BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. Int Rev Cytol 2006;252:163-218. [PMID: 16984818 DOI: 10.1016/S0074-7696(06)52003-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Moon MJ, Lee YN, Park S, Reyes-Alcaraz A, Hwang JI, Millar RP, Choe H, Seong JY. Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain. J Biol Chem 2015;290:5696-706. [PMID: 25561730 DOI: 10.1074/jbc.M114.612606] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
2 Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019;10:1884-91. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
3 Roesler R, Schwartsmann G. Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne) 2012;3:159. [PMID: 23251133 DOI: 10.3389/fendo.2012.00159] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
4 Müller TD, Müller A, Yi CX, Habegger KM, Meyer CW, Gaylinn BD, Finan B, Heppner K, Trivedi C, Bielohuby M. The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nat Commun. 2013;4:1968. [PMID: 23744028 DOI: 10.1038/ncomms2968] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
5 Chi Y, Suadicani SO, Schuster VL. Regulation of prostaglandin EP1 and EP4 receptor signaling by carrier-mediated ligand reuptake. Pharmacol Res Perspect 2014;2:e00051. [PMID: 25505603 DOI: 10.1002/prp2.51] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
6 Ngo T, Kufareva I, Coleman JLj, Graham RM, Abagyan R, Smith NJ. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 2016;173:2934-51. [PMID: 26837045 DOI: 10.1111/bph.13452] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 6.5] [Reference Citation Analysis]
7 Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. Fish Physiol Biochem 2017;43:731-53. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Cruz-Barbosa R, Vellido A, Giraldo J. The influence of alignment-free sequence representations on the semi-supervised classification of class C G protein-coupled receptors: semi-supervised classification of class C GPCRs. Med Biol Eng Comput 2015;53:137-49. [PMID: 25367737 DOI: 10.1007/s11517-014-1218-y] [Cited by in Crossref: 9] [Article Influence: 1.1] [Reference Citation Analysis]
9 Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 2012;33:363-71. [PMID: 22367282 DOI: 10.1038/aps.2011.210] [Cited by in Crossref: 91] [Cited by in F6Publishing: 82] [Article Influence: 9.1] [Reference Citation Analysis]
10 Levoye A, Jockers R. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?]. Med Sci (Paris) 2007;23:746-50. [PMID: 17875294 DOI: 10.1051/medsci/20072389746] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
11 Godlewski G, Offertáler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat 2009;89:105-11. [PMID: 19615459 DOI: 10.1016/j.prostaglandins.2009.07.001] [Cited by in Crossref: 137] [Cited by in F6Publishing: 137] [Article Influence: 10.5] [Reference Citation Analysis]
12 Kim DK, Cho EB, Moon MJ, Park S, Hwang JI, Do Rego JL, Vaudry H, Seong JY. Molecular Coevolution of Neuropeptides Gonadotropin-Releasing Hormone and Kisspeptin with their Cognate G Protein-Coupled Receptors. Front Neurosci 2012;6:3. [PMID: 22291614 DOI: 10.3389/fnins.2012.00003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 31] [Article Influence: 2.1] [Reference Citation Analysis]
13 Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O'Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem 2008;283:21054-64. [PMID: 18499677 DOI: 10.1074/jbc.M708908200] [Cited by in Crossref: 99] [Cited by in F6Publishing: 53] [Article Influence: 7.1] [Reference Citation Analysis]
14 Wu Y, Li Y, Fu B, Jin L, Zheng X, Zhang A, Sun R, Tian Z, Wei H. Programmed differentiated natural killer cells kill leukemia cells by engaging SLAM family receptors. Oncotarget 2017;8:57024-38. [PMID: 28915651 DOI: 10.18632/oncotarget.18659] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
15 Kumar P, Kumar A, Song ZH. Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119. Eur J Pharmacol 2014;723:465-72. [PMID: 24184668 DOI: 10.1016/j.ejphar.2013.10.044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
16 Sarkar A, Kumar S, Sundar D. The G protein-coupled receptors in the pufferfish Takifugu rubripes. BMC Bioinformatics 2011;12 Suppl 1:S3. [PMID: 21342560 DOI: 10.1186/1471-2105-12-S1-S3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 2] [Article Influence: 2.6] [Reference Citation Analysis]
17 Smith SD, Kawash JK, Karaiskos S, Biluck I, Grigoriev A. Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths and elephants. DNA Res 2017;24:359-69. [PMID: 28369217 DOI: 10.1093/dnares/dsx007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
18 Chopra G, Samudrala R. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Curr Pharm Des 2016;22:3109-23. [PMID: 27013226 DOI: 10.2174/1381612822666160325121943] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
19 Inoue N, Sasagawa K, Ikai K, Sasaki Y, Tomikawa J, Oishi S, Fujii N, Uenoyama Y, Ohmori Y, Yamamoto N, Hondo E, Maeda K, Tsukamura H. Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc Natl Acad Sci U S A 2011;108:17527-32. [PMID: 21987818 DOI: 10.1073/pnas.1113035108] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 4.8] [Reference Citation Analysis]
20 Nava Lara RA, Beltrán JA, Brizuela CA, Del Rio G. Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques. Pharmaceuticals (Basel) 2020;13:E204. [PMID: 32825532 DOI: 10.3390/ph13090204] [Reference Citation Analysis]
21 Furlong M, Seong JY. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomol Ther (Seoul) 2017;25:57-68. [PMID: 28035082 DOI: 10.4062/biomolther.2016.199] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
22 Miller S, Hu SS, Leishman E, Morgan D, Wager-Miller J, Mackie K, Bradshaw HB, Straiker A. A GPR119 Signaling System in the Murine Eye Regulates Intraocular Pressure in a Sex-Dependent Manner. Invest Ophthalmol Vis Sci 2017;58:2930-8. [PMID: 28593245 DOI: 10.1167/iovs.16-21330] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
23 Rossi L, Lemoli RM, Goodell MA. Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Exp Hematol 2013;41:102-12. [PMID: 23022127 DOI: 10.1016/j.exphem.2012.09.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]