BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gu Y, Xu X, Wu Y, Niu T, Liu Y, Li J, Du G, Liu L. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering 2018;50:109-21. [DOI: 10.1016/j.ymben.2018.05.006] [Cited by in Crossref: 112] [Cited by in F6Publishing: 115] [Article Influence: 22.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhu J, Gu Y, Yan Y, Ma J, Sun X, Xu P. Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y. lipolytica. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1098116] [Reference Citation Analysis]
2 Wu K, Mao Z, Mao Y, Niu J, Cai J, Yuan Q, Yun L, Liao X, Wang Z, Ma H. ecBSU1: A Genome-Scale Enzyme-Constrained Model of Bacillus subtilis Based on the ECMpy Workflow. Microorganisms 2023;11. [PMID: 36677469 DOI: 10.3390/microorganisms11010178] [Reference Citation Analysis]
3 Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. Biotechnol Biofuels Bioprod 2023;16:6. [PMID: 36627716 DOI: 10.1186/s13068-022-02253-4] [Reference Citation Analysis]
4 Xue W, Jian L, Qian W, Xueli P, Qifa Z, Wei L, Dewen H, Yang N. Research Progress on the effect of Bacillus on flavor substances of Maotai flavor Baijiu. Food Sci Technol 2023;43. [DOI: 10.1590/fst.101422] [Reference Citation Analysis]
5 Yin M, Wang N, Wang Q, Xia H, Cheng X, Hu H, Zhang Z, Liu H. Cloning and expression of recombinant human superoxide dismutase 1 (hSOD1) in Bacillus subtilis 1012. Biotechnol Lett 2023;45:125-35. [PMID: 36469194 DOI: 10.1007/s10529-022-03319-x] [Reference Citation Analysis]
6 Mishra SK, Bhatt I, Paul PK. Bacillus subtilis Cell Factory. Biomanufacturing for Sustainable Production of Biomolecules 2023. [DOI: 10.1007/978-981-19-7911-8_8] [Reference Citation Analysis]
7 Tibocha-Bonilla JD, Zuñiga C, Lekbua A, Lloyd C, Rychel K, Short K, Zengler K. Predicting stress response and improved protein overproduction in Bacillus subtilis. NPJ Syst Biol Appl 2022;8:50. [PMID: 36575180 DOI: 10.1038/s41540-022-00259-0] [Reference Citation Analysis]
8 Hing JN, Jong BC, Liew PWY, Elly Ellyna R, Shamsudin S. Gamma Radiation Dose-Response of Gram-Positive and Gram-Negative Bacteria. MAB 2022;51:107-112. [DOI: 10.55230/mabjournal.v51i5.2370] [Reference Citation Analysis]
9 Tang C, Wang L, Zang L, Wang Q, Qi D, Dai Z. On-demand biomanufacturing through synthetic biology approach. Mater Today Bio 2023;18:100518. [PMID: 36636637 DOI: 10.1016/j.mtbio.2022.100518] [Reference Citation Analysis]
10 Miao H, Zhe Y, Xiang X, Cao Y, Han N, Wu Q, Huang Z. Enhanced Extracellular Expression of a Ca2+- and Mg2+-Dependent Hyperthermostable Protease EA1 in Bacillus subtilis via Systematic Screening of Optimal Signal Peptides. J Agric Food Chem 2022. [DOI: 10.1021/acs.jafc.2c06741] [Reference Citation Analysis]
11 Parati M, Khalil I, Tchuenbou-magaia F, Adamus G, Mendrek B, Hill R, Radecka I. Building a circular economy around poly(D/L-γ-glutamic acid)- a smart microbial biopolymer. Biotechnology Advances 2022;61:108049. [DOI: 10.1016/j.biotechadv.2022.108049] [Reference Citation Analysis]
12 Wang C, Lin M, Yang Z, Lu X, Liu Y, Lu H, Zhu J, Sun X, Gu Y. Characterization of the endogenous promoters in Yarrowia lipolytica for the biomanufacturing applications. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.11.023] [Reference Citation Analysis]
13 Sun Y, Kokko M, Vassilev I. Steering the metabolism of Bacillus subtilis under oxygen-limited conditions with anode assisted electro-fermentation.. [DOI: 10.21203/rs.3.rs-2199976/v1] [Reference Citation Analysis]
14 Han L, Chen Q, Luo J, Cui W, Zhou Z. Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis. Microbiol Spectr 2022;10:e0132222. [PMID: 36036634 DOI: 10.1128/spectrum.01322-22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Lu Q, Zhang L, Lin C, Zhou T. Big Data-Driven Vocational Undergraduate Talent Training and Social Needs Adaptability Analysis and Collaborative Path Mining. Computational Intelligence and Neuroscience 2022;2022:1-12. [DOI: 10.1155/2022/8476412] [Reference Citation Analysis]
16 Zhang W, Zhu X, Wang Y, Li T. Bacillus subtilis chassis in biomanufacturing 4.0. J of Chemical Tech & Biotech 2022;97:2665-2674. [DOI: 10.1002/jctb.7053] [Reference Citation Analysis]
17 He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Reference Citation Analysis]
