1 |
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023;62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Suo Y, Xu M, Sun M, Lu W, Wang X, Lu X. Ruthenium-Mediated [2 + 2 + 2] Cyclization: A Route to Forge Indane and Isoindoline Core and Its Application in DNA-Encoded Library Technology. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c03759] [Reference Citation Analysis]
|
3 |
Wu X, Chen Y, Lu W, Jin R, Lu X. Quantitative Validation and Application of the Photo-Cross-Linking Selection for Double-Stranded DNA-Encoded Libraries. Bioconjug Chem 2022. [PMID: 36197318 DOI: 10.1021/acs.bioconjchem.2c00421] [Reference Citation Analysis]
|
4 |
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS Omega 2022;7:11491-500. [PMID: 35415338 DOI: 10.1021/acsomega.2c01152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
5 |
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202115157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Plais L, Lessing A, Keller M, Martinelli A, Oehler S, Bassi G, Neri D, Scheuermann J. Universal encoding of next generation DNA-encoded chemical libraries. Chem Sci 2022;13:967-74. [PMID: 35211261 DOI: 10.1039/d1sc05721a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Nie Q, Fang X, Liu C, Zhang G, Fan X, Li Y, Li Y. DNA-Compatible ortho -Phthalaldehyde (OPA)-Mediated 2-Substituted Isoindole Core Formation and Applications. J Org Chem . [DOI: 10.1021/acs.joc.1c02496] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
8 |
Zhong S, Fang X, Wang Y, Zhang G, Li Y, Li Y. DNA-Compatible Diversification of Indole π-Activated Alcohols via a Direct Dehydrative Coupling Strategy. Org Lett 2022. [PMID: 35050627 DOI: 10.1021/acs.orglett.1c04169] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
9 |
Zhu H, Montgomery JI, Stanton RV. Cheminformatics Approaches Aiding the Design and Selection of DNA-Encoded Libraries. Topics in Medicinal Chemistry 2022. [DOI: 10.1007/7355_2022_148] [Reference Citation Analysis]
|
10 |
Gui Y, Li X. Selection Strategies in DNA-Encoded Libraries. Topics in Medicinal Chemistry 2022. [DOI: 10.1007/7355_2022_149] [Reference Citation Analysis]
|
11 |
Gao Y, Zhao G, He P, Zhang G, Li Y, Li Y. DNA-Compatible Synthesis of α,β-Epoxyketones for DNA-Encoded Chemical Libraries. Bioconjug Chem 2021. [PMID: 34927428 DOI: 10.1021/acs.bioconjchem.1c00567] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
12 |
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double- and Single-Stranded DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2021;:e202115157. [PMID: 34904335 DOI: 10.1002/anie.202115157] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|