BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 2016;110:90-6. [PMID: 27320204 DOI: 10.1016/j.ymeth.2016.06.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Omranian S, Nikoloski Z, Grimm DG. Computational identification of protein complexes from network interactions: Present state, challenges, and the way forward. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.05.049] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Omranian S, Angeleska A, Nikoloski Z. Efficient and accurate identification of protein complexes from protein-protein interaction networks based on the clustering coefficient. Comput Struct Biotechnol J 2021;19:5255-63. [PMID: 34630943 DOI: 10.1016/j.csbj.2021.09.014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Xue L, Tang XQ. A New Framework for Discovering Protein Complex and Disease Association via Mining Multiple Databases. Interdiscip Sci 2021. [PMID: 33905111 DOI: 10.1007/s12539-021-00432-9] [Reference Citation Analysis]
4 Meng X, Li W, Peng X, Li Y, Li M. Protein interaction networks: centrality, modularity, dynamics, and applications. Front Comput Sci 2021;15. [DOI: 10.1007/s11704-020-8179-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
5 SabziNezhad A, Jalili S. DPCT: A Dynamic Method for Detecting Protein Complexes From TAP-Aware Weighted PPI Network. Front Genet 2020;11:567. [PMID: 32676097 DOI: 10.3389/fgene.2020.00567] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zhang J, Zhong C, Lin HX, Wang M. Identifying Protein Complexes from Dynamic Temporal Interval Protein-Protein Interaction Networks. Biomed Res Int 2019;2019:3726721. [PMID: 31531351 DOI: 10.1155/2019/3726721] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Wang R, Liu G, Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinformatics 2019;20:471. [PMID: 31521132 DOI: 10.1186/s12859-019-3007-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lei X, Fang M, Fujita H. Moth–flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes. Knowledge-Based Systems 2019;172:76-85. [DOI: 10.1016/j.knosys.2019.02.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
9 Romero-Molina S, Ruiz-Blanco YB, Harms M, Münch J, Sanchez-Garcia E. PPI-Detect: A support vector machine model for sequence-based prediction of protein-protein interactions. J Comput Chem 2019;40:1233-42. [PMID: 30768790 DOI: 10.1002/jcc.25780] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
10 Zhang W, Xu J, Li Y, Zou X. Integrating network topology, gene expression data and GO annotation information for protein complex prediction. J Bioinform Comput Biol 2019;17:1950001. [PMID: 30803297 DOI: 10.1142/S021972001950001X] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jalili M, Gebhardt T, Wolkenhauer O, Salehzadeh-Yazdi A. Unveiling network-based functional features through integration of gene expression into protein networks. Biochim Biophys Acta Mol Basis Dis 2018;1864:2349-59. [PMID: 29466699 DOI: 10.1016/j.bbadis.2018.02.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
12 Lei X, Zhang Y, Cheng S, Wu F, Pedrycz W. Topology potential based seed-growth method to identify protein complexes on dynamic PPI data. Information Sciences 2018;425:140-53. [DOI: 10.1016/j.ins.2017.10.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
13 Ou-Yang L, Yan H, Zhang XF. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks. BMC Bioinformatics 2017;18:463. [PMID: 29219066 DOI: 10.1186/s12859-017-1877-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
14 Lei X, Liang J. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks. Molecules 2017;22:E1223. [PMID: 28737728 DOI: 10.3390/molecules22071223] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
15 Glatigny A, Gambette P, Bourand-Plantefol A, Dujardin G, Mucchielli-Giorgi MH. Development of an in silico method for the identification of subcomplexes involved in the biogenesis of multiprotein complexes in Saccharomyces cerevisiae. BMC Syst Biol 2017;11:67. [PMID: 28693620 DOI: 10.1186/s12918-017-0442-0] [Reference Citation Analysis]
16 Wong SWH, Pastrello C, Kotlyar M, Faloutsos C, Jurisica I. Modeling tumor progression via the comparison of stage-specific graphs. Methods 2018;132:34-41. [PMID: 28684340 DOI: 10.1016/j.ymeth.2017.06.033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
17 Mohammadi Jenghara M, Ebrahimpour-komleh H, Parvin H. Dynamic protein–protein interaction networks construction using firefly algorithm. Pattern Anal Applic 2018;21:1067-81. [DOI: 10.1007/s10044-017-0626-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 3.4] [Reference Citation Analysis]
18 Liao L, Hu X. Editorial. Methods 2016;110:1-2. [PMID: 27836021 DOI: 10.1016/j.ymeth.2016.10.014] [Reference Citation Analysis]