18 Zhu Y, Wang L, Zheng K, Liu P, Li W, Lin J, Liu W, Shan S, Sun L, Zhang H. Optimized Recombinant Expression and Characterization of Collagenase in Bacillus subtilis WB600. Fermentation 2022;8:449. [DOI: 10.3390/fermentation8090449] [Reference Citation Analysis]
19 Zhang R, Zhao Q, Yi Z, Zhang K, Shi J, Zhu L, Chen Y, Jin J, Zhao L. Chitin oligosaccharides for the food industry: production and applications. Syst Microbiol and Biomanuf 2022. [DOI: 10.1007/s43393-022-00127-2] [Reference Citation Analysis]
20 Wang C, Lu X, Lin M, Liu Y, Lu H, Zhu J, Sun X, Gu Y. Characterization of the endogenous promoters in Yarrowia lipolytica for the biomanufacturing applications.. [DOI: 10.21203/rs.3.rs-1993869/v1] [Reference Citation Analysis]
21 Jiang C, Ye C, Liu Y, Huang K, Jiang X, Zou D, Li L, Han W, Wei X. Genetic engineering for enhanced production of a novel alkaline protease BSP-1 in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022;10:977215. [DOI: 10.3389/fbioe.2022.977215] [Reference Citation Analysis]
22 Chen H, Wu J, Huang X, Feng X, Ji H, Zhao L, Wang J. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front Microbiol 2022;13:968439. [DOI: 10.3389/fmicb.2022.968439] [Reference Citation Analysis]
23 De Wannemaeker L, Bervoets I, De Mey M. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. Biotechnol Adv 2022;:108028. [PMID: 36031082 DOI: 10.1016/j.biotechadv.2022.108028] [Reference Citation Analysis]
24 Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol 2022;:1-18. [PMID: 36001039 DOI: 10.1080/07388551.2022.2095252] [Reference Citation Analysis]
25 Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2022;:1-19. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Reference Citation Analysis]
26 S. Mane S, B. Khaire P, V. Pawar S. An Industrial Diligence of Behooveful Soil Microorganisms. Industrial Applications of Soil Microbes 2022. [DOI: 10.2174/9789815039955122010006] [Reference Citation Analysis]
27 Bento HBS, Paiva GB, Almeida MR, Silva CG, Carvalho PJ, Tavares APM, Pedrolli DB, Santos-Ebinuma VC. Aliivibrio fischeri L-Asparaginase production by engineered Bacillus subtilis: a potential new biopharmaceutical. Bioprocess Biosyst Eng 2022. [PMID: 35974197 DOI: 10.1007/s00449-022-02769-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chu R, Li R, Wang C, Ban R. Production of vitamin B2 (riboflavin) by Bacillus subtilis. J of Chemical Tech & Biotech 2022;97:1941-9. [DOI: 10.1002/jctb.7017] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022;13:883122. [DOI: 10.3389/fmicb.2022.883122] [Reference Citation Analysis]
30 Zhao X, Chen X, Xue Y, Wang X. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system. J Basic Microbiol 2022. [PMID: 35655368 DOI: 10.1002/jobm.202200134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mhatre A, Kalscheur B, Mckeown H, Bhakta K, Sarnaik AP, Flores A, Nielsen DR, Wang X, Soundappan T, Varman AM. Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium. Renewable Energy 2022;193:288-98. [DOI: 10.1016/j.renene.2022.04.124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yang Y, Mao Y, Wang R, Li H, Liu Y, Cheng H, Shi Z, Wang Y, Wang M, Zheng P, Liao X, Ma H. AutoESD: a web tool for automatic editing sequence design for genetic manipulation of microorganisms. Nucleic Acids Res 2022:gkac417. [PMID: 35639727 DOI: 10.1093/nar/gkac417] [Reference Citation Analysis]
33 Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022;:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Koryagina AO, Osmanova FR, Toymentseva AA, Laikov AV, Sharipova MR. Quantitative Analysis of Bacillus pumilus Serine Proteinases in Recombinant Bacillus Strains. Microbiology 2022;91:199-206. [DOI: 10.1134/s0026261722020060] [Reference Citation Analysis]
35 Paul SS, Dhali D, Yaseen Y, Basu U, Pal S, Mohammed N, Trabelsi H. De novo design and synthesis of biomolecules. New Frontiers and Applications of Synthetic Biology 2022. [DOI: 10.1016/b978-0-12-824469-2.00020-8] [Reference Citation Analysis]
36 Khan MF, Murphy CD. Application of Microbial Biofilms in Biocatalysis and Biodegradation. Enzymes for Pollutant Degradation 2022. [DOI: 10.1007/978-981-16-4574-7_5] [Reference Citation Analysis]
