BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 2003;116:223-35. [PMID: 12535955 DOI: 10.1016/s0306-4522(02)00575-4] [Cited by in Crossref: 75] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Desarnaud F, Murillo-Rodriguez E, Lin L, Xu M, Gerashchenko D, Shiromani SN, Nishino S, Mignot E, Shiromani PJ. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 2004;27:851-6. [PMID: 15453542 DOI: 10.1093/sleep/27.5.851] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 3.6] [Reference Citation Analysis]
2 Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2015;25:1330-47. [PMID: 24297328 DOI: 10.1093/cercor/bht326] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
3 Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 2010;31:499-507. [PMID: 20105243 DOI: 10.1111/j.1460-9568.2009.07062.x] [Cited by in Crossref: 117] [Cited by in F6Publishing: 99] [Article Influence: 9.8] [Reference Citation Analysis]
4 Ramirez AD, Gotter AL, Fox SV, Tannenbaum PL, Yao L, Tye SJ, McDonald T, Brunner J, Garson SL, Reiss DR, Kuduk SD, Coleman PJ, Uslaner JM, Hodgson R, Browne SE, Renger JJ, Winrow CJ. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Front Neurosci 2013;7:254. [PMID: 24399926 DOI: 10.3389/fnins.2013.00254] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
5 Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 2006;26:193-202. [PMID: 16399687 DOI: 10.1523/JNEUROSCI.2244-05.2006] [Cited by in Crossref: 261] [Cited by in F6Publishing: 113] [Article Influence: 16.3] [Reference Citation Analysis]
6 Bolshakov AP, Stepanichev MY, Dobryakova YV, Spivak YS, Markevich VA. Saporin from Saponaria officinalis as a Tool for Experimental Research, Modeling, and Therapy in Neuroscience. Toxins (Basel) 2020;12:E546. [PMID: 32854372 DOI: 10.3390/toxins12090546] [Reference Citation Analysis]
7 Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 2010;167:920-8. [PMID: 20188152 DOI: 10.1016/j.neuroscience.2010.02.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
8 Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 2004;27:1275-81. [PMID: 15586780 DOI: 10.1093/sleep/27.7.1275] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 2.3] [Reference Citation Analysis]
9 Shukla C, Basheer R. Metabolic signals in sleep regulation: recent insights. Nat Sci Sleep 2016;8:9-20. [PMID: 26793010 DOI: 10.2147/NSS.S62365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
10 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
11 Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med 2010;11:431-40. [PMID: 20359944 DOI: 10.1016/j.sleep.2010.02.002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
12 Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One 2009;4:e6346. [PMID: 19623260 DOI: 10.1371/journal.pone.0006346] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 3.4] [Reference Citation Analysis]
13 I'anson H, Jethwa PH, Warner A, Ebling FJ. Histaminergic regulation of seasonal metabolic rhythms in Siberian hamsters. Physiol Behav 2011;103:268-78. [PMID: 21362434 DOI: 10.1016/j.physbeh.2011.02.035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
14 Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 2008;6:367-78. [PMID: 19587857 DOI: 10.2174/157015908787386050] [Cited by in Crossref: 150] [Cited by in F6Publishing: 123] [Article Influence: 12.5] [Reference Citation Analysis]
15 Mochizuki T, Klerman EB, Sakurai T, Scammell TE. Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 2006;291:R533-40. [PMID: 16556901 DOI: 10.1152/ajpregu.00887.2005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
16 McDowell KA, Hadjimarkou MM, Viechweg S, Rose AE, Clark SM, Yarowsky PJ, Mong JA. Sleep alterations in an environmental neurotoxin-induced model of parkinsonism. Exp Neurol 2010;226:84-9. [PMID: 20713046 DOI: 10.1016/j.expneurol.2010.08.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
17 Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 2007;27:14041-8. [PMID: 18094243 DOI: 10.1523/JNEUROSCI.3217-07.2007] [Cited by in Crossref: 90] [Cited by in F6Publishing: 61] [Article Influence: 6.4] [Reference Citation Analysis]
18 Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol 2005;563:569-82. [PMID: 15613374 DOI: 10.1113/jphysiol.2004.076927] [Cited by in Crossref: 100] [Cited by in F6Publishing: 92] [Article Influence: 5.6] [Reference Citation Analysis]
19 Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ. Effects of hypocretin2-saporin and antidopamine-beta-hydroxylase-saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. Eur J Neurosci 2004;19:2741-52. [PMID: 15147308 DOI: 10.1111/j.0953-816X.2004.03366.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
