BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Horner K, Drummond E, Brennan L. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutr Res Rev 2016;29:91-101. [DOI: 10.1017/s0954422416000032] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023;15. [PMID: 36904293 DOI: 10.3390/nu15051294] [Reference Citation Analysis]
2 Yu S, Wang W, Bu T, Zhao R, Niu R, Liu L, Li J, Wu J, Liu D. Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers. Food Res Int 2023;164:112340. [PMID: 36737933 DOI: 10.1016/j.foodres.2022.112340] [Reference Citation Analysis]
3 Darewicz M, Pliszka M, Borawska-Dziadkiewicz J, Minkiewicz P, Iwaniak A. Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022;27. [PMID: 36432008 DOI: 10.3390/molecules27227907] [Reference Citation Analysis]
4 Pinto A, Daly A, Rocha JC, Ashmore C, Evans S, Jackson R, Payne A, Hickson M, MacDonald A. Impact of Fruit and Vegetable Protein vs. Milk Protein on Metabolic Control of Children with Phenylketonuria: A Randomized Crossover Controlled Trial. Nutrients 2022;14. [PMID: 36296952 DOI: 10.3390/nu14204268] [Reference Citation Analysis]
5 Castro VMR, Luchese RH. Antidiabetogenic mechanisms of probiotic action in food matrices: A review. PharmaNutrition 2022;21:100302. [DOI: 10.1016/j.phanu.2022.100302] [Reference Citation Analysis]
6 Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022;:1-31. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Reference Citation Analysis]
7 Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022;13:100222. [PMID: 35498998 DOI: 10.1016/j.fochx.2022.100222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022;27:1343. [PMID: 35209132 DOI: 10.3390/molecules27041343] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Dineshbhai CK, Shukla P, Sakure A, Singh BP, Das S, V. S, Hati S. Food-derived immunomodulatory peptides: science to applications. Microbiome, Immunity, Digestive Health and Nutrition 2022. [DOI: 10.1016/b978-0-12-822238-6.00007-8] [Reference Citation Analysis]
10 Li S, Tao L, Yu X, Zheng H, Wu J, Hu F. Royal Jelly Proteins and Their Derived Peptides: Preparation, Properties, and Biological Activities. J Agric Food Chem 2021;69:14415-27. [PMID: 34807598 DOI: 10.1021/acs.jafc.1c05942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
11 Wu Q, Luo F, Wang XL, Lin Q, Liu GQ. Angiotensin I-converting enzyme inhibitory peptide: an emerging candidate for vascular dysfunction therapy. Crit Rev Biotechnol 2021;:1-20. [PMID: 34634988 DOI: 10.1080/07388551.2021.1948816] [Reference Citation Analysis]
12 Daniloski D, Mccarthy NA, Vasiljevic T. Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends in Food Science & Technology 2021;116:681-700. [DOI: 10.1016/j.tifs.2021.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
13 Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021;:1-27. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Maqsood S, Jafar S, Mudgil P. Nutraceutical Properties of Bioactive Peptides. Food biopolymers: Structural, functional and nutraceutical properties 2021. [DOI: 10.1007/978-3-030-27061-2_11] [Reference Citation Analysis]
15 Kleekayai T, Cermeño M, Fitzgerald RJ. The Production of Bioactive Peptides from Milk Proteins. Agents of Change 2021. [DOI: 10.1007/978-3-030-55482-8_18] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Tulipano G. Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. Int J Mol Sci 2020;21:E8881. [PMID: 33238654 DOI: 10.3390/ijms21228881] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
17 Ozorio L, Mellinger-Silva C, Cabral LMC, Jardin J, Boudry G, Dupont D. The Influence of Peptidases in Intestinal Brush Border Membranes on the Absorption of Oligopeptides from Whey Protein Hydrolysate: An Ex Vivo Study Using an Ussing Chamber. Foods 2020;9:E1415. [PMID: 33036372 DOI: 10.3390/foods9101415] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
18 Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020;9:E983. [PMID: 32718070 DOI: 10.3390/foods9080983] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
19 Fernandez MA, Marette A. Dairy products and diabetes: Role of protein on glycaemic control. Milk and Dairy Foods 2020. [DOI: 10.1016/b978-0-12-815603-2.00007-3] [Reference Citation Analysis]
20 Liu R, Cheng J, Wu H. Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. Int J Mol Sci 2019;20:E463. [PMID: 30678216 DOI: 10.3390/ijms20030463] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 15.3] [Reference Citation Analysis]
21 Vaudry H, Tonon MC, Vaudry D. Editorial: Trends in Regulatory Peptides. Front Endocrinol (Lausanne) 2018;9:125. [PMID: 29632516 DOI: 10.3389/fendo.2018.00125] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
22 Anne Fernandez M, Picard-deland É, Daniel N, Marette A. Yaourt et santé : revue des données récentes. Cahiers de Nutrition et de Diététique 2017;52:S48-S57. [DOI: 10.1016/s0007-9960(17)30198-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Caron J, Domenger D, Dhulster P, Ravallec R, Cudennec B. Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front Endocrinol (Lausanne) 2017;8:85. [PMID: 28484425 DOI: 10.3389/fendo.2017.00085] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
24 Xia EQ, Zhu SS, He MJ, Luo F, Fu CZ, Zou TB. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect. Mar Drugs 2017;15:E88. [PMID: 28333091 DOI: 10.3390/md15040088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
25 Comerford KB, Pasin G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016;8:E446. [PMID: 27455320 DOI: 10.3390/nu8080446] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 7.4] [Reference Citation Analysis]