37 Cai M, Kee PE, Ng HS, Chen P. Development of Bacillus subtilis self-inducible expression system for keratinase production using piggery wastewater. Journal of the Taiwan Institute of Chemical Engineers 2022. [DOI: 10.1016/j.jtice.2022.104218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Jiang Z, Wang C, Wu Z, Chen K, Yang W, Deng H, Song H, Zhou X. Enzymatic deamination of the epigenetic nucleoside N6-methyladenosine regulates gene expression. Nucleic Acids Res 2021;49:12048-68. [PMID: 34850126 DOI: 10.1093/nar/gkab1124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Zhou C, Yang G, Zhang L, Zhang H, Zhou H, Lu F. Construction of an alkaline protease overproducer strain based on Bacillus licheniformis 2709 using an integrative approach. Int J Biol Macromol 2021:S0141-8130(21)02374-6. [PMID: 34742839 DOI: 10.1016/j.ijbiomac.2021.10.208] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021;:1-14. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Xu J, Wang C, Ban R. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis. Lett Appl Microbiol 2021. [PMID: 34704264 DOI: 10.1111/lam.13584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Zhang M, Zhao X, Chen X, Li M, Wang X. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway. Biotechnol Lett 2021;43:2209-16. [PMID: 34606014 DOI: 10.1007/s10529-021-03190-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Yang H, Zhang M, Ji T, Zhang Y, Wei W, Liu Q. Bacillus subtilis CK3 used as an aquatic additive probiotics enhanced the immune response of crayfish Procambarus clarkii against newly identified Aeromonas veronii pathogen. Aquaculture Research 2022;53:255-64. [DOI: 10.1111/are.15571] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Deng A, Sun Z, Wang T, Cui D, Li L, Liu S, Huang F, Wen T. Simultaneous Multiplex Genome Engineering via Accelerated Natural Transformation in Bacillus subtilis. Front Microbiol 2021;12:714449. [PMID: 34484154 DOI: 10.3389/fmicb.2021.714449] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Mao X, Huang Z, Sun G, Zhang H, Lu W, Liu Y, Lv X, Du G, Li J, Liu L. High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. Bioresour Technol 2021;341:125836. [PMID: 34469820 DOI: 10.1016/j.biortech.2021.125836] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021;105:6607-26. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Farias TC, Kawaguti HY, Bello Koblitz MG. Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. Biocatalysis and Agricultural Biotechnology 2021;35:102054. [DOI: 10.1016/j.bcab.2021.102054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. Bioresour Technol 2021;340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
49 Appelbaum M, Schweder T. Metabolic Engineering of Bacillus – New Tools, Strains, and Concepts. Metabolic Engineering 2021. [DOI: 10.1002/9783527823468.ch13] [Reference Citation Analysis]
50 Meng L, Gao X, Liu X, Sun M, Yan H, Li A, Yang Y, Bai Z. Enhancement of heterologous protein production in Corynebacterium glutamicum via atmospheric and room temperature plasma mutagenesis and high-throughput screening. J Biotechnol 2021;339:22-31. [PMID: 34311028 DOI: 10.1016/j.jbiotec.2021.07.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Maleki F, Changizian M, Zolfaghari N, Rajaei S, Noghabi KA, Zahiri HS. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains. Sci Rep 2021;11:13731. [PMID: 34215768 DOI: 10.1038/s41598-021-92627-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
52 Xiang L, Li G, Wen L, Su C, Liu Y, Tang H, Dai J. Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021;6:153-62. [PMID: 34278013 DOI: 10.1016/j.synbio.2021.06.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
53 Yang X, Dong M, Zhou Z, Deng L, Deng C, Liu H, Zhong Z, Fu H, Ren Z, Hu Y, Shen L, Geng Y, Peng G. RNA-binding protein Hfq plays a vital role in cellulose decomposition throughout affecting cellulase gene expression. Biotechnol Lett 2021;43:1779-85. [PMID: 34129180 DOI: 10.1007/s10529-021-03145-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Zhang H, Li X, Liu Q, Sun J, Secundo F, Mao X. Construction of a Super-Folder Fluorescent Protein-Guided Secretory Expression System for the Production of Phospholipase D in Bacillus subtilis. J Agric Food Chem 2021;69:6842-9. [PMID: 34124889 DOI: 10.1021/acs.jafc.1c02089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
