BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li Y, Yang Y, Zou M, Li S, Wang L, Guan M, Xue Y. Extracellular Vesicles from Albumin-Induced Tubular Epithelial Cells Promote the M1 Macrophage Phenotype by Targeting Klotho. Mol Ther 2019;27:1452-66. [PMID: 31208912 DOI: 10.1016/j.ymthe.2019.05.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Tang TT, Cao JY, Li ZL, Zhong X, Wen Y, Shen AR, Liu BC, Lv LL. KIM-1 augments hypoxia-induced tubulointerstitial inflammation through uptake of small extracellular vesicles by tubular epithelial cells. Mol Ther 2022:S1525-0016(22)00501-9. [PMID: 35982620 DOI: 10.1016/j.ymthe.2022.08.013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Jia Y, Chen J, Zheng Z, Tao Y, Zhang S, Zou M, Yang Y, Xue M, Hu F, Li Y, Zhang Q, Xue Y, Zheng Z. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol Med 2022;28:95. [PMID: 35962319 DOI: 10.1186/s10020-022-00525-1] [Reference Citation Analysis]
3 Kim H, Park H, Chang HW, Back JH, Lee SJ, Park YE, Kim EH, Hong Y, Kwak G, Kwon IC, Lee JE, Lee YS, Kim SY, Yang Y, Kim SH. Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.07.021] [Reference Citation Analysis]
4 Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B, Wang G. Extracellular Vesicle/Macrophage Axis: Potential Targets for Inflammatory Disease Intervention. Front Immunol 2022;13:705472. [DOI: 10.3389/fimmu.2022.705472] [Reference Citation Analysis]
5 Li X, Chattopadhyay K, Qian X, Yu J, Xu M, Li L, Sun J, Li J. Association Between Sleep Duration and Albuminuria in Patients with Type 2 Diabetes: A Cross-Sectional Study in Ningbo, China. Diabetes Metab Syndr Obes 2022;15:1667-75. [PMID: 35669361 DOI: 10.2147/DMSO.S366064] [Reference Citation Analysis]
6 Martín-Taboada M, Corrales P, Medina-Gómez G, Vila-Bedmar R. Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022;101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Reference Citation Analysis]
7 Zou M, Chen Y, Zheng Z, Sheng S, Jia Y, Wang X, Ren S, Yang Y, Li X, Dong W, Guan M, Zhang Q, Xue Y. High-Salt Attenuates the Efficacy of Dapagliflozin in Tubular Protection by Impairing Fatty Acid Metabolism in Diabetic Kidney Disease. Front Pharmacol 2021;12:741087. [PMID: 34987387 DOI: 10.3389/fphar.2021.741087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 de Cos M, Xipell M, García-Herrera A, Lledo GM, Guillen E, Blasco M, Espinosa G, Cervera R, Quintana LF. Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021;21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bhavya, Pathak E, Mishra R. Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas. J Endocrinol Invest 2021. [PMID: 34669152 DOI: 10.1007/s40618-021-01693-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021;8:688060. [PMID: 34307414 DOI: 10.3389/fmed.2021.688060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hu R, Li X, Peng C, Gao R, Ma L, Hu J, Luo T, Qing H, Wang Y, Ge Q, Wang Z, Wu C, Xiao X, Yang J, Young MJ, Li Q, Yang S. miR-196b-5p-enriched extracellular vesicles from tubular epithelial cells mediated aldosterone-induced renal fibrosis in mice with diabetes. BMJ Open Diabetes Res Care 2020;8:e001101. [PMID: 32727744 DOI: 10.1136/bmjdrc-2019-001101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
12 Kosanović M, Llorente A, Glamočlija S, Valdivielso JM, Bozic M. Extracellular Vesicles and Renal Fibrosis: An Odyssey toward a New Therapeutic Approach. Int J Mol Sci 2021;22:3887. [PMID: 33918699 DOI: 10.3390/ijms22083887] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Li XQ, Lerman LO, Meng Y. Potential role of extracellular vesicles in the pathophysiology of glomerular diseases. Clin Sci (Lond) 2020;134:2741-54. [PMID: 33111949 DOI: 10.1042/CS20200766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Xia J, Cao W. Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med (Berl) 2021;99:581-92. [PMID: 33547909 DOI: 10.1007/s00109-021-02044-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zhu F, Li H, Long T, Zhou M, Wan J, Tian J, Zhou Z, Hu Z, Nie J. Tubular Numb promotes renal interstitial fibrosis via modulating HIF-1α protein stability. Biochim Biophys Acta Mol Basis Dis 2021;1867:166081. [PMID: 33486098 DOI: 10.1016/j.bbadis.2021.166081] [Reference Citation Analysis]
16 Martinez-Arroyo O, Ortega A, Redon J, Cortes R. Therapeutic Potential of Extracellular Vesicles in Hypertension-Associated Kidney Disease. Hypertension 2021;77:28-38. [PMID: 33222549 DOI: 10.1161/HYPERTENSIONAHA.120.16064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020;11:569322. [PMID: 33041867 DOI: 10.3389/fphys.2020.569322] [Cited by in Crossref: 17] [Cited by in F6Publishing: 45] [Article Influence: 8.5] [Reference Citation Analysis]
18 Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, Guan M, Xue Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci 2020;261:118347. [PMID: 32853650 DOI: 10.1016/j.lfs.2020.118347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. Kidney Dis (Basel) 2020;6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Su C, Meng L, Trooskin SZ, Shapses SA, He Y, Al-Dayyeni A, Wang X. Serum Klotho levels in primary hyperparathyroidism patients before and after parathyroidectomy. Endocrine 2020;70:421-5. [PMID: 32710436 DOI: 10.1007/s12020-020-02427-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Lv J, Chen J, Wang M, Yan F. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization. Aging (Albany NY) 2020;12:9139-50. [PMID: 32464602 DOI: 10.18632/aging.103183] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019;8:E1140. [PMID: 31554344 DOI: 10.3390/cells8101140] [Cited by in Crossref: 24] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]