20 Boes AD, Fischer D, Geerling JC, Bruss J, Saper CB, Fox MD. Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep 2018;41. [PMID: 29850898 DOI: 10.1093/sleep/zsy108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
22 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
23 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
24 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
25 Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015;20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
26 Xu C, Yu J, Ruan Y, Wang Y, Chen Z. Decoding Circadian Rhythm and Epileptic Activities: Clues From Animal Studies. Front Neurol 2020;11:751. [PMID: 32793110 DOI: 10.3389/fneur.2020.00751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Tang H, Qin S, Li W, Chen X, Ulloa L, Zhu Q, Liu B, Gong Y, Zhao Y, Wang S, Li S, Guo Y, Xu Z, Guo Y. P2RX7 in Dopaminergic Neurons of Ventral Periaqueductal Gray Mediates HTWP Acupuncture-Induced Consciousness in Traumatic Brain Injury. Front Cell Neurosci 2020;14:598198. [PMID: 33519382 DOI: 10.3389/fncel.2020.598198] [Reference Citation Analysis]
28 Tortorella S, Rodrigo-Angulo ML, Núñez A, Garzón M. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle. Front Neurosci 2013;7:216. [PMID: 24311996 DOI: 10.3389/fnins.2013.00216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
29 Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 2008;28:1191-8. [PMID: 18783368 DOI: 10.1111/j.1460-9568.2008.06424.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
30 Planty C, Mallett CP, Yim K, Blanco JC, Boukhvalova M, March T, van der Most R, Destexhe E. Evaluation of the potential effects of AS03-adjuvanted A(H1N1)pdm09 vaccine administration on the central nervous system of non-primed and A(H1N1)pdm09-primed cotton rats. Hum Vaccin Immunother 2017;13:90-102. [PMID: 27629482 DOI: 10.1080/21645515.2016.1227518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
32 Teske JA, Mavanji V. Energy expenditure: role of orexin. Vitam Horm 2012;89:91-109. [PMID: 22640610 DOI: 10.1016/B978-0-12-394623-2.00006-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
33 Jiang J, Zou G, Liu J, Zhou S, Xu J, Sun H, Zou Q, Gao JH. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep. Hum Brain Mapp 2021;42:3667-79. [PMID: 33960583 DOI: 10.1002/hbm.25461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Chen L, Mckenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, Mccarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period: Orexin type 1 receptor knockdown increases REM. European Journal of Neuroscience 2010;32:1528-36. [DOI: 10.1111/j.1460-9568.2010.07401.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
35 Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS Neurol Disord Drug Targets 2009;8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
36 Skopin MD, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2015;32:289-96. [PMID: 25242371 DOI: 10.1089/neu.2014.3664] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
37 Williams RH, Morton AJ, Burdakov D. Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington's disease. Neurobiol Dis 2011;42:438-45. [PMID: 21324360 DOI: 10.1016/j.nbd.2011.02.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
38 Wang Z, Zhong Y, Jiang S, Qu W, Huang Z, Chen C. Case Report: Dysfunction of the Paraventricular Hypothalamic Nucleus Area Induces Hypersomnia in Patients. Front Neurosci 2022;16:830474. [DOI: 10.3389/fnins.2022.830474] [Reference Citation Analysis]
39 Arias-Carrión O, Murillo-Rodríguez E. Effects of hypocretin/orexin cell transplantation on narcoleptic-like sleep behavior in rats. PLoS One 2014;9:e95342. [PMID: 24736646 DOI: 10.1371/journal.pone.0095342] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
40 Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 2014;35:111-39. [PMID: 24287074 DOI: 10.1016/j.yfrne.2013.11.003] [Cited by in Crossref: 138] [Cited by in F6Publishing: 122] [Article Influence: 15.3] [Reference Citation Analysis]
41 Shiromani P, Blanco-centurion C, Gerashchenko D, Murillo-rodriguez E, Desarnaud F. Integrating hypocretins/orexins into an overall neural circuit model of sleep-wake regulation. Sleep and Biological Rhythms 2004;2:S15-6. [DOI: 10.1111/j.1479-8425.2004.00091.x] [Reference Citation Analysis]
42 Vetrivelan R, Qiu MH, Chang C, Lu J. Role of Basal Ganglia in sleep-wake regulation: neural circuitry and clinical significance. Front Neuroanat 2010;4:145. [PMID: 21151379 DOI: 10.3389/fnana.2010.00145] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]