55 Zhang Q, Wu Y, Gong M, Zhang H, Liu Y, Lv X, Li J, Du G, Liu L. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021:EBC20210011. [PMID: 34028523 DOI: 10.1042/EBC20210011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 García M, Oulego P, Díaz M, Collado S. Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge. Sustainability 2021;13:5499. [DOI: 10.3390/su13105499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Cai MZ, Chen PT. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis. J Biosci Bioeng 2021;132:113-9. [PMID: 33994114 DOI: 10.1016/j.jbiosc.2021.04.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Nguyen KN, Kim Y, Maibunkaew S, Park J, Nguyen MT, Oh D, Kwon O. Enhanced Production of 1-Deoxynojirimycin in Bacillus subtilis subsp. inaquosorum by Random Mutagenesis and Culture Optimization. Biotechnol Bioproc E 2021;26:265-76. [DOI: 10.1007/s12257-020-0231-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Jiang Z, Ma S, Guan L, Yan Q, Yang S. Biochemical characterization of a novel bifunctional chitosanase from Paenibacillus barengoltzii for chitooligosaccharide production. World J Microbiol Biotechnol 2021;37:83. [PMID: 33855634 DOI: 10.1007/s11274-021-03051-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
60 Yao D, Zhang K, Su L, Liu Z, Wu J. Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain. Biochemical Engineering Journal 2021;168:107948. [DOI: 10.1016/j.bej.2021.107948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Zhou W, Jiang H, Wang L, Liang X, Mao X. Biotechnological Production of 2'-Fucosyllactose: A Prevalent Fucosylated Human Milk Oligosaccharide. ACS Synth Biol 2021;10:447-58. [PMID: 33687208 DOI: 10.1021/acssynbio.0c00645] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
62 Park SA, Bhatia SK, Park HA, Kim SY, Sudheer PDVN, Yang YH, Choi KY. Bacillus subtilis as a robust host for biochemical production utilizing biomass. Crit Rev Biotechnol 2021;41:827-48. [PMID: 33622141 DOI: 10.1080/07388551.2021.1888069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
63 Li C, Cheng P, Zheng L, Li Y, Chen Y, Wen S, Yu G. Comparative genomics analysis of two banana Fusarium wilt biocontrol endophytes Bacillus subtilis R31 and TR21 provides insights into their differences on phytobeneficial trait. Genomics 2021;113:900-9. [PMID: 33592313 DOI: 10.1016/j.ygeno.2021.02.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Kim D, Kim W, Kim J. New Bacterial Surface Display System Development and Application Based on Bacillus subtilis YuaB Biofilm Component as an Anchoring Motif. Biotechnol Bioprocess Eng 2021;:1-8. [PMID: 33584103 DOI: 10.1007/s12257-020-0397-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Ramesh M, Maniraj J, Rajesh Kumar L. Biocomposites for Energy Storage. Biobased Composites 2021. [DOI: 10.1002/9781119641803.ch9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
66 Rychel K, Decker K, Sastry AV, Phaneuf PV, Poudel S, Palsson BO. iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning. Nucleic Acids Res 2021;49:D112-20. [PMID: 33045728 DOI: 10.1093/nar/gkaa810] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
67 Trabelsi H, Dhali D, Yaseen Y, Leclère V, Jacques P, Coutte F. Bacillus subtilis-based microbial cell factories. Microbial Cell Factories Engineering for Production of Biomolecules 2021. [DOI: 10.1016/b978-0-12-821477-0.00002-7] [Reference Citation Analysis]
68 Gupta P, Phulara S. Microbial hosts for the production of terpenoids. Biotechnology of Terpenoid Production from Microbial Cell Factories 2021. [DOI: 10.1016/b978-0-12-819917-6.00001-6] [Reference Citation Analysis]
69 Ji M, Li S, Chen A, Liu Y, Xie Y, Duan H, Shi J, Sun J. A wheat bran inducible expression system for the efficient production of α-L-arabinofuranosidase in Bacillus subtilis. Enzyme Microb Technol 2021;144:109726. [PMID: 33541569 DOI: 10.1016/j.enzmictec.2020.109726] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
70 Rychel K, Sastry AV, Palsson BO. Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 2020;11:6338. [PMID: 33311500 DOI: 10.1038/s41467-020-20153-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
