensors10040123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Rahman M, Sampad MJN, Hawkins A, Schmidt H. Recent advances in integrated solid-state nanopore sensors. Lab Chip 2021;21:3030-52. [PMID: 34137407 DOI: 10.1039/d1lc00294e] [Reference Citation Analysis]
25 Visaveliya NR, Mazetyte‐stasinskiene R, Köhler JM. General Background of SERS Sensing and Perspectives on Polymer‐Supported Plasmon‐Active Multiscale and Hierarchical Sensor Particles. Advanced Optical Materials 2022;10:2102001. [DOI: 10.1002/adom.202102001] [Reference Citation Analysis]
26 Thaweeskulchai T, Schulte A. Sustainable and Efficient: A Reusable DIY Three-Electrode Base Plate for Microfluidic Electroanalysis and Biosensing. Anal Chem 2021;93:7557-61. [PMID: 33998230 DOI: 10.1021/acs.analchem.1c00996] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Reference Citation Analysis]
28 Krishnamurthy A, Anand RK. Recent advances in microscale extraction driven by ion concentration polarization. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116537] [Reference Citation Analysis]
29 Lubamba B, Jensen T, Mcclelland R. Rapid Detection of Direct Compound Toxicity and Trailing Detection of Indirect Cell Metabolite Toxicity in a 96-Well Fluidic Culture Device for Cell-Based Screening Environments: Tactics in Six Sigma Quality Control Charts. Applied Sciences 2022;12:2786. [DOI: 10.3390/app12062786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lo CH, Skarica M, Mansoor M, Bhandarkar S, Toro S, Pitt D. Astrocyte Heterogeneity in Multiple Sclerosis: Current Understanding and Technical Challenges. Front Cell Neurosci 2021;15:726479. [PMID: 34456686 DOI: 10.3389/fncel.2021.726479] [Reference Citation Analysis]
31 Feng J, Dai L, Ren X, Ma H, Wang X, Fan D, Wei Q, Wu R. Self-Powered Cathodic Photoelectrochemical Aptasensor Comprising a Photocathode and a Photoanode in Microfluidic Analysis Systems. Anal Chem 2021;93:7125-32. [PMID: 33908258 DOI: 10.1021/acs.analchem.1c01038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
32 Sun D, Cao F, Yi X, Zhu H, Qi G, Xu W, Xu S. MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform. Lab Chip 2022. [PMID: 35522901 DOI: 10.1039/d2lc00096b] [Reference Citation Analysis]
33 Wu H, Chen J, Yang Y, Yu W, Chen Y, Lin P, Liang K. Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides. Anal Bioanal Chem. [DOI: 10.1007/s00216-021-03839-x] [Reference Citation Analysis]
34 Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. Adv Sci (Weinh) 2022;9:e2105904. [PMID: 35393791 DOI: 10.1002/advs.202105904] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Dönmez Sİ, Needs SH, Osborn HMI, Reis NM, Edwards AD. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. Lab Chip 2022;22:2820-31. [PMID: 35792607 DOI: 10.1039/d2lc00280a] [Reference Citation Analysis]
36 Shang Y, Xiang X, Ye Q, Wu Q, Zhang J, Lin J. Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. TrAC Trends in Analytical Chemistry 2022;147:116509. [DOI: 10.1016/j.trac.2021.116509] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
37 Lin CH, Luo SC. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. Langmuir 2022;38:7383-99. [PMID: 35675211 DOI: 10.1021/acs.langmuir.2c00448] [Reference Citation Analysis]
38 Zhong H, Yuan C, He J, Yu Y, Jin Y, Huang Y, Zhao R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal Chem 2021;93:9778-87. [PMID: 34228920 DOI: 10.1021/acs.analchem.1c01254] [Reference Citation Analysis]
39 Gutiérrez Y, Losurdo M, Prinz I, Prinz A, Bauer G, Bauer M, Schmidt MM, Schaller T. Paving the Way to Industrially Fabricated Disposable and Customizable Surface‐Enhanced Raman Scattering Microfluidic Chips for Diagnostic Applications. Adv Eng Mater. [DOI: 10.1002/adem.202101365] [Reference Citation Analysis]