71 Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. Positioning Bacillus subtilis as terpenoid cell factory. J Appl Microbiol 2021;130:1839-56. [PMID: 33098223 DOI: 10.1111/jam.14904] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
72 Tran DTM, Phan TTP, Doan TTN, Tran TL, Schumann W, Nguyen HD. Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnol Rep (Amst) 2020;28:e00540. [PMID: 33163371 DOI: 10.1016/j.btre.2020.e00540] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
73 Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, Yaqoob AA, Mohamad Ibrahim MN. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials (Basel) 2020;13:E4993. [PMID: 33167607 DOI: 10.3390/ma13214993] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 14.3] [Reference Citation Analysis]
74 Wang M, Yu H, Li X, Shen Z. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, and applications for producing enzymes and surfactin. Metabolic Engineering 2020;62:235-48. [DOI: 10.1016/j.ymben.2020.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
75 Promchai R, Visessanguan W, Luxananil P. An efficient ABC transporter signal peptide directs heterologous protein secretion in food-grade hosts. World J Microbiol Biotechnol 2020;36:154. [PMID: 32949270 DOI: 10.1007/s11274-020-02932-0] [Reference Citation Analysis]
76 Xu X, Li X, Liu Y, Zhu Y, Li J, Du G, Chen J, Ledesma-amaro R, Liu L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol 2020;16:1261-8. [DOI: 10.1038/s41589-020-0637-3] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
77 Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020;19:173. [PMID: 32883293 DOI: 10.1186/s12934-020-01436-8] [Cited by in Crossref: 71] [Cited by in F6Publishing: 76] [Article Influence: 23.7] [Reference Citation Analysis]
78 Corrêa GG, Lins MRDCR, Silva BF, de Paiva GB, Zocca VFB, Ribeiro NV, Picheli FP, Mack M, Pedrolli DB. A modular autoinduction device for control of gene expression in Bacillus subtilis. Metabolic Engineering 2020;61:326-34. [DOI: 10.1016/j.ymben.2020.03.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
79 Rychel K, Decker K, Sastry AV, Phaneuf PV, Poudel S, Palsson BO. iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning.. [DOI: 10.1101/2020.08.13.250159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
80 Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020;10:13346. [PMID: 32770019 DOI: 10.1038/s41598-020-70314-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
81 Richts B, Hertel R, Potot S, Poehlein A, Daniel R, Schyns G, Prágai Z, Commichau FM. Complete Genome Sequence of the Prototrophic Bacillus subtilis subsp. subtilis Strain SP1. Microbiol Resour Announc 2020;9:e00825-20. [PMID: 32763948 DOI: 10.1128/MRA.00825-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020;5:245-51. [PMID: 32775709 DOI: 10.1016/j.synbio.2020.07.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
83 Zhang L, Li X, Zhan N, Sun T, Li J, Shan A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 2020;39:383-91. [PMID: 32661730 DOI: 10.1007/s10930-020-09908-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
84 Xu X, Liu Y, Du G, Ledesma-amaro R, Liu L. Microbial Chassis Development for Natural Product Biosynthesis. Trends in Biotechnology 2020;38:779-96. [DOI: 10.1016/j.tibtech.2020.01.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
85 Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SP amy signal peptide. Lett Appl Microbiol 2020;71:235-41. [DOI: 10.1111/lam.13312] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
86 Moon K, Lee S, Cha J. Bacillus subtilis Fermentation of Malva verticillata Leaves Enhances Antioxidant Activity and Osteoblast Differentiation. Foods 2020;9:E671. [PMID: 32456062 DOI: 10.3390/foods9050671] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
87 Wang S, Fu G, Li J, Wei X, Fang H, Huang D, Lin J, Zhang D. High-Efficiency Secretion and Directed Evolution of Chitinase BcChiA1 in Bacillus subtilis for the Conversion of Chitinaceous Wastes Into Chitooligosaccharides. Front Bioeng Biotechnol 2020;8:432. [PMID: 32457893 DOI: 10.3389/fbioe.2020.00432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
88 Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances 2020;40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 22.3] [Reference Citation Analysis]
89 Thomas GH. Microbial Musings – May 2020. Microbiology 2020;166:422-424. [DOI: 10.1099/mic.0.000942] [Reference Citation Analysis]
90 Zhang J, Xu C, Chen X, Ruan X, Zhang Y, Xu H, Guo Y, Xu J, Lv P, Wang Z. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Enzyme and Microbial Technology 2020;136:109531. [DOI: 10.1016/j.enzmictec.2020.109531] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
91 Rychel K, Sastry AV, Palsson BO. Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome.. [DOI: 10.1101/2020.04.26.062638] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
92 Sun L, Alper HS. Non-conventional hosts for the production of fuels and chemicals. Curr Opin Chem Biol 2020;59:15-22. [PMID: 32348879 DOI: 10.1016/j.cbpa.2020.03.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
93 Xu L, Han F, Dong Z, Wei Z. Engineering Improves Enzymatic Synthesis of L-Tryptophan by Tryptophan Synthase from Escherichia coli. Microorganisms 2020;8:E519. [PMID: 32260519 DOI: 10.3390/microorganisms8040519] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
94 Bilal M, Xu S, Iqbal HMN, Cheng H. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr 2021;61:535-52. [PMID: 32180435 DOI: 10.1080/10408398.2020.1739000] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
95 Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS‐B: CRISPR/Cpf1 assisted multiple‐genes editing and regulation system for Bacillus subtilis. Biotechnology and Bioengineering 2020;117:1817-25. [DOI: 10.1002/bit.27322] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
96 Hu F, Liu Y, Lin J, Wang W, Li S. Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Appl Microbiol Biotechnol 2020;104:4017-26. [DOI: 10.1007/s00253-020-10528-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
97 Karpov DS, Domashin AI, Kotlov MI, Osipova PG, Kiseleva SV, Seregina TA, Goncharenko AV, Mironov AS, Karpov VL, Poddubko SV. Biotechnological Potential of the Bacillus subtilis 20 Strain. Mol Biol 2020;54:119-27. [DOI: 10.1134/s0026893320010082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
98 Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb Cell Fact 2020;19:45. [PMID: 32093734 DOI: 10.1186/s12934-020-01307-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
99 Burian J, Brady SF. General Strategies for Biosynthetic Gene Cluster Identification, Capture, and Heterologous Expression. Comprehensive Natural Products III 2020. [DOI: 10.1016/b978-0-12-409547-2.14850-4] [Reference Citation Analysis]
100 Wirth NT, Nikel PI. Engineering Reduced-Genome Strains of Pseudomonas putida for Product Valorization. Minimal Cells: Design, Construction, Biotechnological Applications 2020. [DOI: 10.1007/978-3-030-31897-0_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol 2020;202:427-35. [PMID: 31773195 DOI: 10.1007/s00203-019-01757-2] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
102 Miller KK, Alper HS. Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019;103:9251-62. [DOI: 10.1007/s00253-019-10200-x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
103 Shen S, Zhou R, Li Y, Liu B, Pan G, Liu Q, Xiong Q, Wang X, Xia X, Tu J. Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods 2019;3:1900596. [DOI: 10.1002/smtd.201900596] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 17.3] [Reference Citation Analysis]
104 van Tilburg AY, Cao H, van der Meulen SB, Solopova A, Kuipers OP. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Current Opinion in Biotechnology 2019;59:1-7. [DOI: 10.1016/j.copbio.2019.01.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
105 Santiago Badillo TP, Pham TTH, Nadeau M, Allard-Massicotte R, Jacob-Vaillancourt C, Heitz M, Avalos Ramirez A. Production of plant growth-promoting bacteria inoculants from composting leachate to develop durable agricultural ecosystems. Environ Sci Pollut Res Int 2021;28:29037-45. [PMID: 31463742 DOI: 10.1007/s11356-019-06135-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Soares A, Azevedo A, Gomes LC, Mergulhão FJ. Recombinant protein expression in biofilms. AIMS Microbiol 2019;5:232-50. [PMID: 31663059 DOI: 10.3934/microbiol.2019.3.232] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
107 Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019;8:1620-30. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
108 Landon S, Rees-Garbutt J, Marucci L, Grierson C. Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem 2019;63:267-84. [PMID: 31243142 DOI: 10.1042/EBC20180045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
109 Dib W, Grar H, Gourine H, El Mecherfi KE, Negaoui H, Biscola V, Kaddouri H, Chobert J, Haertlé T, Saidi D, Kheroua O. Prophylactic properties of Bacillus subtilis in a bovine β-lactoglobulin sensitized mice model. Eur Food Res Technol 2019;245:1357-1364. [DOI: 10.1007/s00217-019-03259-3] [Reference Citation Analysis]
110 Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019;14:1800437. [DOI: 10.1002/biot.201800437] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
111 Peng Z, Zhang J, Du G, Chen J. Keratin Waste Recycling Based on Microbial Degradation: Mechanisms and Prospects. ACS Sustainable Chem Eng 2019;7:9727-36. [DOI: 10.1021/acssuschemeng.9b01527] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
112 Liu Y, Liu L, Li J, Du G, Chen J. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends in Biotechnology 2019;37:548-62. [DOI: 10.1016/j.tibtech.2018.10.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 12.0] [Reference Citation Analysis]
113 Zhao L, Ye B, Zhang Q, Cheng D, Zhou C, Cheng S, Yan X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol Bioeng 2019;116:2052-60. [PMID: 30989640 DOI: 10.1002/bit.26992] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
114 Wang J, Wang W, Wang H, Yuan F, Xu Z, Yang K, Li Z, Chen Y, Fan K. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 2019;103:4455-65. [PMID: 30968162 DOI: 10.1007/s00253-019-09788-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
115 Liu Q, Jin X, Fang F, Li J, Du G, Kang Z. Food-grade expression of an iron-containing acid urease in Bacillus subtilis. J Biotechnol 2019;293:66-71. [PMID: 30703469 DOI: 10.1016/j.jbiotec.2019.01.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
116 Liu W, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochemical Engineering Journal 2019;141:182-9. [DOI: 10.1016/j.bej.2018.10.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
117 de Andrade LM, de Oliveira D, de Andrade CJ. Nanoformulations Based on Bacillus subtilis Lipopeptides: The Future of Agriculture. Nanotechnology for Agriculture 2019. [DOI: 10.1007/978-981-32-9370-0_5] [Reference Citation Analysis]
118 Tian J, Long X, Tian Y, Shi B. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv 2019;9:33337-44. [DOI: 10.1039/c9ra07866e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
119 Wu Y, Gu Y, Tian R, Du G, Chen J, Liu L. Construction of Microbial Cell Factories by Systems and Synthetic Biotechnology. Systems and Synthetic Biotechnology for Production of Nutraceuticals 2019. [DOI: 10.1007/978-981-15-0446-4_2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
120 Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019;4:25-33. [PMID: 30560208 DOI: 10.1016/j.synbio.2018.12.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
121 Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. J Agric Food Chem 2018;66:13217-27. [DOI: 10.1021/acs.jafc.8b05038] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]
122 Gu Y, Lv X, Liu Y, Li J, Du G, Chen J, Rodrigo LA, Liu L. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab Eng 2019;51:59-69. [PMID: 30343048 DOI: 10.1016/j.ymben.2018.10.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 8.4] [Reference Citation Analysis]
123 Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018;3:135-49. [PMID: 30345399 DOI: 10.1016/j.synbio.2018.09.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 13.4] [Reference Citation Analysis]
124 Zhang J, Lan N. Hirudin variants production by genetic engineered microbial factory. Biotechnol Genet Eng Rev 2018;34:261-80. [PMID: 30095033 DOI: 10.1080/02648725.2018.1506898] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
125 Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019;12:98-124. [PMID: 29926529 DOI: 10.1111/1751-7915.13292] [Cited by in Crossref: 138] [Cited by in F6Publishing: 142] [Article Influence: 27.6] [Reference Citation Analysis]